Note: This is the R markdown of the manuscript “An Exploratory Analysis of the Internal Structure of Test Through a Multi-methods Exploratory Approach of the ASQ:SE in Brazil”. The first set of chunks reproduce a previous published paper (“Confirmatory analysis and normative tables for the Brazilian Ages and Stages Questionnaires: Social–Emotional”) that used the same dataframe.

Click run to reproduce all analyzes.

If you have any questions or queries, please reach me out at

last updated: 04 January, 2022

1 Main analysis

Last review on January 4, 2022.

load(url("https://osf.io/s8rxb/download"))
#Packages
pacman::p_load(tidyverse, #enrironment
               arsenal,
               knitr,
               psych) #classical test

2 Previous Wiley

2.1 Descriptives

Page 3

1 (N=11291) 2 (N=11040) Total (N=22331) p value
score < 0.001
   Mean (SD) 44.823 (36.665) 34.017 (30.441) 39.481 (34.161)
   Range 0.000 - 275.000 0.000 - 290.000 0.000 - 290.000
ds_60 %>% 
  tableby(sex ~ score, data = .) %>% 
  summary()

2.2 IRT

cfa60 <- '
F1 = 2, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 20, 22, 23, 24, 25, 26, 30, 31, 32
F2 = 1, 3, 4, 8, 10, 14, 18, 19, 21, 27, 28, 29
COV = F1*F2'

https://onlinelibrary.wiley.com/doi/10.1111/cch.12649
Months 60
M2 1,035.145 (current = 1053.881)
df 431
P <0.001
RMSEA 0.05
SRMSR 0.08
TLI 0.91 (0.93)
CFI 0.92 (0.94)

mirt::mirt(ds_60_random[-c(1:4,37)] , 
     cfa60, 
     itemtype= 'graded', method = 'MHRM') %>% 
  mirt::M2(.)
"q_1" re-mapped to ensure all categories have a distance of 1
"q_2" re-mapped to ensure all categories have a distance of 1
"q_3" re-mapped to ensure all categories have a distance of 1
"q_4" re-mapped to ensure all categories have a distance of 1
"q_5" re-mapped to ensure all categories have a distance of 1
"q_6" re-mapped to ensure all categories have a distance of 1
"q_7" re-mapped to ensure all categories have a distance of 1
"q_8" re-mapped to ensure all categories have a distance of 1
"q_9" re-mapped to ensure all categories have a distance of 1
"q_10" re-mapped to ensure all categories have a distance of 1
"q_11" re-mapped to ensure all categories have a distance of 1
"q_12" re-mapped to ensure all categories have a distance of 1
"q_13" re-mapped to ensure all categories have a distance of 1
"q_14" re-mapped to ensure all categories have a distance of 1
"q_15" re-mapped to ensure all categories have a distance of 1
"q_16" re-mapped to ensure all categories have a distance of 1
"q_17" re-mapped to ensure all categories have a distance of 1
"q_18" re-mapped to ensure all categories have a distance of 1
"q_19" re-mapped to ensure all categories have a distance of 1
"q_20" re-mapped to ensure all categories have a distance of 1
"q_21" re-mapped to ensure all categories have a distance of 1
"q_22" re-mapped to ensure all categories have a distance of 1
"q_23" re-mapped to ensure all categories have a distance of 1
"q_24" re-mapped to ensure all categories have a distance of 1
"q_25" re-mapped to ensure all categories have a distance of 1
"q_26" re-mapped to ensure all categories have a distance of 1
"q_27" re-mapped to ensure all categories have a distance of 1
"q_28" re-mapped to ensure all categories have a distance of 1
"q_29" re-mapped to ensure all categories have a distance of 1
"q_30" re-mapped to ensure all categories have a distance of 1
"q_31" re-mapped to ensure all categories have a distance of 1
"q_32" re-mapped to ensure all categories have a distance of 1

Stage 1 = 1, LL = -9215.6, AR(0.55) = [0.45], Max-Change = 0.2000
Stage 1 = 2, LL = -9157.9, AR(0.55) = [0.46], Max-Change = 0.2000
Stage 1 = 3, LL = -9072.9, AR(0.55) = [0.44], Max-Change = 0.2000
Stage 1 = 4, LL = -9053.6, AR(0.55) = [0.45], Max-Change = 0.2000
Stage 1 = 5, LL = -8967.0, AR(0.55) = [0.47], Max-Change = 0.2000
Stage 1 = 6, LL = -8948.9, AR(0.55) = [0.48], Max-Change = 0.1697
Stage 1 = 7, LL = -8898.4, AR(0.55) = [0.44], Max-Change = 0.1808
Stage 1 = 8, LL = -8861.5, AR(0.55) = [0.41], Max-Change = 0.1560
Stage 1 = 9, LL = -8859.3, AR(0.55) = [0.41], Max-Change = 0.1445
Stage 1 = 10, LL = -8824.1, AR(0.55) = [0.43], Max-Change = 0.1728
Stage 1 = 11, LL = -8770.1, AR(0.55) = [0.42], Max-Change = 0.1109
Stage 1 = 12, LL = -8741.1, AR(0.55) = [0.45], Max-Change = 0.1587
Stage 1 = 13, LL = -8716.6, AR(0.55) = [0.42], Max-Change = 0.1827
Stage 1 = 14, LL = -8717.8, AR(0.55) = [0.40], Max-Change = 0.1243
Stage 1 = 15, LL = -8697.4, AR(0.55) = [0.39], Max-Change = 0.1197
Stage 1 = 16, LL = -8701.6, AR(0.55) = [0.38], Max-Change = 0.1722
Stage 1 = 17, LL = -8683.0, AR(0.55) = [0.38], Max-Change = 0.1651
Stage 1 = 18, LL = -8686.3, AR(0.55) = [0.40], Max-Change = 0.0948
Stage 1 = 19, LL = -8669.1, AR(0.55) = [0.39], Max-Change = 0.1062
Stage 1 = 20, LL = -8676.2, AR(0.55) = [0.41], Max-Change = 0.1063
Stage 1 = 21, LL = -8708.0, AR(0.55) = [0.39], Max-Change = 0.1098
Stage 1 = 22, LL = -8665.9, AR(0.55) = [0.43], Max-Change = 0.1057
Stage 1 = 23, LL = -8680.2, AR(0.55) = [0.42], Max-Change = 0.0653
Stage 1 = 24, LL = -8646.8, AR(0.55) = [0.35], Max-Change = 0.0774
Stage 1 = 25, LL = -8643.6, AR(0.55) = [0.38], Max-Change = 0.0736
Stage 1 = 26, LL = -8602.0, AR(0.55) = [0.39], Max-Change = 0.0494
Stage 1 = 27, LL = -8608.5, AR(0.55) = [0.39], Max-Change = 0.1006
Stage 1 = 28, LL = -8610.0, AR(0.55) = [0.41], Max-Change = 0.0902
Stage 1 = 29, LL = -8657.5, AR(0.55) = [0.37], Max-Change = 0.0975
Stage 1 = 30, LL = -8620.8, AR(0.55) = [0.36], Max-Change = 0.0809
Stage 1 = 31, LL = -8606.2, AR(0.55) = [0.38], Max-Change = 0.0803
Stage 1 = 32, LL = -8642.7, AR(0.55) = [0.37], Max-Change = 0.1665
Stage 1 = 33, LL = -8634.0, AR(0.55) = [0.37], Max-Change = 0.0872
Stage 1 = 34, LL = -8630.8, AR(0.55) = [0.36], Max-Change = 0.0913
Stage 1 = 35, LL = -8596.7, AR(0.55) = [0.38], Max-Change = 0.1123
Stage 1 = 36, LL = -8588.1, AR(0.55) = [0.36], Max-Change = 0.0761
Stage 1 = 37, LL = -8587.0, AR(0.55) = [0.37], Max-Change = 0.0841
Stage 1 = 38, LL = -8568.0, AR(0.55) = [0.39], Max-Change = 0.0563
Stage 1 = 39, LL = -8579.3, AR(0.55) = [0.35], Max-Change = 0.0718
Stage 1 = 40, LL = -8573.8, AR(0.55) = [0.32], Max-Change = 0.0513
Stage 1 = 41, LL = -8574.9, AR(0.55) = [0.38], Max-Change = 0.0933
Stage 1 = 42, LL = -8553.5, AR(0.55) = [0.38], Max-Change = 0.0750
Stage 1 = 43, LL = -8580.2, AR(0.55) = [0.39], Max-Change = 0.1630
Stage 1 = 44, LL = -8573.2, AR(0.55) = [0.39], Max-Change = 0.1143
Stage 1 = 45, LL = -8563.9, AR(0.55) = [0.38], Max-Change = 0.0879
Stage 1 = 46, LL = -8569.6, AR(0.55) = [0.38], Max-Change = 0.0929
Stage 1 = 47, LL = -8580.6, AR(0.55) = [0.30], Max-Change = 0.0935
Stage 1 = 48, LL = -8558.9, AR(0.55) = [0.36], Max-Change = 0.0848
Stage 1 = 49, LL = -8595.3, AR(0.55) = [0.36], Max-Change = 0.1879
Stage 1 = 50, LL = -8561.2, AR(0.55) = [0.36], Max-Change = 0.0818
Stage 1 = 51, LL = -8514.2, AR(0.55) = [0.32], Max-Change = 0.0797
Stage 1 = 52, LL = -8554.9, AR(0.55) = [0.38], Max-Change = 0.1318
Stage 1 = 53, LL = -8533.1, AR(0.55) = [0.35], Max-Change = 0.1427
Stage 1 = 54, LL = -8566.2, AR(0.55) = [0.37], Max-Change = 0.1792
Stage 1 = 55, LL = -8537.2, AR(0.55) = [0.35], Max-Change = 0.0997
Stage 1 = 56, LL = -8541.4, AR(0.55) = [0.39], Max-Change = 0.0908
Stage 1 = 57, LL = -8479.3, AR(0.55) = [0.37], Max-Change = 0.0855
Stage 1 = 58, LL = -8526.8, AR(0.55) = [0.35], Max-Change = 0.1159
Stage 1 = 59, LL = -8530.9, AR(0.55) = [0.37], Max-Change = 0.1005
Stage 1 = 60, LL = -8530.7, AR(0.55) = [0.38], Max-Change = 0.1119
Stage 1 = 61, LL = -8506.0, AR(0.55) = [0.34], Max-Change = 0.0849
Stage 1 = 62, LL = -8488.0, AR(0.55) = [0.31], Max-Change = 0.1540
Stage 1 = 63, LL = -8459.9, AR(0.55) = [0.35], Max-Change = 0.0668
Stage 1 = 64, LL = -8475.4, AR(0.55) = [0.37], Max-Change = 0.0897
Stage 1 = 65, LL = -8490.8, AR(0.55) = [0.34], Max-Change = 0.0885
Stage 1 = 66, LL = -8469.4, AR(0.55) = [0.31], Max-Change = 0.1280
Stage 1 = 67, LL = -8482.2, AR(0.55) = [0.33], Max-Change = 0.0850
Stage 1 = 68, LL = -8523.8, AR(0.55) = [0.33], Max-Change = 0.0659
Stage 1 = 69, LL = -8485.2, AR(0.55) = [0.32], Max-Change = 0.1022
Stage 1 = 70, LL = -8468.9, AR(0.55) = [0.35], Max-Change = 0.0563
Stage 1 = 71, LL = -8457.2, AR(0.55) = [0.32], Max-Change = 0.0640
Stage 1 = 72, LL = -8473.8, AR(0.55) = [0.33], Max-Change = 0.0641
Stage 1 = 73, LL = -8517.7, AR(0.55) = [0.32], Max-Change = 0.0733
Stage 1 = 74, LL = -8471.0, AR(0.55) = [0.35], Max-Change = 0.1493
Stage 1 = 75, LL = -8464.6, AR(0.55) = [0.34], Max-Change = 0.0945
Stage 1 = 76, LL = -8542.2, AR(0.55) = [0.30], Max-Change = 0.1221
Stage 1 = 77, LL = -8526.0, AR(0.55) = [0.30], Max-Change = 0.1109
Stage 1 = 78, LL = -8523.5, AR(0.55) = [0.35], Max-Change = 0.0598
Stage 1 = 79, LL = -8480.5, AR(0.55) = [0.34], Max-Change = 0.0750
Stage 1 = 80, LL = -8479.6, AR(0.55) = [0.32], Max-Change = 0.1160
Stage 1 = 81, LL = -8523.4, AR(0.55) = [0.32], Max-Change = 0.0876
Stage 1 = 82, LL = -8511.7, AR(0.55) = [0.31], Max-Change = 0.0755
Stage 1 = 83, LL = -8529.9, AR(0.55) = [0.37], Max-Change = 0.0873
Stage 1 = 84, LL = -8559.4, AR(0.55) = [0.33], Max-Change = 0.1153
Stage 1 = 85, LL = -8550.4, AR(0.55) = [0.35], Max-Change = 0.1032
Stage 1 = 86, LL = -8521.0, AR(0.55) = [0.36], Max-Change = 0.1452
Stage 1 = 87, LL = -8483.9, AR(0.55) = [0.34], Max-Change = 0.0874
Stage 1 = 88, LL = -8522.6, AR(0.55) = [0.34], Max-Change = 0.0579
Stage 1 = 89, LL = -8510.0, AR(0.55) = [0.35], Max-Change = 0.0821
Stage 1 = 90, LL = -8501.3, AR(0.55) = [0.33], Max-Change = 0.0541
Stage 1 = 91, LL = -8487.3, AR(0.55) = [0.32], Max-Change = 0.0805
Stage 1 = 92, LL = -8510.4, AR(0.55) = [0.33], Max-Change = 0.0626
Stage 1 = 93, LL = -8509.3, AR(0.55) = [0.37], Max-Change = 0.0652
Stage 1 = 94, LL = -8522.7, AR(0.55) = [0.34], Max-Change = 0.0955
Stage 1 = 95, LL = -8518.4, AR(0.55) = [0.37], Max-Change = 0.1026
Stage 1 = 96, LL = -8487.1, AR(0.55) = [0.36], Max-Change = 0.0783
Stage 1 = 97, LL = -8476.3, AR(0.55) = [0.28], Max-Change = 0.1297
Stage 1 = 98, LL = -8490.2, AR(0.55) = [0.33], Max-Change = 0.0676
Stage 1 = 99, LL = -8502.1, AR(0.55) = [0.34], Max-Change = 0.1141
Stage 1 = 100, LL = -8511.0, AR(0.55) = [0.33], Max-Change = 0.1144
Stage 1 = 101, LL = -8487.4, AR(0.55) = [0.34], Max-Change = 0.0700
Stage 1 = 102, LL = -8490.4, AR(0.55) = [0.33], Max-Change = 0.1316
Stage 1 = 103, LL = -8517.2, AR(0.55) = [0.35], Max-Change = 0.1220
Stage 1 = 104, LL = -8501.9, AR(0.55) = [0.36], Max-Change = 0.0597
Stage 1 = 105, LL = -8503.0, AR(0.55) = [0.34], Max-Change = 0.1281
Stage 1 = 106, LL = -8512.1, AR(0.55) = [0.34], Max-Change = 0.1460
Stage 1 = 107, LL = -8521.2, AR(0.55) = [0.35], Max-Change = 0.0860
Stage 1 = 108, LL = -8561.0, AR(0.55) = [0.35], Max-Change = 0.0902
Stage 1 = 109, LL = -8528.3, AR(0.55) = [0.35], Max-Change = 0.0717
Stage 1 = 110, LL = -8529.4, AR(0.55) = [0.37], Max-Change = 0.0701
Stage 1 = 111, LL = -8551.4, AR(0.55) = [0.34], Max-Change = 0.0944
Stage 1 = 112, LL = -8526.6, AR(0.55) = [0.33], Max-Change = 0.0750
Stage 1 = 113, LL = -8531.2, AR(0.55) = [0.34], Max-Change = 0.0590
Stage 1 = 114, LL = -8501.2, AR(0.55) = [0.36], Max-Change = 0.0568
Stage 1 = 115, LL = -8547.9, AR(0.55) = [0.37], Max-Change = 0.0820
Stage 1 = 116, LL = -8552.2, AR(0.55) = [0.35], Max-Change = 0.0481
Stage 1 = 117, LL = -8498.2, AR(0.55) = [0.36], Max-Change = 0.0999
Stage 1 = 118, LL = -8521.7, AR(0.55) = [0.36], Max-Change = 0.1197
Stage 1 = 119, LL = -8481.4, AR(0.55) = [0.32], Max-Change = 0.1145
Stage 1 = 120, LL = -8494.9, AR(0.55) = [0.31], Max-Change = 0.1305
Stage 1 = 121, LL = -8464.2, AR(0.55) = [0.36], Max-Change = 0.0903
Stage 1 = 122, LL = -8490.1, AR(0.55) = [0.37], Max-Change = 0.1055
Stage 1 = 123, LL = -8516.8, AR(0.55) = [0.33], Max-Change = 0.0603
Stage 1 = 124, LL = -8537.3, AR(0.55) = [0.32], Max-Change = 0.1020
Stage 1 = 125, LL = -8512.2, AR(0.55) = [0.29], Max-Change = 0.1379
Stage 1 = 126, LL = -8508.2, AR(0.55) = [0.40], Max-Change = 0.0832
Stage 1 = 127, LL = -8515.8, AR(0.55) = [0.37], Max-Change = 0.1325
Stage 1 = 128, LL = -8481.5, AR(0.55) = [0.33], Max-Change = 0.0749
Stage 1 = 129, LL = -8471.6, AR(0.55) = [0.34], Max-Change = 0.0803
Stage 1 = 130, LL = -8500.5, AR(0.55) = [0.33], Max-Change = 0.0996
Stage 1 = 131, LL = -8502.7, AR(0.55) = [0.32], Max-Change = 0.0915
Stage 1 = 132, LL = -8542.1, AR(0.55) = [0.35], Max-Change = 0.0749
Stage 1 = 133, LL = -8514.7, AR(0.55) = [0.36], Max-Change = 0.0962
Stage 1 = 134, LL = -8529.6, AR(0.55) = [0.36], Max-Change = 0.0910
Stage 1 = 135, LL = -8500.9, AR(0.55) = [0.31], Max-Change = 0.0669
Stage 1 = 136, LL = -8485.1, AR(0.55) = [0.33], Max-Change = 0.1216
Stage 1 = 137, LL = -8483.6, AR(0.55) = [0.29], Max-Change = 0.1260
Stage 1 = 138, LL = -8481.8, AR(0.55) = [0.34], Max-Change = 0.0723
Stage 1 = 139, LL = -8478.0, AR(0.55) = [0.31], Max-Change = 0.0860
Stage 1 = 140, LL = -8454.5, AR(0.55) = [0.35], Max-Change = 0.0854
Stage 1 = 141, LL = -8476.1, AR(0.55) = [0.35], Max-Change = 0.0715
Stage 1 = 142, LL = -8522.8, AR(0.55) = [0.30], Max-Change = 0.0657
Stage 1 = 143, LL = -8504.2, AR(0.55) = [0.34], Max-Change = 0.1009
Stage 1 = 144, LL = -8504.4, AR(0.55) = [0.33], Max-Change = 0.0711
Stage 1 = 145, LL = -8503.1, AR(0.55) = [0.33], Max-Change = 0.0509
Stage 1 = 146, LL = -8503.9, AR(0.55) = [0.34], Max-Change = 0.0733
Stage 1 = 147, LL = -8533.7, AR(0.55) = [0.35], Max-Change = 0.0442
Stage 1 = 148, LL = -8479.9, AR(0.55) = [0.30], Max-Change = 0.0576
Stage 1 = 149, LL = -8488.5, AR(0.55) = [0.35], Max-Change = 0.0799
Stage 1 = 150, LL = -8506.2, AR(0.50) = [0.39], Max-Change = 0.1716
Stage 2 = 1, LL = -8503.6, AR(0.50) = [0.34], Max-Change = 0.0484
Stage 2 = 2, LL = -8531.1, AR(0.50) = [0.33], Max-Change = 0.0894
Stage 2 = 3, LL = -8532.8, AR(0.50) = [0.38], Max-Change = 0.0605
Stage 2 = 4, LL = -8485.6, AR(0.50) = [0.36], Max-Change = 0.1049
Stage 2 = 5, LL = -8493.1, AR(0.50) = [0.38], Max-Change = 0.1103
Stage 2 = 6, LL = -8483.3, AR(0.50) = [0.34], Max-Change = 0.1016
Stage 2 = 7, LL = -8497.5, AR(0.50) = [0.35], Max-Change = 0.1173
Stage 2 = 8, LL = -8494.2, AR(0.50) = [0.30], Max-Change = 0.0992
Stage 2 = 9, LL = -8472.1, AR(0.50) = [0.36], Max-Change = 0.0721
Stage 2 = 10, LL = -8475.6, AR(0.50) = [0.34], Max-Change = 0.0685
Stage 2 = 11, LL = -8479.3, AR(0.50) = [0.36], Max-Change = 0.0962
Stage 2 = 12, LL = -8490.6, AR(0.50) = [0.36], Max-Change = 0.0719
Stage 2 = 13, LL = -8461.0, AR(0.50) = [0.36], Max-Change = 0.0677
Stage 2 = 14, LL = -8478.1, AR(0.50) = [0.33], Max-Change = 0.0660
Stage 2 = 15, LL = -8470.0, AR(0.50) = [0.34], Max-Change = 0.0802
Stage 2 = 16, LL = -8461.6, AR(0.50) = [0.35], Max-Change = 0.0774
Stage 2 = 17, LL = -8496.3, AR(0.50) = [0.36], Max-Change = 0.1212
Stage 2 = 18, LL = -8509.0, AR(0.50) = [0.33], Max-Change = 0.0479
Stage 2 = 19, LL = -8468.7, AR(0.50) = [0.31], Max-Change = 0.0741
Stage 2 = 20, LL = -8462.2, AR(0.50) = [0.38], Max-Change = 0.0854
Stage 2 = 21, LL = -8454.9, AR(0.50) = [0.32], Max-Change = 0.0854
Stage 2 = 22, LL = -8487.8, AR(0.50) = [0.36], Max-Change = 0.0692
Stage 2 = 23, LL = -8491.6, AR(0.50) = [0.35], Max-Change = 0.1064
Stage 2 = 24, LL = -8488.6, AR(0.50) = [0.38], Max-Change = 0.0555
Stage 2 = 25, LL = -8476.4, AR(0.50) = [0.32], Max-Change = 0.0496
Stage 2 = 26, LL = -8472.9, AR(0.50) = [0.35], Max-Change = 0.0998
Stage 2 = 27, LL = -8474.6, AR(0.50) = [0.34], Max-Change = 0.0494
Stage 2 = 28, LL = -8462.5, AR(0.50) = [0.38], Max-Change = 0.0605
Stage 2 = 29, LL = -8507.1, AR(0.50) = [0.30], Max-Change = 0.1436
Stage 2 = 30, LL = -8492.3, AR(0.50) = [0.37], Max-Change = 0.0635
Stage 2 = 31, LL = -8468.3, AR(0.50) = [0.35], Max-Change = 0.1351
Stage 2 = 32, LL = -8454.4, AR(0.50) = [0.33], Max-Change = 0.1084
Stage 2 = 33, LL = -8480.0, AR(0.50) = [0.35], Max-Change = 0.1029
Stage 2 = 34, LL = -8478.5, AR(0.50) = [0.36], Max-Change = 0.0925
Stage 2 = 35, LL = -8454.5, AR(0.50) = [0.34], Max-Change = 0.0900
Stage 2 = 36, LL = -8512.8, AR(0.50) = [0.34], Max-Change = 0.1505
Stage 2 = 37, LL = -8499.8, AR(0.50) = [0.31], Max-Change = 0.1028
Stage 2 = 38, LL = -8558.7, AR(0.50) = [0.35], Max-Change = 0.0729
Stage 2 = 39, LL = -8512.7, AR(0.50) = [0.32], Max-Change = 0.0498
Stage 2 = 40, LL = -8474.1, AR(0.50) = [0.36], Max-Change = 0.0840
Stage 2 = 41, LL = -8463.3, AR(0.50) = [0.37], Max-Change = 0.1203
Stage 2 = 42, LL = -8514.2, AR(0.50) = [0.39], Max-Change = 0.1159
Stage 2 = 43, LL = -8526.4, AR(0.50) = [0.33], Max-Change = 0.0843
Stage 2 = 44, LL = -8519.8, AR(0.50) = [0.36], Max-Change = 0.1202
Stage 2 = 45, LL = -8494.0, AR(0.50) = [0.35], Max-Change = 0.0935
Stage 2 = 46, LL = -8488.0, AR(0.50) = [0.34], Max-Change = 0.0902
Stage 2 = 47, LL = -8466.1, AR(0.50) = [0.37], Max-Change = 0.0500
Stage 2 = 48, LL = -8510.5, AR(0.50) = [0.37], Max-Change = 0.1150
Stage 2 = 49, LL = -8513.6, AR(0.50) = [0.36], Max-Change = 0.0900
Stage 2 = 50, LL = -8511.8, AR(0.50) = [0.34], Max-Change = 0.1192
Stage 2 = 51, LL = -8467.9, AR(0.50) = [0.33], Max-Change = 0.0969
Stage 2 = 52, LL = -8495.3, AR(0.50) = [0.36], Max-Change = 0.0590
Stage 2 = 53, LL = -8477.4, AR(0.50) = [0.34], Max-Change = 0.0428
Stage 2 = 54, LL = -8510.4, AR(0.50) = [0.35], Max-Change = 0.1120
Stage 2 = 55, LL = -8507.1, AR(0.50) = [0.36], Max-Change = 0.1109
Stage 2 = 56, LL = -8469.3, AR(0.50) = [0.34], Max-Change = 0.1010
Stage 2 = 57, LL = -8502.3, AR(0.50) = [0.35], Max-Change = 0.0882
Stage 2 = 58, LL = -8496.4, AR(0.50) = [0.38], Max-Change = 0.1155
Stage 2 = 59, LL = -8535.6, AR(0.50) = [0.36], Max-Change = 0.0770
Stage 2 = 60, LL = -8563.1, AR(0.50) = [0.36], Max-Change = 0.1739
Stage 2 = 61, LL = -8517.2, AR(0.50) = [0.37], Max-Change = 0.0808
Stage 2 = 62, LL = -8469.8, AR(0.50) = [0.35], Max-Change = 0.1269
Stage 2 = 63, LL = -8513.1, AR(0.50) = [0.39], Max-Change = 0.0560
Stage 2 = 64, LL = -8477.2, AR(0.50) = [0.34], Max-Change = 0.0541
Stage 2 = 65, LL = -8494.4, AR(0.50) = [0.33], Max-Change = 0.0499
Stage 2 = 66, LL = -8463.1, AR(0.50) = [0.35], Max-Change = 0.1119
Stage 2 = 67, LL = -8474.8, AR(0.50) = [0.34], Max-Change = 0.1021
Stage 2 = 68, LL = -8470.3, AR(0.50) = [0.31], Max-Change = 0.0827
Stage 2 = 69, LL = -8492.9, AR(0.50) = [0.36], Max-Change = 0.1436
Stage 2 = 70, LL = -8505.6, AR(0.50) = [0.33], Max-Change = 0.0805
Stage 2 = 71, LL = -8478.3, AR(0.50) = [0.34], Max-Change = 0.0669
Stage 2 = 72, LL = -8490.8, AR(0.50) = [0.36], Max-Change = 0.1407
Stage 2 = 73, LL = -8488.9, AR(0.50) = [0.34], Max-Change = 0.1166
Stage 2 = 74, LL = -8429.4, AR(0.50) = [0.34], Max-Change = 0.1398
Stage 2 = 75, LL = -8467.9, AR(0.50) = [0.32], Max-Change = 0.1055
Stage 2 = 76, LL = -8434.2, AR(0.50) = [0.36], Max-Change = 0.0976
Stage 2 = 77, LL = -8455.1, AR(0.50) = [0.37], Max-Change = 0.1274
Stage 2 = 78, LL = -8477.6, AR(0.50) = [0.32], Max-Change = 0.0703
Stage 2 = 79, LL = -8451.3, AR(0.50) = [0.32], Max-Change = 0.0881
Stage 2 = 80, LL = -8458.2, AR(0.50) = [0.32], Max-Change = 0.0623
Stage 2 = 81, LL = -8474.5, AR(0.50) = [0.34], Max-Change = 0.1157
Stage 2 = 82, LL = -8480.7, AR(0.50) = [0.41], Max-Change = 0.0895
Stage 2 = 83, LL = -8474.9, AR(0.50) = [0.34], Max-Change = 0.1580
Stage 2 = 84, LL = -8481.6, AR(0.50) = [0.35], Max-Change = 0.0867
Stage 2 = 85, LL = -8453.9, AR(0.50) = [0.32], Max-Change = 0.0886
Stage 2 = 86, LL = -8469.6, AR(0.50) = [0.33], Max-Change = 0.0958
Stage 2 = 87, LL = -8460.7, AR(0.50) = [0.35], Max-Change = 0.1368
Stage 2 = 88, LL = -8459.6, AR(0.50) = [0.35], Max-Change = 0.0531
Stage 2 = 89, LL = -8509.8, AR(0.50) = [0.33], Max-Change = 0.1897
Stage 2 = 90, LL = -8487.4, AR(0.50) = [0.34], Max-Change = 0.0703
Stage 2 = 91, LL = -8516.1, AR(0.50) = [0.33], Max-Change = 0.0842
Stage 2 = 92, LL = -8501.1, AR(0.50) = [0.36], Max-Change = 0.0690
Stage 2 = 93, LL = -8480.1, AR(0.50) = [0.32], Max-Change = 0.0977
Stage 2 = 94, LL = -8486.3, AR(0.50) = [0.33], Max-Change = 0.1086
Stage 2 = 95, LL = -8455.4, AR(0.50) = [0.36], Max-Change = 0.0476
Stage 2 = 96, LL = -8455.4, AR(0.50) = [0.36], Max-Change = 0.0499
Stage 2 = 97, LL = -8461.7, AR(0.50) = [0.33], Max-Change = 0.0832
Stage 2 = 98, LL = -8426.9, AR(0.50) = [0.35], Max-Change = 0.2000
Stage 2 = 99, LL = -8449.3, AR(0.50) = [0.32], Max-Change = 0.1030
Stage 2 = 100, LL = -8456.7, AR(0.50) = [0.33], Max-Change = 0.0640
Stage 3 = 1, LL = -8485.2, AR(0.50) = [0.37], gam = 0.0000, Max-Change = 0.0000
Stage 3 = 2, LL = -8492.4, AR(0.50) = [0.36], gam = 0.1778, Max-Change = 0.0823
Stage 3 = 3, LL = -8518.6, AR(0.50) = [0.36], gam = 0.1057, Max-Change = 0.0431
Stage 3 = 4, LL = -8520.2, AR(0.50) = [0.40], gam = 0.0780, Max-Change = 0.0301
Stage 3 = 5, LL = -8496.3, AR(0.50) = [0.37], gam = 0.0629, Max-Change = 0.0267
Stage 3 = 6, LL = -8481.7, AR(0.50) = [0.34], gam = 0.0532, Max-Change = 0.0259
Stage 3 = 7, LL = -8465.5, AR(0.50) = [0.36], gam = 0.0464, Max-Change = 0.0170
Stage 3 = 8, LL = -8462.1, AR(0.50) = [0.34], gam = 0.0413, Max-Change = 0.0270
Stage 3 = 9, LL = -8484.7, AR(0.50) = [0.36], gam = 0.0374, Max-Change = 0.0201
Stage 3 = 10, LL = -8508.1, AR(0.50) = [0.33], gam = 0.0342, Max-Change = 0.0106
Stage 3 = 11, LL = -8494.5, AR(0.50) = [0.38], gam = 0.0316, Max-Change = 0.0109
Stage 3 = 12, LL = -8498.7, AR(0.50) = [0.34], gam = 0.0294, Max-Change = 0.0157
Stage 3 = 13, LL = -8490.6, AR(0.50) = [0.34], gam = 0.0276, Max-Change = 0.0129
Stage 3 = 14, LL = -8429.9, AR(0.50) = [0.36], gam = 0.0260, Max-Change = 0.0136
Stage 3 = 15, LL = -8489.7, AR(0.50) = [0.38], gam = 0.0246, Max-Change = 0.0178
Stage 3 = 16, LL = -8483.8, AR(0.50) = [0.31], gam = 0.0233, Max-Change = 0.0106
Stage 3 = 17, LL = -8484.4, AR(0.50) = [0.34], gam = 0.0222, Max-Change = 0.0230
Stage 3 = 18, LL = -8480.4, AR(0.50) = [0.34], gam = 0.0212, Max-Change = 0.0178
Stage 3 = 19, LL = -8475.8, AR(0.50) = [0.36], gam = 0.0203, Max-Change = 0.0069
Stage 3 = 20, LL = -8526.9, AR(0.50) = [0.33], gam = 0.0195, Max-Change = 0.0055
Stage 3 = 21, LL = -8531.3, AR(0.50) = [0.38], gam = 0.0188, Max-Change = 0.0071
Stage 3 = 22, LL = -8560.6, AR(0.50) = [0.35], gam = 0.0181, Max-Change = 0.0069
Stage 3 = 23, LL = -8529.1, AR(0.50) = [0.34], gam = 0.0175, Max-Change = 0.0092
Stage 3 = 24, LL = -8511.1, AR(0.50) = [0.33], gam = 0.0169, Max-Change = 0.0101
Stage 3 = 25, LL = -8509.2, AR(0.50) = [0.30], gam = 0.0164, Max-Change = 0.0058
Stage 3 = 26, LL = -8471.9, AR(0.50) = [0.34], gam = 0.0159, Max-Change = 0.0097
Stage 3 = 27, LL = -8467.5, AR(0.50) = [0.38], gam = 0.0154, Max-Change = 0.0063
Stage 3 = 28, LL = -8461.5, AR(0.50) = [0.37], gam = 0.0150, Max-Change = 0.0045
Stage 3 = 29, LL = -8453.2, AR(0.50) = [0.33], gam = 0.0146, Max-Change = 0.0031
Stage 3 = 30, LL = -8455.3, AR(0.50) = [0.36], gam = 0.0142, Max-Change = 0.0090
Stage 3 = 31, LL = -8472.4, AR(0.50) = [0.33], gam = 0.0139, Max-Change = 0.0087
Stage 3 = 32, LL = -8500.9, AR(0.50) = [0.33], gam = 0.0135, Max-Change = 0.0101
Stage 3 = 33, LL = -8495.4, AR(0.50) = [0.36], gam = 0.0132, Max-Change = 0.0070
Stage 3 = 34, LL = -8497.1, AR(0.50) = [0.36], gam = 0.0129, Max-Change = 0.0061
Stage 3 = 35, LL = -8510.7, AR(0.50) = [0.35], gam = 0.0126, Max-Change = 0.0060
Stage 3 = 36, LL = -8467.2, AR(0.50) = [0.35], gam = 0.0124, Max-Change = 0.0054
Stage 3 = 37, LL = -8494.2, AR(0.50) = [0.34], gam = 0.0121, Max-Change = 0.0060
Stage 3 = 38, LL = -8486.6, AR(0.50) = [0.35], gam = 0.0119, Max-Change = 0.0034
Stage 3 = 39, LL = -8488.7, AR(0.50) = [0.33], gam = 0.0116, Max-Change = 0.0037
Stage 3 = 40, LL = -8490.2, AR(0.50) = [0.33], gam = 0.0114, Max-Change = 0.0054
Stage 3 = 41, LL = -8489.5, AR(0.50) = [0.34], gam = 0.0112, Max-Change = 0.0057
Stage 3 = 42, LL = -8477.4, AR(0.50) = [0.37], gam = 0.0110, Max-Change = 0.0034
Stage 3 = 43, LL = -8495.2, AR(0.50) = [0.35], gam = 0.0108, Max-Change = 0.0047
Stage 3 = 44, LL = -8494.6, AR(0.50) = [0.38], gam = 0.0106, Max-Change = 0.0044
Stage 3 = 45, LL = -8505.5, AR(0.50) = [0.29], gam = 0.0104, Max-Change = 0.0048
Stage 3 = 46, LL = -8472.3, AR(0.50) = [0.35], gam = 0.0102, Max-Change = 0.0079
Stage 3 = 47, LL = -8474.1, AR(0.50) = [0.36], gam = 0.0101, Max-Change = 0.0041
Stage 3 = 48, LL = -8489.9, AR(0.50) = [0.37], gam = 0.0099, Max-Change = 0.0035
Stage 3 = 49, LL = -8496.5, AR(0.50) = [0.36], gam = 0.0098, Max-Change = 0.0037
Stage 3 = 50, LL = -8498.6, AR(0.50) = [0.35], gam = 0.0096, Max-Change = 0.0087
Stage 3 = 51, LL = -8463.0, AR(0.50) = [0.35], gam = 0.0095, Max-Change = 0.0057
Stage 3 = 52, LL = -8452.0, AR(0.50) = [0.34], gam = 0.0093, Max-Change = 0.0059
Stage 3 = 53, LL = -8478.1, AR(0.50) = [0.35], gam = 0.0092, Max-Change = 0.0037
Stage 3 = 54, LL = -8432.8, AR(0.50) = [0.35], gam = 0.0091, Max-Change = 0.0034
Stage 3 = 55, LL = -8478.4, AR(0.50) = [0.34], gam = 0.0089, Max-Change = 0.0043
Stage 3 = 56, LL = -8488.9, AR(0.50) = [0.39], gam = 0.0088, Max-Change = 0.0029
Stage 3 = 57, LL = -8490.9, AR(0.50) = [0.34], gam = 0.0087, Max-Change = 0.0031
Stage 3 = 58, LL = -8520.5, AR(0.50) = [0.34], gam = 0.0086, Max-Change = 0.0054
Stage 3 = 59, LL = -8489.6, AR(0.50) = [0.38], gam = 0.0085, Max-Change = 0.0026
Stage 3 = 60, LL = -8487.3, AR(0.50) = [0.31], gam = 0.0084, Max-Change = 0.0022
Stage 3 = 61, LL = -8475.6, AR(0.50) = [0.36], gam = 0.0082, Max-Change = 0.0046
Stage 3 = 62, LL = -8482.5, AR(0.50) = [0.34], gam = 0.0081, Max-Change = 0.0039
Stage 3 = 63, LL = -8494.9, AR(0.50) = [0.37], gam = 0.0080, Max-Change = 0.0025
Stage 3 = 64, LL = -8504.2, AR(0.50) = [0.33], gam = 0.0080, Max-Change = 0.0028
Stage 3 = 65, LL = -8500.9, AR(0.50) = [0.34], gam = 0.0079, Max-Change = 0.0047
Stage 3 = 66, LL = -8468.8, AR(0.50) = [0.36], gam = 0.0078, Max-Change = 0.0038
Stage 3 = 67, LL = -8466.4, AR(0.50) = [0.33], gam = 0.0077, Max-Change = 0.0024
Stage 3 = 68, LL = -8473.9, AR(0.50) = [0.34], gam = 0.0076, Max-Change = 0.0025
Stage 3 = 69, LL = -8515.0, AR(0.50) = [0.36], gam = 0.0075, Max-Change = 0.0024
Stage 3 = 70, LL = -8525.8, AR(0.50) = [0.40], gam = 0.0074, Max-Change = 0.0044
Stage 3 = 71, LL = -8502.5, AR(0.50) = [0.36], gam = 0.0073, Max-Change = 0.0038
Stage 3 = 72, LL = -8461.2, AR(0.50) = [0.38], gam = 0.0073, Max-Change = 0.0028
Stage 3 = 73, LL = -8474.9, AR(0.50) = [0.33], gam = 0.0072, Max-Change = 0.0057
Stage 3 = 74, LL = -8482.9, AR(0.50) = [0.36], gam = 0.0071, Max-Change = 0.0021
Stage 3 = 75, LL = -8518.3, AR(0.50) = [0.34], gam = 0.0070, Max-Change = 0.0047
Stage 3 = 76, LL = -8504.0, AR(0.50) = [0.31], gam = 0.0070, Max-Change = 0.0027
Stage 3 = 77, LL = -8498.1, AR(0.50) = [0.32], gam = 0.0069, Max-Change = 0.0026
Stage 3 = 78, LL = -8504.4, AR(0.50) = [0.33], gam = 0.0068, Max-Change = 0.0028
Stage 3 = 79, LL = -8475.1, AR(0.50) = [0.37], gam = 0.0068, Max-Change = 0.0030
Stage 3 = 80, LL = -8488.9, AR(0.50) = [0.36], gam = 0.0067, Max-Change = 0.0024
Stage 3 = 81, LL = -8501.0, AR(0.50) = [0.34], gam = 0.0066, Max-Change = 0.0035
Stage 3 = 82, LL = -8466.5, AR(0.50) = [0.37], gam = 0.0066, Max-Change = 0.0029
Stage 3 = 83, LL = -8495.1, AR(0.50) = [0.38], gam = 0.0065, Max-Change = 0.0029
Stage 3 = 84, LL = -8530.8, AR(0.50) = [0.31], gam = 0.0065, Max-Change = 0.0019
Stage 3 = 85, LL = -8518.6, AR(0.50) = [0.40], gam = 0.0064, Max-Change = 0.0046
Stage 3 = 86, LL = -8487.3, AR(0.50) = [0.35], gam = 0.0064, Max-Change = 0.0023
Stage 3 = 87, LL = -8516.2, AR(0.50) = [0.36], gam = 0.0063, Max-Change = 0.0033
Stage 3 = 88, LL = -8478.6, AR(0.50) = [0.36], gam = 0.0062, Max-Change = 0.0025
Stage 3 = 89, LL = -8486.6, AR(0.50) = [0.32], gam = 0.0062, Max-Change = 0.0050
Stage 3 = 90, LL = -8475.2, AR(0.50) = [0.33], gam = 0.0061, Max-Change = 0.0038
Stage 3 = 91, LL = -8457.6, AR(0.50) = [0.35], gam = 0.0061, Max-Change = 0.0021
Stage 3 = 92, LL = -8432.9, AR(0.50) = [0.34], gam = 0.0060, Max-Change = 0.0024
Stage 3 = 93, LL = -8445.7, AR(0.50) = [0.34], gam = 0.0060, Max-Change = 0.0020
Stage 3 = 94, LL = -8470.2, AR(0.50) = [0.36], gam = 0.0059, Max-Change = 0.0018
Stage 3 = 95, LL = -8495.0, AR(0.50) = [0.34], gam = 0.0059, Max-Change = 0.0027
Stage 3 = 96, LL = -8476.7, AR(0.50) = [0.35], gam = 0.0058, Max-Change = 0.0034
Stage 3 = 97, LL = -8494.1, AR(0.50) = [0.35], gam = 0.0058, Max-Change = 0.0033
Stage 3 = 98, LL = -8479.5, AR(0.50) = [0.36], gam = 0.0058, Max-Change = 0.0034
Stage 3 = 99, LL = -8471.6, AR(0.50) = [0.30], gam = 0.0057, Max-Change = 0.0025
Stage 3 = 100, LL = -8507.1, AR(0.50) = [0.36], gam = 0.0057, Max-Change = 0.0027
Stage 3 = 101, LL = -8492.9, AR(0.50) = [0.37], gam = 0.0056, Max-Change = 0.0023
Stage 3 = 102, LL = -8514.0, AR(0.50) = [0.37], gam = 0.0056, Max-Change = 0.0030
Stage 3 = 103, LL = -8502.3, AR(0.50) = [0.35], gam = 0.0055, Max-Change = 0.0025
Stage 3 = 104, LL = -8505.0, AR(0.50) = [0.35], gam = 0.0055, Max-Change = 0.0022
Stage 3 = 105, LL = -8544.3, AR(0.50) = [0.38], gam = 0.0055, Max-Change = 0.0050
Stage 3 = 106, LL = -8508.4, AR(0.50) = [0.36], gam = 0.0054, Max-Change = 0.0055
Stage 3 = 107, LL = -8475.8, AR(0.50) = [0.35], gam = 0.0054, Max-Change = 0.0034
Stage 3 = 108, LL = -8489.5, AR(0.50) = [0.38], gam = 0.0053, Max-Change = 0.0015
Stage 3 = 109, LL = -8483.7, AR(0.50) = [0.33], gam = 0.0053, Max-Change = 0.0029
Stage 3 = 110, LL = -8471.5, AR(0.50) = [0.35], gam = 0.0053, Max-Change = 0.0029
Stage 3 = 111, LL = -8465.9, AR(0.50) = [0.33], gam = 0.0052, Max-Change = 0.0013
Stage 3 = 112, LL = -8493.5, AR(0.50) = [0.34], gam = 0.0052, Max-Change = 0.0023
Stage 3 = 113, LL = -8487.3, AR(0.50) = [0.34], gam = 0.0052, Max-Change = 0.0019
Stage 3 = 114, LL = -8490.0, AR(0.50) = [0.36], gam = 0.0051, Max-Change = 0.0020
Stage 3 = 115, LL = -8450.8, AR(0.50) = [0.33], gam = 0.0051, Max-Change = 0.0026
Stage 3 = 116, LL = -8434.0, AR(0.50) = [0.37], gam = 0.0051, Max-Change = 0.0021
Stage 3 = 117, LL = -8442.3, AR(0.50) = [0.29], gam = 0.0050, Max-Change = 0.0038
Stage 3 = 118, LL = -8472.5, AR(0.50) = [0.35], gam = 0.0050, Max-Change = 0.0016
Stage 3 = 119, LL = -8483.4, AR(0.50) = [0.34], gam = 0.0050, Max-Change = 0.0023
Stage 3 = 120, LL = -8503.5, AR(0.50) = [0.36], gam = 0.0049, Max-Change = 0.0025
Stage 3 = 121, LL = -8505.5, AR(0.50) = [0.37], gam = 0.0049, Max-Change = 0.0036
Stage 3 = 122, LL = -8496.0, AR(0.50) = [0.32], gam = 0.0049, Max-Change = 0.0017
Stage 3 = 123, LL = -8495.0, AR(0.50) = [0.38], gam = 0.0048, Max-Change = 0.0013
Stage 3 = 124, LL = -8470.9, AR(0.50) = [0.35], gam = 0.0048, Max-Change = 0.0024
Stage 3 = 125, LL = -8526.2, AR(0.50) = [0.32], gam = 0.0048, Max-Change = 0.0014
Stage 3 = 126, LL = -8510.5, AR(0.50) = [0.36], gam = 0.0048, Max-Change = 0.0019
Stage 3 = 127, LL = -8485.2, AR(0.50) = [0.37], gam = 0.0047, Max-Change = 0.0055
Stage 3 = 128, LL = -8489.5, AR(0.50) = [0.32], gam = 0.0047, Max-Change = 0.0054
Stage 3 = 129, LL = -8525.1, AR(0.50) = [0.33], gam = 0.0047, Max-Change = 0.0041
Stage 3 = 130, LL = -8495.2, AR(0.50) = [0.38], gam = 0.0046, Max-Change = 0.0026
Stage 3 = 131, LL = -8519.5, AR(0.50) = [0.36], gam = 0.0046, Max-Change = 0.0026
Stage 3 = 132, LL = -8492.5, AR(0.50) = [0.36], gam = 0.0046, Max-Change = 0.0024
Stage 3 = 133, LL = -8521.0, AR(0.50) = [0.37], gam = 0.0046, Max-Change = 0.0013
Stage 3 = 134, LL = -8515.4, AR(0.50) = [0.38], gam = 0.0045, Max-Change = 0.0020
Stage 3 = 135, LL = -8488.2, AR(0.50) = [0.37], gam = 0.0045, Max-Change = 0.0019
Stage 3 = 136, LL = -8486.0, AR(0.50) = [0.38], gam = 0.0045, Max-Change = 0.0016
Stage 3 = 137, LL = -8476.5, AR(0.50) = [0.40], gam = 0.0045, Max-Change = 0.0017
Stage 3 = 138, LL = -8482.9, AR(0.50) = [0.37], gam = 0.0044, Max-Change = 0.0015
Stage 3 = 139, LL = -8454.4, AR(0.50) = [0.35], gam = 0.0044, Max-Change = 0.0020
Stage 3 = 140, LL = -8464.3, AR(0.50) = [0.37], gam = 0.0044, Max-Change = 0.0022
Stage 3 = 141, LL = -8474.3, AR(0.50) = [0.38], gam = 0.0044, Max-Change = 0.0025
Stage 3 = 142, LL = -8498.4, AR(0.50) = [0.37], gam = 0.0043, Max-Change = 0.0022
Stage 3 = 143, LL = -8467.1, AR(0.50) = [0.33], gam = 0.0043, Max-Change = 0.0021
Stage 3 = 144, LL = -8454.2, AR(0.50) = [0.34], gam = 0.0043, Max-Change = 0.0014
Stage 3 = 145, LL = -8474.6, AR(0.50) = [0.37], gam = 0.0043, Max-Change = 0.0012
Stage 3 = 146, LL = -8481.2, AR(0.50) = [0.36], gam = 0.0043, Max-Change = 0.0012
Stage 3 = 147, LL = -8423.8, AR(0.50) = [0.34], gam = 0.0042, Max-Change = 0.0027
Stage 3 = 148, LL = -8433.9, AR(0.50) = [0.32], gam = 0.0042, Max-Change = 0.0021
Stage 3 = 149, LL = -8468.0, AR(0.50) = [0.36], gam = 0.0042, Max-Change = 0.0028
Stage 3 = 150, LL = -8459.9, AR(0.50) = [0.33], gam = 0.0042, Max-Change = 0.0020
Stage 3 = 151, LL = -8483.9, AR(0.50) = [0.35], gam = 0.0041, Max-Change = 0.0028
Stage 3 = 152, LL = -8508.3, AR(0.50) = [0.37], gam = 0.0041, Max-Change = 0.0014
Stage 3 = 153, LL = -8466.0, AR(0.50) = [0.34], gam = 0.0041, Max-Change = 0.0020
Stage 3 = 154, LL = -8476.5, AR(0.50) = [0.36], gam = 0.0041, Max-Change = 0.0025
Stage 3 = 155, LL = -8499.9, AR(0.50) = [0.39], gam = 0.0041, Max-Change = 0.0017
Stage 3 = 156, LL = -8517.1, AR(0.50) = [0.31], gam = 0.0040, Max-Change = 0.0020
Stage 3 = 157, LL = -8509.3, AR(0.50) = [0.35], gam = 0.0040, Max-Change = 0.0012
Stage 3 = 158, LL = -8499.2, AR(0.50) = [0.34], gam = 0.0040, Max-Change = 0.0018
Stage 3 = 159, LL = -8478.4, AR(0.50) = [0.37], gam = 0.0040, Max-Change = 0.0018
Stage 3 = 160, LL = -8514.6, AR(0.50) = [0.38], gam = 0.0040, Max-Change = 0.0012
Stage 3 = 161, LL = -8481.1, AR(0.50) = [0.37], gam = 0.0040, Max-Change = 0.0015
Stage 3 = 162, LL = -8469.7, AR(0.50) = [0.34], gam = 0.0039, Max-Change = 0.0030
Stage 3 = 163, LL = -8509.5, AR(0.50) = [0.35], gam = 0.0039, Max-Change = 0.0015
Stage 3 = 164, LL = -8499.2, AR(0.50) = [0.34], gam = 0.0039, Max-Change = 0.0012
Stage 3 = 165, LL = -8470.3, AR(0.50) = [0.31], gam = 0.0039, Max-Change = 0.0026
Stage 3 = 166, LL = -8486.7, AR(0.50) = [0.38], gam = 0.0039, Max-Change = 0.0025
Stage 3 = 167, LL = -8498.0, AR(0.50) = [0.36], gam = 0.0038, Max-Change = 0.0023
Stage 3 = 168, LL = -8485.3, AR(0.50) = [0.33], gam = 0.0038, Max-Change = 0.0014
Stage 3 = 169, LL = -8497.6, AR(0.50) = [0.35], gam = 0.0038, Max-Change = 0.0022
Stage 3 = 170, LL = -8492.9, AR(0.50) = [0.33], gam = 0.0038, Max-Change = 0.0011
Stage 3 = 171, LL = -8469.2, AR(0.50) = [0.38], gam = 0.0038, Max-Change = 0.0013
Stage 3 = 172, LL = -8536.9, AR(0.50) = [0.35], gam = 0.0038, Max-Change = 0.0024
Stage 3 = 173, LL = -8513.1, AR(0.50) = [0.41], gam = 0.0037, Max-Change = 0.0026
Stage 3 = 174, LL = -8514.8, AR(0.50) = [0.36], gam = 0.0037, Max-Change = 0.0024
Stage 3 = 175, LL = -8484.1, AR(0.50) = [0.35], gam = 0.0037, Max-Change = 0.0021
Stage 3 = 176, LL = -8508.2, AR(0.50) = [0.36], gam = 0.0037, Max-Change = 0.0021
Stage 3 = 177, LL = -8453.5, AR(0.50) = [0.33], gam = 0.0037, Max-Change = 0.0016
Stage 3 = 178, LL = -8460.5, AR(0.50) = [0.36], gam = 0.0037, Max-Change = 0.0021
Stage 3 = 179, LL = -8523.7, AR(0.50) = [0.32], gam = 0.0036, Max-Change = 0.0040
Stage 3 = 180, LL = -8477.5, AR(0.50) = [0.37], gam = 0.0036, Max-Change = 0.0018
Stage 3 = 181, LL = -8451.3, AR(0.50) = [0.35], gam = 0.0036, Max-Change = 0.0012
Stage 3 = 182, LL = -8497.3, AR(0.50) = [0.36], gam = 0.0036, Max-Change = 0.0015
Stage 3 = 183, LL = -8531.2, AR(0.50) = [0.34], gam = 0.0036, Max-Change = 0.0027
Stage 3 = 184, LL = -8499.0, AR(0.50) = [0.36], gam = 0.0036, Max-Change = 0.0015
Stage 3 = 185, LL = -8481.9, AR(0.50) = [0.35], gam = 0.0036, Max-Change = 0.0009
Stage 3 = 186, LL = -8526.6, AR(0.50) = [0.39], gam = 0.0035, Max-Change = 0.0016
Stage 3 = 187, LL = -8484.6, AR(0.50) = [0.35], gam = 0.0035, Max-Change = 0.0022
Stage 3 = 188, LL = -8510.3, AR(0.50) = [0.35], gam = 0.0035, Max-Change = 0.0026
Stage 3 = 189, LL = -8512.1, AR(0.50) = [0.33], gam = 0.0035, Max-Change = 0.0012
Stage 3 = 190, LL = -8504.3, AR(0.50) = [0.33], gam = 0.0035, Max-Change = 0.0015
Stage 3 = 191, LL = -8486.6, AR(0.50) = [0.35], gam = 0.0035, Max-Change = 0.0019
Stage 3 = 192, LL = -8557.6, AR(0.50) = [0.39], gam = 0.0035, Max-Change = 0.0026
Stage 3 = 193, LL = -8476.0, AR(0.50) = [0.40], gam = 0.0034, Max-Change = 0.0013
Stage 3 = 194, LL = -8522.3, AR(0.50) = [0.36], gam = 0.0034, Max-Change = 0.0013
Stage 3 = 195, LL = -8503.9, AR(0.50) = [0.32], gam = 0.0034, Max-Change = 0.0012
Stage 3 = 196, LL = -8504.0, AR(0.50) = [0.36], gam = 0.0034, Max-Change = 0.0026
Stage 3 = 197, LL = -8489.0, AR(0.50) = [0.36], gam = 0.0034, Max-Change = 0.0010
Stage 3 = 198, LL = -8467.2, AR(0.50) = [0.34], gam = 0.0034, Max-Change = 0.0008
Stage 3 = 199, LL = -8461.8, AR(0.50) = [0.33], gam = 0.0034, Max-Change = 0.0024
Stage 3 = 200, LL = -8473.0, AR(0.50) = [0.36], gam = 0.0034, Max-Change = 0.0021
Stage 3 = 201, LL = -8508.0, AR(0.50) = [0.35], gam = 0.0033, Max-Change = 0.0020
Stage 3 = 202, LL = -8515.5, AR(0.50) = [0.36], gam = 0.0033, Max-Change = 0.0009
Stage 3 = 203, LL = -8501.8, AR(0.50) = [0.35], gam = 0.0033, Max-Change = 0.0013
Stage 3 = 204, LL = -8515.7, AR(0.50) = [0.33], gam = 0.0033, Max-Change = 0.0010
Stage 3 = 205, LL = -8507.9, AR(0.50) = [0.36], gam = 0.0033, Max-Change = 0.0029
Stage 3 = 206, LL = -8494.9, AR(0.50) = [0.33], gam = 0.0033, Max-Change = 0.0016
Stage 3 = 207, LL = -8493.1, AR(0.50) = [0.34], gam = 0.0033, Max-Change = 0.0011
Stage 3 = 208, LL = -8482.5, AR(0.50) = [0.31], gam = 0.0033, Max-Change = 0.0010
Stage 3 = 209, LL = -8472.4, AR(0.50) = [0.35], gam = 0.0032, Max-Change = 0.0010
Stage 3 = 210, LL = -8477.8, AR(0.50) = [0.33], gam = 0.0032, Max-Change = 0.0012
Stage 3 = 211, LL = -8481.3, AR(0.50) = [0.32], gam = 0.0032, Max-Change = 0.0013
Stage 3 = 212, LL = -8481.6, AR(0.50) = [0.37], gam = 0.0032, Max-Change = 0.0011
Stage 3 = 213, LL = -8493.8, AR(0.50) = [0.34], gam = 0.0032, Max-Change = 0.0006
Stage 3 = 214, LL = -8446.4, AR(0.50) = [0.37], gam = 0.0032, Max-Change = 0.0012
Stage 3 = 215, LL = -8459.7, AR(0.50) = [0.33], gam = 0.0032, Max-Change = 0.0007
Stage 3 = 216, LL = -8486.9, AR(0.50) = [0.36], gam = 0.0032, Max-Change = 0.0012
Stage 3 = 217, LL = -8483.4, AR(0.50) = [0.31], gam = 0.0032, Max-Change = 0.0013
Stage 3 = 218, LL = -8467.8, AR(0.50) = [0.31], gam = 0.0031, Max-Change = 0.0013
Stage 3 = 219, LL = -8463.1, AR(0.50) = [0.40], gam = 0.0031, Max-Change = 0.0018
Stage 3 = 220, LL = -8531.8, AR(0.50) = [0.39], gam = 0.0031, Max-Change = 0.0011
Stage 3 = 221, LL = -8514.0, AR(0.50) = [0.34], gam = 0.0031, Max-Change = 0.0011
Stage 3 = 222, LL = -8503.4, AR(0.50) = [0.37], gam = 0.0031, Max-Change = 0.0012
Stage 3 = 223, LL = -8467.4, AR(0.50) = [0.35], gam = 0.0031, Max-Change = 0.0014
Stage 3 = 224, LL = -8498.0, AR(0.50) = [0.35], gam = 0.0031, Max-Change = 0.0018
Stage 3 = 225, LL = -8479.5, AR(0.50) = [0.35], gam = 0.0031, Max-Change = 0.0010
Stage 3 = 226, LL = -8468.6, AR(0.50) = [0.34], gam = 0.0031, Max-Change = 0.0010
Stage 3 = 227, LL = -8507.5, AR(0.50) = [0.33], gam = 0.0031, Max-Change = 0.0019
Stage 3 = 228, LL = -8493.2, AR(0.50) = [0.37], gam = 0.0030, Max-Change = 0.0013
Stage 3 = 229, LL = -8458.2, AR(0.50) = [0.34], gam = 0.0030, Max-Change = 0.0011
Stage 3 = 230, LL = -8527.2, AR(0.50) = [0.34], gam = 0.0030, Max-Change = 0.0032
Stage 3 = 231, LL = -8514.0, AR(0.50) = [0.37], gam = 0.0030, Max-Change = 0.0013
Stage 3 = 232, LL = -8463.1, AR(0.50) = [0.41], gam = 0.0030, Max-Change = 0.0012
Stage 3 = 233, LL = -8468.5, AR(0.50) = [0.40], gam = 0.0030, Max-Change = 0.0011
Stage 3 = 234, LL = -8467.1, AR(0.50) = [0.36], gam = 0.0030, Max-Change = 0.0010
Stage 3 = 235, LL = -8490.2, AR(0.50) = [0.32], gam = 0.0030, Max-Change = 0.0011
Stage 3 = 236, LL = -8471.9, AR(0.50) = [0.36], gam = 0.0030, Max-Change = 0.0013
Stage 3 = 237, LL = -8464.7, AR(0.50) = [0.34], gam = 0.0030, Max-Change = 0.0013
Stage 3 = 238, LL = -8477.8, AR(0.50) = [0.36], gam = 0.0029, Max-Change = 0.0014
Stage 3 = 239, LL = -8478.9, AR(0.50) = [0.37], gam = 0.0029, Max-Change = 0.0023
Stage 3 = 240, LL = -8503.2, AR(0.50) = [0.37], gam = 0.0029, Max-Change = 0.0013
Stage 3 = 241, LL = -8500.5, AR(0.50) = [0.37], gam = 0.0029, Max-Change = 0.0018
Stage 3 = 242, LL = -8470.6, AR(0.50) = [0.38], gam = 0.0029, Max-Change = 0.0018
Stage 3 = 243, LL = -8471.8, AR(0.50) = [0.38], gam = 0.0029, Max-Change = 0.0016
Stage 3 = 244, LL = -8499.4, AR(0.50) = [0.35], gam = 0.0029, Max-Change = 0.0018
Stage 3 = 245, LL = -8495.4, AR(0.50) = [0.37], gam = 0.0029, Max-Change = 0.0008
Stage 3 = 246, LL = -8467.7, AR(0.50) = [0.36], gam = 0.0029, Max-Change = 0.0011
Stage 3 = 247, LL = -8489.6, AR(0.50) = [0.35], gam = 0.0029, Max-Change = 0.0012
Stage 3 = 248, LL = -8468.6, AR(0.50) = [0.35], gam = 0.0029, Max-Change = 0.0012
Stage 3 = 249, LL = -8462.9, AR(0.50) = [0.35], gam = 0.0028, Max-Change = 0.0011
Stage 3 = 250, LL = -8517.7, AR(0.50) = [0.35], gam = 0.0028, Max-Change = 0.0017
Stage 3 = 251, LL = -8503.7, AR(0.50) = [0.31], gam = 0.0028, Max-Change = 0.0014
Stage 3 = 252, LL = -8510.2, AR(0.50) = [0.34], gam = 0.0028, Max-Change = 0.0014
Stage 3 = 253, LL = -8503.4, AR(0.50) = [0.36], gam = 0.0028, Max-Change = 0.0012
Stage 3 = 254, LL = -8476.3, AR(0.50) = [0.33], gam = 0.0028, Max-Change = 0.0008
Stage 3 = 255, LL = -8459.2, AR(0.50) = [0.39], gam = 0.0028, Max-Change = 0.0024
Stage 3 = 256, LL = -8471.8, AR(0.50) = [0.34], gam = 0.0028, Max-Change = 0.0007
Stage 3 = 257, LL = -8453.9, AR(0.50) = [0.36], gam = 0.0028, Max-Change = 0.0011
Stage 3 = 258, LL = -8474.6, AR(0.50) = [0.35], gam = 0.0028, Max-Change = 0.0013
Stage 3 = 259, LL = -8470.0, AR(0.50) = [0.34], gam = 0.0028, Max-Change = 0.0019
Stage 3 = 260, LL = -8473.9, AR(0.50) = [0.33], gam = 0.0028, Max-Change = 0.0010
Stage 3 = 261, LL = -8497.4, AR(0.50) = [0.32], gam = 0.0027, Max-Change = 0.0016
Stage 3 = 262, LL = -8503.4, AR(0.50) = [0.34], gam = 0.0027, Max-Change = 0.0018
Stage 3 = 263, LL = -8486.7, AR(0.50) = [0.34], gam = 0.0027, Max-Change = 0.0013
Stage 3 = 264, LL = -8510.4, AR(0.50) = [0.38], gam = 0.0027, Max-Change = 0.0009
Stage 3 = 265, LL = -8477.7, AR(0.50) = [0.34], gam = 0.0027, Max-Change = 0.0011
Stage 3 = 266, LL = -8495.4, AR(0.50) = [0.37], gam = 0.0027, Max-Change = 0.0009
Stage 3 = 267, LL = -8513.1, AR(0.50) = [0.35], gam = 0.0027, Max-Change = 0.0010
Stage 3 = 268, LL = -8465.5, AR(0.50) = [0.37], gam = 0.0027, Max-Change = 0.0020
Stage 3 = 269, LL = -8468.4, AR(0.50) = [0.35], gam = 0.0027, Max-Change = 0.0015
Stage 3 = 270, LL = -8496.7, AR(0.50) = [0.34], gam = 0.0027, Max-Change = 0.0026
Stage 3 = 271, LL = -8512.2, AR(0.50) = [0.32], gam = 0.0027, Max-Change = 0.0016
Stage 3 = 272, LL = -8488.1, AR(0.50) = [0.35], gam = 0.0027, Max-Change = 0.0010
Stage 3 = 273, LL = -8478.7, AR(0.50) = [0.32], gam = 0.0027, Max-Change = 0.0007
Stage 3 = 274, LL = -8455.8, AR(0.50) = [0.35], gam = 0.0026, Max-Change = 0.0009

Calculating log-likelihood...

3 Descriptive results

3.1 Participants

Page 2. Therefore, a total of 500 children were randomly selected for the analyses. The randomness processwas initiated in the fairsubset R package,17 with the seed defined at 15 and RNGversion set at 3.6. This subsample comprised 276 males (55.2%) and 224 females (44.8%).

ds_60_random %>% 

Warning messages: 1: In grepl(“”, x, fixed = TRUE) : input string 1 is invalid UTF-8 2: In grepl(“”, x, fixed = TRUE) : input string 1 is invalid UTF-8

  mutate(sex = factor(sex)) %>% 
  tableby(~ sex, data = .) %>% summary()
Overall (N=500)
sex
   1 276 (55.2%)
   2 224 (44.8%)

NA

3.2 Mean score

Page 3. The mean score for these participants was 41 (standard deviation = 6.4, range: 0–205).

ds_60_random %>% 

Warning messages: 1: In grepl(“”, x, fixed = TRUE) : input string 1 is invalid UTF-8 2: In grepl(“”, x, fixed = TRUE) : input string 1 is invalid UTF-8

  tableby(~ score, data = .) %>% summary()
Overall (N=500)
score
   Mean (SD) 41.000 (36.400)
   Range 0.000 - 205.000

NA

Page 3. No difference was found between this score and the score that was obtained with the full data set (t 22829 = -0.982, p = 0.326).

t.test(ds_60$score, ds_60_random$score, var.equal = T)

    Two Sample t-test

data:  ds_60$score and ds_60_random$score
t = -0.98204, df = 22829, p-value = 0.3261
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -4.551496  1.513030
sample estimates:
mean of x mean of y 
 39.48077  41.00000 

3.3 ASQ Items

ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~as.factor(.)) %>% 
  tableby(~., data = .) %>% summary()
Overall (N=500)
q_1
   0 417 (83.4%)
   5 77 (15.4%)
   10 6 (1.2%)
q_2
   0 326 (65.2%)
   5 110 (22.0%)
   10 64 (12.8%)
q_3
   0 355 (71.0%)
   5 127 (25.4%)
   10 18 (3.6%)
q_4
   0 391 (78.2%)
   5 82 (16.4%)
   10 27 (5.4%)
q_5
   0 412 (82.4%)
   5 66 (13.2%)
   10 22 (4.4%)
q_6
   0 387 (77.4%)
   5 63 (12.6%)
   10 50 (10.0%)
q_7
   0 370 (74.0%)
   5 101 (20.2%)
   10 29 (5.8%)
q_8
   0 447 (89.4%)
   5 42 (8.4%)
   10 11 (2.2%)
q_9
   0 380 (76.0%)
   5 76 (15.2%)
   10 44 (8.8%)
q_10
   0 451 (90.2%)
   5 47 (9.4%)
   10 2 (0.4%)
q_11
   0 483 (96.6%)
   5 8 (1.6%)
   10 9 (1.8%)
q_12
   0 461 (92.2%)
   5 18 (3.6%)
   10 21 (4.2%)
q_13
   0 403 (80.6%)
   5 84 (16.8%)
   10 13 (2.6%)
q_14
   0 309 (61.8%)
   5 172 (34.4%)
   10 19 (3.8%)
q_15
   0 357 (71.4%)
   5 128 (25.6%)
   10 15 (3.0%)
q_16
   0 298 (59.6%)
   5 112 (22.4%)
   10 90 (18.0%)
q_17
   0 425 (85.0%)
   5 65 (13.0%)
   10 10 (2.0%)
q_18
   0 454 (90.8%)
   5 37 (7.4%)
   10 9 (1.8%)
q_19
   0 388 (77.6%)
   5 89 (17.8%)
   10 23 (4.6%)
q_20
   0 382 (76.4%)
   5 93 (18.6%)
   10 25 (5.0%)
q_21
   0 380 (76.0%)
   5 90 (18.0%)
   10 30 (6.0%)
q_22
   0 465 (93.0%)
   5 16 (3.2%)
   10 19 (3.8%)
q_23
   0 483 (96.6%)
   5 10 (2.0%)
   10 7 (1.4%)
q_24
   0 324 (64.8%)
   5 146 (29.2%)
   10 30 (6.0%)
q_25
   0 417 (83.4%)
   5 57 (11.4%)
   10 26 (5.2%)
q_26
   0 393 (78.6%)
   5 75 (15.0%)
   10 32 (6.4%)
q_27
   0 305 (61.0%)
   5 154 (30.8%)
   10 41 (8.2%)
q_28
   0 452 (90.4%)
   5 43 (8.6%)
   10 5 (1.0%)
q_29
   0 470 (94.0%)
   5 24 (4.8%)
   10 6 (1.2%)
q_30
   0 395 (79.0%)
   5 77 (15.4%)
   10 28 (5.6%)
q_31
   0 297 (59.4%)
   5 173 (34.6%)
   10 30 (6.0%)
q_32
   0 414 (82.8%)
   5 56 (11.2%)
   10 30 (6.0%)

NA

4 Reliability

Page 3. Cronbach’s α for this interval was 0.86 (95% confidence interval [CI]: 0.85–0.88), with an average interitem correlation of 0.17 (95% CI: 0.15–0.19). This age interval is composed of 32 items, in which respondents choose one option that best aligns with a target behavior of the child.

ds_60_random %>% select(starts_with("q"))%>% alpha()

Reliability analysis   
Call: alpha(x = .)

 

 lower alpha upper     95% confidence boundaries
0.85 0.86 0.88 

 Reliability if an item is dropped:

 Item statistics 

Non missing response frequency for each item
        0    5   10 miss
q_1  0.83 0.15 0.01    0
q_2  0.65 0.22 0.13    0
q_3  0.71 0.25 0.04    0
q_4  0.78 0.16 0.05    0
q_5  0.82 0.13 0.04    0
q_6  0.77 0.13 0.10    0
q_7  0.74 0.20 0.06    0
q_8  0.89 0.08 0.02    0
q_9  0.76 0.15 0.09    0
q_10 0.90 0.09 0.00    0
q_11 0.97 0.02 0.02    0
q_12 0.92 0.04 0.04    0
q_13 0.81 0.17 0.03    0
q_14 0.62 0.34 0.04    0
q_15 0.71 0.26 0.03    0
q_16 0.60 0.22 0.18    0
q_17 0.85 0.13 0.02    0
q_18 0.91 0.07 0.02    0
q_19 0.78 0.18 0.05    0
q_20 0.76 0.19 0.05    0
q_21 0.76 0.18 0.06    0
q_22 0.93 0.03 0.04    0
q_23 0.97 0.02 0.01    0
q_24 0.65 0.29 0.06    0
q_25 0.83 0.11 0.05    0
q_26 0.79 0.15 0.06    0
q_27 0.61 0.31 0.08    0
q_28 0.90 0.09 0.01    0
q_29 0.94 0.05 0.01    0
q_30 0.79 0.15 0.06    0
q_31 0.59 0.35 0.06    0
q_32 0.83 0.11 0.06    0

5 Items

Page 4. The distribution of ASQ:SE items was right-skewed, indicating deviation fromnormality and that the items’meanswere greater than the medians. Skews ranged from 0.87 to 6.04. Kurtosis ranged from 0.81 to 37.29. The Kaiser–Meyer– Olkin test result was 0.86.

Page 9. First result

ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% 
  pivot_longer(everything()) %>% 
  ggplot(., aes(as.numeric(value), fill = name)) +
  geom_density(alpha  = 0.3)

6 Exploratory analysis

Page 4. The Kaiser–Meyer– Olkin test result was 0.86. The Bartlett test result was 4629.517 (df¼496, p<0.001).

6.1 KMO

ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% KMO()
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = .)
Overall MSA =  0.86
MSA for each item = 
 q_1  q_2  q_3  q_4  q_5  q_6  q_7  q_8  q_9 q_10 q_11 q_12 q_13 q_14 q_15 q_16 q_17 q_18 q_19 q_20 q_21 q_22 q_23 q_24 q_25 q_26 q_27 q_28 q_29 q_30 
0.92 0.78 0.81 0.81 0.89 0.81 0.91 0.79 0.88 0.86 0.63 0.78 0.90 0.87 0.91 0.90 0.76 0.77 0.80 0.91 0.84 0.80 0.76 0.90 0.90 0.86 0.86 0.85 0.76 0.91 
q_31 q_32 
0.91 0.80 

6.2 Bartlett

ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% psych::cortest.bartlett()
R was not square, finding R from data
$chisq
[1] 4629.517

$p.value
[1] 0

$df
[1] 496

6.3 Decide how many factors will be retained

6.4 Polychoric matrix as input

rho_60 <- ds_60_random %>% select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% 
  polychoric(.)
Warning in cor.smooth(mat) :
  Matrix was not positive definite, smoothing was done

6.5 Get rho from the polychoric matrix

rho_60 <- rho_60$rho 

6.6 Parallel Analysis (polychoric)

The following parallel analysis will define an arbitrarily set of subjects

parallel <- rho_60 %>%
  fa.parallel(.) #arbitrarily set
Warning in fa.parallel(.) :
  It seems as if you are using a correlation matrix, but have not specified the number of cases. The number of subjects is arbitrarily set to be 100  
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs,  :
  The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.
Parallel analysis suggests that the number of factors =  3  and the number of components =  2 

On the other hand, the following PA will use the full random dataset

parallel_full <- rho_60 %>%
  fa.parallel(.,n.obs = 500)
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs,  :
  The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.
Parallel analysis suggests that the number of factors =  8  and the number of components =  4 

Parallel Analysis using polychoric correlation as input
PCA: 10.72 4.46 1.91 1.48 1.33 1.26 1.13 1.02 0.92 EFA: 10.13 3.70 1.22 0.73

Page 4. Polychoric correlations of the PCA results were 10.72, 4.46, and 1.91, respectively. T

EFA outcomes were 10.13, 3.70, and 1.22 for polychoric correlations and 6.12, 2.26, and 0.83 for Pearson correlations.

parallel_full
Call: fa.parallel(x = ., n.obs = 500)
Parallel analysis suggests that the number of factors =  8  and the number of components =  4 

 Eigen Values of 

 eigen values of factors
 [1] 10.13  3.70  1.22  0.73  0.69  0.49  0.44  0.30  0.18  0.15  0.05  0.04 -0.03 -0.06 -0.09 -0.15 -0.17 -0.21 -0.22 -0.27 -0.37 -0.40 -0.43 -0.49
[25] -0.51 -0.52 -0.57 -0.62 -0.68 -0.71 -0.73 -0.75

 eigen values of simulated factors
 [1]  0.57  0.45  0.41  0.36  0.33  0.29  0.27  0.23  0.19  0.17  0.14  0.11  0.08  0.06  0.04  0.01 -0.02 -0.04 -0.06 -0.09 -0.11 -0.13 -0.16 -0.18
[25] -0.20 -0.23 -0.25 -0.28 -0.30 -0.33 -0.36 -0.40

 eigen values of components 
 [1] 10.72  4.46  1.91  1.48  1.33  1.26  1.13  1.02  0.92  0.84  0.82  0.72  0.68  0.62  0.57  0.51  0.49  0.43  0.36  0.32  0.28  0.27  0.21  0.20
[25]  0.18  0.11  0.09  0.06  0.00  0.00  0.00  0.00

 eigen values of simulated components
 [1] 1.52 1.44 1.39 1.34 1.31 1.28 1.25 1.21 1.18 1.15 1.13 1.09 1.07 1.04 1.02 0.99 0.97 0.94 0.92 0.90 0.87 0.85 0.82 0.80 0.78 0.76 0.73 0.71 0.68
[30] 0.66 0.62 0.59

6.7 Build dataset for parallel analysis results (Polychoric)

#build the table
obs <- data.frame(parallel$fa.values, parallel$pc.values)
obs$type <- c('Observed Data')
obs$num <- c(row.names(obs))
obs$num <- as.numeric(obs$num)
colnames(obs) <- c('eigenvalue_fa', 'eigenvalue_pca','type', 'num')

obs <- obs %>% 
  pivot_longer(-c(num, type)) %>% 
  mutate(name = str_remove(name,"eigenvalue_")) %>% 
  mutate(name = str_remove(name,"eigenvalue_")) %>% 
  mutate(name = toupper(name))

6.8 Parallel Analysis (Pearson correlation)

If I want to use the raw data (instead of a polychoric matrix as input), the results become fuzzy. 7 factors and 3 were recommended. However, due to the ordinal nature of the responses, the use of a polychoric matrix is recommended.

parallel_raw <- ds_60_random %>% select(starts_with("q")) %>% 
Warning messages:
1: In grepl("\n", x, fixed = TRUE) : input string 1 is invalid UTF-8
2: In grepl("\n", x, fixed = TRUE) : input string 1 is invalid UTF-8
                                           mutate_all(., ~case_when(. == "0" ~ 1,
                                                                    . == "5" ~ 2,
                                                                    . == "10" ~ 3)) %>%
  fa.parallel(., cor = "cor")
Parallel analysis suggests that the number of factors =  7  and the number of components =  3 

Page 4. Pearson eigenvalues PCA: 6.83, 3.12, 1.60 1.38 1.37 1.21 1.15 1.074 0.987 EFA: 6.12, 2.26, 0.83

parallel_raw
Call: fa.parallel(x = ., cor = "cor")
Parallel analysis suggests that the number of factors =  7  and the number of components =  3 

 Eigen Values of 

6.9 Build dataset for parallel analysis results (Pearson)

A better plot using the raw data as input

#build the table
obs_raw <- data.frame(parallel_raw$fa.values, parallel_raw$pc.values)
obs_raw$type <- c('Observed Data')
obs_raw$num <- c(row.names(obs_raw))
obs_raw$num <- as.numeric(obs_raw$num)
colnames(obs_raw) <- c('eigenvalue_fa', 'eigenvalue_pca','type', 'num')

obs_raw <- obs_raw %>% 
  pivot_longer(-c(num, type)) %>% 
  mutate(name = str_remove(name,"eigenvalue_")) %>% 
  mutate(name = str_remove(name,"eigenvalue_")) %>% 
  mutate(name = toupper(name))

Plotting via ggplot2

plot_scree_pearson <- ggplot(obs_raw, aes(x = num, y = value, color = name)) +
  geom_point(size=2) +
  geom_line() + 
  scale_y_continuous(name='Eigenvalue')+
  scale_x_continuous(name='Factor Number', breaks=min(obs$num):max(obs$num))+
  geom_hline(yintercept = 1, linetype = 'dashed') +
  labs(color = "Method") +
  ggtitle("Pearson correlation") +
  theme_classic()

6.10 Plot the scree plot via Parallel Analsysis

data_plot_scree <- bind_rows(
obs_raw %>% 
  mutate(correlation = "Pearson")
  ,
obs %>% 
  mutate(correlation = "Polychoric")
) %>% 
  arrange(num)

6.11 Nest (Raw Data)

source("C:/Users/luisf/Dropbox/Puc-Rio/Artigo - Theory and models/NEST.R")
Warning messages:
1: In grepl("\n", x, fixed = TRUE) : input string 1 is invalid UTF-8
2: In grepl("\n", x, fixed = TRUE) : input string 1 is invalid UTF-8
3: In grepl("\n", x, fixed = TRUE) : input string 1 is invalid UTF-8
4: In grepl("\n", x, fixed = TRUE) : input string 1 is invalid UTF-8
ds_60_random %>% select(starts_with("q")) %>% 
                                           mutate_all(., ~case_when(. == "0" ~ 1,
                                                                    . == "5" ~ 2,
                                                                    . == "10" ~ 3)) %>%
  NEST(.)

7 Solutions

  j <- unclass(...$loadings) %>% #get vector
    as.data.frame() %>%  #transform into dataframe
    rownames_to_column("item") %>%  #assign a consistent name
    mutate(lambda = pmap_chr(select(., -c(item)), ~ if_else(abs(c(...)) %>% 
                                                              max  >= 0.3,"in","out")))  %>% 
    filter(lambda == "in") %>% #exclusion criteria (factor loadings)
    mutate(main_factor = pmap_chr(select(., -c(item, lambda)), ~ abs(c(...)) %>% 
                                    which.max %>% 
                                    names )) %>%  #return the items
    #return the items
    group_by(main_factor) %>% 
    mutate(itens_factor = paste0(item, collapse = ",")) %>% #insert y
    select(main_factor, itens_factor) %>% #select final results
    distinct(main_factor, .keep_all = TRUE) %>% #remove duplicates
    arrange(main_factor) %>% #to become easy to understand
    mutate(itens_factor = str_remove_all(string = itens_factor, pattern = "q_")) %>% #compile a better report
    mutate(numero = str_count(itens_factor, "\\d+")) %>% #count how many non-exclusive items
    janitor::adorn_totals()
Error in as.data.frame(.) : '...' used in an incorrect context

7.1 Solution: Elbow (Polychoric)

sol_elbow <- fa(rho_60,
   fm = "wls",
   nfactors = 2, rotate = "Promax")
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs,  :
  The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.
sol_elbow
Factor Analysis using method =  wls
Call: fa(r = rho_60, nfactors = 2, rotate = "Promax", fm = "wls")
Standardized loadings (pattern matrix) based upon correlation matrix

                      WLS1 WLS2
SS loadings           7.89 6.14
Proportion Var        0.25 0.19
Cumulative Var        0.25 0.44
Proportion Explained  0.56 0.44
Cumulative Proportion 0.56 1.00

 With factor correlations of 
     WLS1 WLS2
WLS1 1.00 0.38
WLS2 0.38 1.00

Mean item complexity =  1.3
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are  496  and the objective function was  108.04
The degrees of freedom for the model are 433  and the objective function was  93.46 

The root mean square of the residuals (RMSR) is  0.08 
The df corrected root mean square of the residuals is  0.09 

Fit based upon off diagonal values = 0.94
fatores_itens(sol_elbow)
 main_factor                                     itens_factor numero
        WLS1 2,5,6,7,9,12,13,15,16,20,22,23,24,25,26,30,31,32     18
        WLS2                  1,3,4,8,10,14,18,19,21,27,28,29     12
       Total                                                -     30

7.2 Solution: Elbow (Pearson)

```r
sol_elbow_raw <- ds_60_random %>% select(starts_with(\q\)) %>% 
  mutate_all(., ~case_when(. == \0\ ~ 1,
                           . == \5\ ~ 2,
                           . == \10\ ~ 3)) %>% 
  fa(.,
     fm = \wls\,
     nfactors = 2, 
     rotate = \Promax\)

<!-- rnb-source-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuc29sX2VsYm93X3Jhd1xuXG5gYGAifQ== -->

```r
sol_elbow_raw
Factor Analysis using method =  wls
Call: fa(r = ., nfactors = 2, rotate = "Promax", fm = "wls")
Standardized loadings (pattern matrix) based upon correlation matrix

                      WLS1 WLS2
SS loadings           5.05 3.53
Proportion Var        0.16 0.11
Cumulative Var        0.16 0.27
Proportion Explained  0.59 0.41
Cumulative Proportion 0.59 1.00

 With factor correlations of 
     WLS1 WLS2
WLS1 1.00 0.31
WLS2 0.31 1.00

Mean item complexity =  1.3
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are  496  and the objective function was  9.5 with Chi Square of  4629.52
The degrees of freedom for the model are 433  and the objective function was  2.85 

The root mean square of the residuals (RMSR) is  0.06 
The df corrected root mean square of the residuals is  0.06 

The harmonic number of observations is  500 with the empirical chi square  1574.23  with prob <  3.6e-129 
The total number of observations was  500  with Likelihood Chi Square =  1387.46  with prob <  2.1e-100 

Tucker Lewis Index of factoring reliability =  0.735
RMSEA index =  0.066  and the 90 % confidence intervals are  0.063 0.07
BIC =  -1303.47
Fit based upon off diagonal values = 0.93
Measures of factor score adequacy             
                                                  WLS1 WLS2
Correlation of (regression) scores with factors   0.94 0.91
Multiple R square of scores with factors          0.89 0.83
Minimum correlation of possible factor scores     0.77 0.67
```r
fatores_itens(sol_elbow_raw)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiIG1haW5fZmFjdG9yICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGl0ZW5zX2ZhY3RvciBudW1lcm9cbiAgICAgICAgV0xTMiAgICAgICAgICAgICAgIDEsMyw0LDgsMTAsMTQsMTgsMTksMjEsMjcsMjgsMjkgICAgIDEyXG4gICAgICAgIFdMUzEgMiw1LDYsNyw5LDEyLDEzLDE1LDE2LDIwLDIyLDIzLDI0LDI1LDMwLDMxLDMyICAgICAxN1xuICAgICAgIFRvdGFsICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLSAgICAgMjlcbiJ9 -->

main_factor itens_factor numero WLS2 1,3,4,8,10,14,18,19,21,27,28,29 12 WLS1 2,5,6,7,9,12,13,15,16,20,22,23,24,25,30,31,32 17 Total - 29




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxucWdyYXBoOjpxZ3JhcGgubG9hZGluZ3Moc29sX2VsYm93JGxvYWRpbmdzLCBcbiAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsID0gXFxyZWZsZWN0aXZlXFwsXG4gICAgICAgICAgICAgICAgICAgICAgICBwb3NDb2w9XFxibHVlXFwsbmVnQ29sPVxccHVycGxlXFwsXG4gICAgICAgICAgICAgICAgICAgICAgICBsYXlvdXQ9XFxjaXJjbGVcXCxcbiAgICAgICAgICAgICAgICAgICAgICAgIHdpZHRoPTIwLCBtaW5pbXVtID0gMC4zLFxuICAgICAgICAgICAgICAgICAgICAgICAgdGl0bGUgPSBcXEV4cGxvcmF0b3J5IEZhY3RvciBBbmFseXNpcyAoRWxib3cgbWV0aG9kKVxcKVxuYGBgXG5gYGAifQ== -->

```r
```r
qgraph::qgraph.loadings(sol_elbow$loadings, 
                        model = \reflective\,
                        posCol=\blue\,negCol=\purple\,
                        layout=\circle\,
                        width=20, minimum = 0.3,
                        title = \Exploratory Factor Analysis (Elbow method)\)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiUmVnaXN0ZXJlZCBTMyBtZXRob2Qgb3ZlcndyaXR0ZW4gYnkgJ2h0bWx3aWRnZXRzJzpcbiAgbWV0aG9kICAgICAgICAgICBmcm9tICAgICAgICAgXG4gIHByaW50Lmh0bWx3aWRnZXQgdG9vbHM6cnN0dWRpb1xuUmVnaXN0ZXJlZCBTMyBtZXRob2Qgb3ZlcndyaXR0ZW4gYnkgJ2RhdGEudGFibGUnOlxuICBtZXRob2QgICAgICAgICAgIGZyb21cbiAgcHJpbnQuZGF0YS50YWJsZSAgICAgXG4ifQ== -->

Registered S3 method overwritten by ‘htmlwidgets’: method from
print.htmlwidget tools:rstudio Registered S3 method overwritten by ‘data.table’: method from print.data.table




<!-- rnb-output-end -->

<!-- rnb-plot-begin -->

<img src="" />

<!-- rnb-plot-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



## Solution: Parallel (Polychoric)


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuc29sX3BhcmFsbGVsIDwtIGZhKHJob182MCxcbiAgICAgICAgICAgICAgICAgICBmbSA9IFwid2xzXCIsXG4gICAgICAgICAgICAgICAgICAgIG5mYWN0b3JzID0gMywgI3VzaW5nIHRoZSBzcGVjaWZpYyBzZXQgb2Ygc3ViamVjdHNcbiAgICAgICAgICAgICAgICAgICByb3RhdGUgPSBcIlByb21heFwiKVxuXG5gYGAifQ== -->

```r
sol_parallel <- fa(rho_60,
                   fm = "wls",
                    nfactors = 3, #using the specific set of subjects
                   rotate = "Promax")
Warning in fa.stats(r = r, f = f, phi = phi, n.obs = n.obs, np.obs = np.obs,  :
  The estimated weights for the factor scores are probably incorrect.  Try a different factor score estimation method.
```r
sol_parallel

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiRmFjdG9yIEFuYWx5c2lzIHVzaW5nIG1ldGhvZCA9ICB3bHNcbkNhbGw6IGZhKHIgPSByaG9fNjAsIG5mYWN0b3JzID0gMywgcm90YXRlID0gXFxQcm9tYXhcXCwgZm0gPSBcXHdsc1xcKVxuU3RhbmRhcmRpemVkIGxvYWRpbmdzIChwYXR0ZXJuIG1hdHJpeCkgYmFzZWQgdXBvbiBjb3JyZWxhdGlvbiBtYXRyaXhcblxuICAgICAgICAgICAgICAgICAgICAgIFdMUzEgV0xTMiBXTFMzXG5TUyBsb2FkaW5ncyAgICAgICAgICAgNi44NSA1LjYyIDIuOTJcblByb3BvcnRpb24gVmFyICAgICAgICAwLjIxIDAuMTggMC4wOVxuQ3VtdWxhdGl2ZSBWYXIgICAgICAgIDAuMjEgMC4zOSAwLjQ4XG5Qcm9wb3J0aW9uIEV4cGxhaW5lZCAgMC40NSAwLjM3IDAuMTlcbkN1bXVsYXRpdmUgUHJvcG9ydGlvbiAwLjQ1IDAuODEgMS4wMFxuXG4gV2l0aCBmYWN0b3IgY29ycmVsYXRpb25zIG9mIFxuICAgICBXTFMxIFdMUzIgV0xTM1xuV0xTMSAxLjAwIDAuMzggMC41MVxuV0xTMiAwLjM4IDEuMDAgMC4wNlxuV0xTMyAwLjUxIDAuMDYgMS4wMFxuXG5NZWFuIGl0ZW0gY29tcGxleGl0eSA9ICAxLjVcblRlc3Qgb2YgdGhlIGh5cG90aGVzaXMgdGhhdCAzIGZhY3RvcnMgYXJlIHN1ZmZpY2llbnQuXG5cblRoZSBkZWdyZWVzIG9mIGZyZWVkb20gZm9yIHRoZSBudWxsIG1vZGVsIGFyZSAgNDk2ICBhbmQgdGhlIG9iamVjdGl2ZSBmdW5jdGlvbiB3YXMgIDEwOC4wNFxuVGhlIGRlZ3JlZXMgb2YgZnJlZWRvbSBmb3IgdGhlIG1vZGVsIGFyZSA0MDMgIGFuZCB0aGUgb2JqZWN0aXZlIGZ1bmN0aW9uIHdhcyAgOTIuMTYgXG5cblRoZSByb290IG1lYW4gc3F1YXJlIG9mIHRoZSByZXNpZHVhbHMgKFJNU1IpIGlzICAwLjA3IFxuVGhlIGRmIGNvcnJlY3RlZCByb290IG1lYW4gc3F1YXJlIG9mIHRoZSByZXNpZHVhbHMgaXMgIDAuMDggXG5cbkZpdCBiYXNlZCB1cG9uIG9mZiBkaWFnb25hbCB2YWx1ZXMgPSAwLjk2XG4ifQ== -->

Factor Analysis using method = wls Call: fa(r = rho_60, nfactors = 3, rotate = , fm = ) Standardized loadings (pattern matrix) based upon correlation matrix

                  WLS1 WLS2 WLS3

SS loadings 6.85 5.62 2.92 Proportion Var 0.21 0.18 0.09 Cumulative Var 0.21 0.39 0.48 Proportion Explained 0.45 0.37 0.19 Cumulative Proportion 0.45 0.81 1.00

With factor correlations of WLS1 WLS2 WLS3 WLS1 1.00 0.38 0.51 WLS2 0.38 1.00 0.06 WLS3 0.51 0.06 1.00

Mean item complexity = 1.5 Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 496 and the objective function was 108.04 The degrees of freedom for the model are 403 and the objective function was 92.16

The root mean square of the residuals (RMSR) is 0.07 The df corrected root mean square of the residuals is 0.08

Fit based upon off diagonal values = 0.96




<!-- rnb-output-end -->

<!-- rnb-frame-begin eyJtZXRhZGF0YSI6eyJjbGFzc2VzIjoiZGF0YS5mcmFtZSIsIm5yb3ciOjMyLCJuY29sIjo2LCJzdW1tYXJ5Ijp7IkRlc2NyaXB0aW9uIjoiZGYgWzMyIHggNl0ifX0sInJkZiI6Ikg0c0lBQUFBQUFBQUJwVldlMHhUWnhRdmZTQjBTSmdLQmphMEUzejgwM29mZmVIVWc5Tk4yTmlDazA0M2pWSkxlY3pTWWx2QnpjbFlVTUhGdWVoVU5GTnhBNmVMaXhoMURva2JQbkFScHBtSzBDZ1VXNkc2T05GV0tBWlIySzFRZTI3VGJsa0l1Yi96bmUrZTN6bm5kNzd2OXYxNWkybmhZaUdIdytGeCtNd2ZUOEJBVHVqY2RKS1NVUndPbjh0WUljeDZ1T2U1aHRrMTF1Tm1ubEhNVXpUaUVJZ0lDVVVpZ3lTdzU0VWhKaVNFSEhsb0tsZ0F1UXkvbzhEdmtOaWpSQVl0eFJrazRXZzRIUUtUeXBYWW9BTUc4T2NoTUk5TUVYQ2JweDVad0hvWVE4bXFGQ2RLNHdCUzdKR3hjc1BibE5KL3FZY3RvRUNqVTV0TURJaENpL3c1cGxUUDJtQUFVV1Z5VkIxSkJzdEhqajBVRm9qQzBySGFvOEF5a0t6MllFUEtrcHZGZ3lkSkpndm84VXdGRWF4eHJNNHJjQUFTRnlkamFhOEkxaENTbGFnOFdIRTBEaTNGdWNsWm9lbGdvWmtSZVM0cWQraC82TWpxUEV0VUdodXNiVFN1UVNvUEZvM0VPckttZ3NCMUt4UUJvNG45emlNaEMrYWhXUE9DWno3NGpGRXM3ZVVCZStBL3Nhek9zKzRrMzdrWCsxOXFMT21DWG5jRWpUMzBmK3ZJaWZUb0NCMlhqKy9kZjJ3bFdDNXQrVXI1ZlJXMFdXSlA4UktkMERxckZHSlVtOEFhVzluN0RIUmd1V2YrL0U3bFhMRGQ1MDdMNHVuQjl0Wko3VGFWQ3pvTjdmQXRlUmtjVzZjLzZtMTRBUGI4VTQvaXk1VFE4dldsangvbjZNQTJxRmx5b21VT1hDL2xuZzMvTWcwY2d2RWgwd3lwWU52ZG03ZWlaQldjcS9yc252WEFQckJ0WHpwMkF2OWRzR2VUVHhlbGxZTjlaMkZEZWJnQld1cFZrd29UUGdEYmtuNVhuR1VkMkx1TEptU0gzNFd1bXRZSmxlS0wwRlhVVjN3NnF3b3VHdzc5T25saVBOeG9Lc3pmZUNnSDdLNjE2NC8vN29iYi9BTVc5YktEY1B0dS9mYlN4RHRnYjJ0Y3U0L1VRc3RXY0hSOFdQMmlEN2JkVThqcFB6UkJWMnp0S2MyUm8zQjduQ21oT0g4amRObG5aNXBiWm9MZFJBaSt5SHdidW9RWHprUWNYUVlkVXdkcUZQMkpjTXY0amJRdDQxVzRJWnBmMHJnbkY2NWI5OGZGRklyQW1yajVsUWJYRm5Bb1k1dldwNzBESGJ5a2xKMnE5ZUQ0cmJoeTdZeWIwT0srK3F6bU5TTjBYQm92bmpFa2dyOFhpUzZrN053TkhaYjVOODQvemdVcnZXZlVnbXdudERlUEtYelluUWdPa1VyZjhDQURicVZFeERjdENJUDJ5UytmcCs5VDBMcC80Ym16MVFWZ2lSckxMWlBYd1YvVjBWZE8xaVpCWjF4RDQ4ekRUZEFlSDlhM3l6Z08ydnBPTEpqMXhrOXdreWhwN1Q4cGhmYVUvTER6ZTZYZ1VHU09qbXFXdk9pRE8reHFobGg0QlI2cEp0WFdsZDlMNXJSR3ZyUkRHd1BPYTliT1lrdGRzaUJrZzM1TTZwL0pIT3ZocXZZQlByZzRGMitxcDZuQkpWV2ZFNHpaQU0vaUVwNDhQck1kbkFVbnpBL3ArVERFKzZSN1dXd1N1S00vYXN6WjFBOTlrZHR1UGEwTkIyZjYwdWpGWlduUWEvcFJiSWpPZ3dGdXBKSGYySndjV3BFOXIxNWFDdTdKdXdaTmNSUEJ1VzVLMU04cU03aVBIKzZjZUZVQlBURUhFLzc0N2dyMDFTL2R2SHpxUXVqOXRLUWl2VnNIcmlMem5JcVlWT2ladlVPenBya1QzTUxNL29ocVJ6Sm5hR04xZWpvSEJnOGNteDVocjRDZTEydCtlYlB1SWpnSHRHVVBUak41T0krc2pINVBDMDl5M0QzWDltYjRmOVQwNm55dDk2TVc2ajFFaTlJV2tnaFRDSHRQSVRmWHU4cGQ3VVU4alNIZkwzNjQwVkFrd1J6ZWk1VzNham5wZzVRUDBqNG85VUdaRDhwOVVPR0RTaC8wZnBuNERBV0JNSWt3aFRDTnNCUmhHY0p5aEJVSUt4Rkd2QlRpcFJBdmhYZ3B4RXNoWGdyeFVvaVhRcndVNHFVUUw0MTRhY1JMVTBIdVMyR1cycXlXWkJzWmhZWnZUWlo2b3d3RjVqeURudEdPNi9ubEt2QjdPY1RvdHhDMVd1L1JPa3VzeVYydFh5bG1xbVVZbnZ1SC8wZVBQRVVJaHc1ejhyeVpDVVppaFdyMU9YbDZyWGRPZGVvVld0MklFY2tNMWZPWmtoUVk4L1JtYnluTXFrbGlOcGpWM24xQ2pVSG5YUm4rSkF6K0EvemdSTCt5Q3dBQSJ9 -->

<div data-pagedtable="false">
  <script data-pagedtable-source type="application/json">
{"columns":[{"label":[""],"name":["_rn_"],"type":[""],"align":["left"]},{"label":["WLS1"],"name":[1],"type":["S3: AsIs"],"align":["right"]},{"label":["WLS2"],"name":[2],"type":["S3: AsIs"],"align":["right"]},{"label":["WLS3"],"name":[3],"type":["S3: AsIs"],"align":["right"]},{"label":["h2"],"name":[4],"type":["dbl"],"align":["right"]},{"label":["u2"],"name":[5],"type":["dbl"],"align":["right"]},{"label":["com"],"name":[6],"type":["dbl"],"align":["right"]}],"data":[{"1":"0.21","2":"0.56","3":"0.08","4":"0.4813050","5":"0.5186950","6":"1.314653","_rn_":"q_1"},{"1":"0.10","2":"-0.11","3":"0.56","4":"0.3718602","5":"0.6281398","6":"1.145785","_rn_":"q_2"},{"1":"0.20","2":"0.53","3":"-0.36","4":"0.4350037","5":"0.5649963","6":"2.104519","_rn_":"q_3"},{"1":"-0.06","2":"0.61","3":"-0.08","4":"0.3475044","5":"0.6524956","6":"1.051481","_rn_":"q_4"},{"1":"0.32","2":"0.21","3":"0.36","4":"0.4546890","5":"0.5453110","6":"2.625743","_rn_":"q_5"},{"1":"0.21","2":"-0.27","3":"0.46","4":"0.3736850","5":"0.6263150","6":"2.108238","_rn_":"q_6"},{"1":"0.65","2":"0.08","3":"0.08","4":"0.5288096","5":"0.4711904","6":"1.062692","_rn_":"q_7"},{"1":"-0.07","2":"0.72","3":"0.12","4":"0.5086319","5":"0.4913681","6":"1.075289","_rn_":"q_8"},{"1":"0.31","2":"0.15","3":"0.53","4":"0.6074048","5":"0.3925952","6":"1.818882","_rn_":"q_9"},{"1":"-0.08","2":"0.85","3":"0.05","4":"0.6739731","5":"0.3260269","6":"1.027516","_rn_":"q_10"},{"1":"-0.34","2":"0.41","3":"0.77","4":"0.5446443","5":"0.4553557","6":"1.938349","_rn_":"q_11"},{"1":"0.19","2":"-0.01","3":"0.46","4":"0.3369018","5":"0.6630982","6":"1.317714","_rn_":"q_12"},{"1":"0.60","2":"0.26","3":"-0.02","4":"0.5310532","5":"0.4689468","6":"1.378558","_rn_":"q_13"},{"1":"0.02","2":"0.55","3":"0.05","4":"0.3204963","5":"0.6795037","6":"1.019619","_rn_":"q_14"},{"1":"0.68","2":"0.26","3":"-0.02","4":"0.6568713","5":"0.3431287","6":"1.278238","_rn_":"q_15"},{"1":"0.63","2":"-0.30","3":"0.22","4":"0.5187933","5":"0.4812067","6":"1.688002","_rn_":"q_16"},{"1":"0.19","2":"0.18","3":"0.14","4":"0.1456143","5":"0.8543857","6":"2.823926","_rn_":"q_17"},{"1":"-0.08","2":"0.69","3":"0.27","4":"0.5181103","5":"0.4818897","6":"1.321679","_rn_":"q_18"},{"1":"-0.04","2":"0.75","3":"0.08","4":"0.5437250","5":"0.4562750","6":"1.030554","_rn_":"q_19"},{"1":"0.57","2":"0.13","3":"0.20","4":"0.5496172","5":"0.4503828","6":"1.356365","_rn_":"q_20"},{"1":"-0.08","2":"0.58","3":"0.16","4":"0.3398030","5":"0.6601970","6":"1.193030","_rn_":"q_21"},{"1":"0.25","2":"-0.07","3":"0.56","4":"0.5112276","5":"0.4887724","6":"1.421719","_rn_":"q_22"},{"1":"0.65","2":"-0.11","3":"0.21","4":"0.5602375","5":"0.4397625","6":"1.279908","_rn_":"q_23"},{"1":"0.81","2":"0.11","3":"-0.13","4":"0.6464644","5":"0.3535356","6":"1.091664","_rn_":"q_24"},{"1":"0.69","2":"-0.06","3":"0.21","4":"0.6396439","5":"0.3603561","6":"1.202779","_rn_":"q_25"},{"1":"0.38","2":"0.15","3":"0.04","4":"0.2299701","5":"0.7700299","6":"1.315034","_rn_":"q_26"},{"1":"0.49","2":"0.33","3":"-0.20","4":"0.4029823","5":"0.5970177","6":"2.124769","_rn_":"q_27"},{"1":"0.53","2":"0.40","3":"-0.07","4":"0.5607278","5":"0.4392722","6":"1.915453","_rn_":"q_28"},{"1":"0.18","2":"0.67","3":"-0.10","4":"0.5630674","5":"0.4369326","6":"1.202072","_rn_":"q_29"},{"1":"0.84","2":"-0.13","3":"-0.06","4":"0.5907896","5":"0.4092104","6":"1.061376","_rn_":"q_30"},{"1":"0.68","2":"0.11","3":"0.03","4":"0.5580795","5":"0.4419205","6":"1.058760","_rn_":"q_31"},{"1":"0.63","2":"-0.38","3":"-0.03","4":"0.3369903","5":"0.6630097","6":"1.650381","_rn_":"q_32"}],"options":{"columns":{"min":{},"max":[10],"total":[6]},"rows":{"min":[10],"max":[10],"total":[32]},"pages":{}}}
  </script>
</div>

<!-- rnb-frame-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuZmF0b3Jlc19pdGVucyhzb2xfcGFyYWxsZWwpXG5gYGBcbmBgYCJ9 -->

```r
```r
fatores_itens(sol_parallel)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiIG1haW5fZmFjdG9yICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpdGVuc19mYWN0b3IgbnVtZXJvXG4gICAgICAgIFdMUzIgICAgICAgICAgICAgICAgMSwzLDQsOCwxMCwxNCwxOCwxOSwyMSwyOSAgICAgMTBcbiAgICAgICAgV0xTMyAgICAgICAgICAgICAgICAgICAgICAgICAyLDUsNiw5LDExLDEyLDIyICAgICAgN1xuICAgICAgICBXTFMxIDcsMTMsMTUsMTYsMjAsMjMsMjQsMjUsMjYsMjcsMjgsMzAsMzEsMzIgICAgIDE0XG4gICAgICAgVG90YWwgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLSAgICAgMzFcbiJ9 -->

main_factor itens_factor numero WLS2 1,3,4,8,10,14,18,19,21,29 10 WLS3 2,5,6,9,11,12,22 7 WLS1 7,13,15,16,20,23,24,25,26,27,28,30,31,32 14 Total - 31




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->




## Solution: Parallel (Pearson)


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuc29sX3BhcmFsbGVsX3JhdyA8LSBkc182MF9yYW5kb20gJT4lIHNlbGVjdChzdGFydHNfd2l0aChcXHFcXCkpICU+JSBcbiAgbXV0YXRlX2FsbCguLCB+Y2FzZV93aGVuKC4gPT0gXFwwXFwgfiAxLFxuICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSBcXDVcXCB+IDIsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAuID09IFxcMTBcXCB+IDMpKSAlPiUgXG4gIGZhKC4sXG4gICAgIGZtID0gXFx3bHNcXCxcbiAgICAgbmZhY3RvcnMgPSAzLCBcbiAgICAgcm90YXRlID0gXFxQcm9tYXhcXClcbmBgYFxuYGBgIn0= -->

```r
```r
sol_parallel_raw <- ds_60_random %>% select(starts_with(\q\)) %>% 
  mutate_all(., ~case_when(. == \0\ ~ 1,
                           . == \5\ ~ 2,
                           . == \10\ ~ 3)) %>% 
  fa(.,
     fm = \wls\,
     nfactors = 3, 
     rotate = \Promax\)

<!-- rnb-source-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->




<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuc29sX3BhcmFsbGVsX3Jhd1xuYGBgXG5gYGAifQ== -->

```r
```r
sol_parallel_raw

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiRmFjdG9yIEFuYWx5c2lzIHVzaW5nIG1ldGhvZCA9ICB3bHNcbkNhbGw6IGZhKHIgPSAuLCBuZmFjdG9ycyA9IDMsIHJvdGF0ZSA9IFxcUHJvbWF4XFwsIGZtID0gXFx3bHNcXClcblN0YW5kYXJkaXplZCBsb2FkaW5ncyAocGF0dGVybiBtYXRyaXgpIGJhc2VkIHVwb24gY29ycmVsYXRpb24gbWF0cml4XG5cbiAgICAgICAgICAgICAgICAgICAgICBXTFMxIFdMUzIgV0xTM1xuU1MgbG9hZGluZ3MgICAgICAgICAgIDMuNzkgMy4xOSAyLjY0XG5Qcm9wb3J0aW9uIFZhciAgICAgICAgMC4xMiAwLjEwIDAuMDhcbkN1bXVsYXRpdmUgVmFyICAgICAgICAwLjEyIDAuMjIgMC4zMFxuUHJvcG9ydGlvbiBFeHBsYWluZWQgIDAuMzkgMC4zMyAwLjI3XG5DdW11bGF0aXZlIFByb3BvcnRpb24gMC4zOSAwLjczIDEuMDBcblxuIFdpdGggZmFjdG9yIGNvcnJlbGF0aW9ucyBvZiBcbiAgICAgV0xTMSBXTFMyIFdMUzNcbldMUzEgMS4wMCAwLjQwIDAuNjNcbldMUzIgMC40MCAxLjAwIDAuMTFcbldMUzMgMC42MyAwLjExIDEuMDBcblxuTWVhbiBpdGVtIGNvbXBsZXhpdHkgPSAgMS40XG5UZXN0IG9mIHRoZSBoeXBvdGhlc2lzIHRoYXQgMyBmYWN0b3JzIGFyZSBzdWZmaWNpZW50LlxuXG5UaGUgZGVncmVlcyBvZiBmcmVlZG9tIGZvciB0aGUgbnVsbCBtb2RlbCBhcmUgIDQ5NiAgYW5kIHRoZSBvYmplY3RpdmUgZnVuY3Rpb24gd2FzICA5LjUgd2l0aCBDaGkgU3F1YXJlIG9mICA0NjI5LjUyXG5UaGUgZGVncmVlcyBvZiBmcmVlZG9tIGZvciB0aGUgbW9kZWwgYXJlIDQwMyAgYW5kIHRoZSBvYmplY3RpdmUgZnVuY3Rpb24gd2FzICAyLjI4IFxuXG5UaGUgcm9vdCBtZWFuIHNxdWFyZSBvZiB0aGUgcmVzaWR1YWxzIChSTVNSKSBpcyAgMC4wNSBcblRoZSBkZiBjb3JyZWN0ZWQgcm9vdCBtZWFuIHNxdWFyZSBvZiB0aGUgcmVzaWR1YWxzIGlzICAwLjA1IFxuXG5UaGUgaGFybW9uaWMgbnVtYmVyIG9mIG9ic2VydmF0aW9ucyBpcyAgNTAwIHdpdGggdGhlIGVtcGlyaWNhbCBjaGkgc3F1YXJlICAxMTQ5LjU4ICB3aXRoIHByb2IgPCAgNi4yZS03MyBcblRoZSB0b3RhbCBudW1iZXIgb2Ygb2JzZXJ2YXRpb25zIHdhcyAgNTAwICB3aXRoIExpa2VsaWhvb2QgQ2hpIFNxdWFyZSA9ICAxMTA2LjQ1ICB3aXRoIHByb2IgPCAgNi44ZS02NyBcblxuVHVja2VyIExld2lzIEluZGV4IG9mIGZhY3RvcmluZyByZWxpYWJpbGl0eSA9ICAwLjc5XG5STVNFQSBpbmRleCA9ICAwLjA1OSAgYW5kIHRoZSA5MCAlIGNvbmZpZGVuY2UgaW50ZXJ2YWxzIGFyZSAgMC4wNTUgMC4wNjNcbkJJQyA9ICAtMTM5OC4wM1xuRml0IGJhc2VkIHVwb24gb2ZmIGRpYWdvbmFsIHZhbHVlcyA9IDAuOTVcbk1lYXN1cmVzIG9mIGZhY3RvciBzY29yZSBhZGVxdWFjeSAgICAgICAgICAgICBcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgV0xTMSBXTFMyIFdMUzNcbkNvcnJlbGF0aW9uIG9mIChyZWdyZXNzaW9uKSBzY29yZXMgd2l0aCBmYWN0b3JzICAgMC45NCAwLjkxIDAuOTFcbk11bHRpcGxlIFIgc3F1YXJlIG9mIHNjb3JlcyB3aXRoIGZhY3RvcnMgICAgICAgICAgMC44OSAwLjgzIDAuODJcbk1pbmltdW0gY29ycmVsYXRpb24gb2YgcG9zc2libGUgZmFjdG9yIHNjb3JlcyAgICAgMC43OSAwLjY1IDAuNjRcbiJ9 -->

Factor Analysis using method = wls Call: fa(r = ., nfactors = 3, rotate = , fm = ) Standardized loadings (pattern matrix) based upon correlation matrix

                  WLS1 WLS2 WLS3

SS loadings 3.79 3.19 2.64 Proportion Var 0.12 0.10 0.08 Cumulative Var 0.12 0.22 0.30 Proportion Explained 0.39 0.33 0.27 Cumulative Proportion 0.39 0.73 1.00

With factor correlations of WLS1 WLS2 WLS3 WLS1 1.00 0.40 0.63 WLS2 0.40 1.00 0.11 WLS3 0.63 0.11 1.00

Mean item complexity = 1.4 Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are 496 and the objective function was 9.5 with Chi Square of 4629.52 The degrees of freedom for the model are 403 and the objective function was 2.28

The root mean square of the residuals (RMSR) is 0.05 The df corrected root mean square of the residuals is 0.05

The harmonic number of observations is 500 with the empirical chi square 1149.58 with prob < 6.2e-73 The total number of observations was 500 with Likelihood Chi Square = 1106.45 with prob < 6.8e-67

Tucker Lewis Index of factoring reliability = 0.79 RMSEA index = 0.059 and the 90 % confidence intervals are 0.055 0.063 BIC = -1398.03 Fit based upon off diagonal values = 0.95 Measures of factor score adequacy
WLS1 WLS2 WLS3 Correlation of (regression) scores with factors 0.94 0.91 0.91 Multiple R square of scores with factors 0.89 0.83 0.82 Minimum correlation of possible factor scores 0.79 0.65 0.64




<!-- rnb-output-end -->

<!-- rnb-frame-begin eyJtZXRhZGF0YSI6eyJjbGFzc2VzIjoiZGF0YS5mcmFtZSIsIm5yb3ciOjMyLCJuY29sIjo2LCJzdW1tYXJ5Ijp7IkRlc2NyaXB0aW9uIjoiZGYgWzMyIHggNl0ifX0sInJkZiI6Ikg0c0lBQUFBQUFBQUJwVldDMHhUWnhRdWZZQ2dzUHBHWFNiVEJWOHI5dDdiRjlQa0ZIekxuSUlvWk9ocUxaV0NwV1Z0VWVaalpHVHJGRGZIbnNiblVOSHBJbUFDMDhVSGFrQ0RpaUtvTTZMSVFDbFNrWlVLaU9Ka3QwRHR1VjBidHhCeXYvT2YrNS92bk8rYy83K05tUmxQQmNRSHNGZ3NEb3RMLzNGNE5HVDV6bGhFa0dLU3hlS3lhY3VIWHZkM1BEUG90NFk2M1BTVFR6OUQraDI4RUdFWVFUZ05BVzJJa1llVUlrTklZRU9FOXJnTTJpTVJlb3ptTUNpOEp4eDdaTjU0UkNST1ZJZ01LWVVNaWhIQU02bkRnd09JcFArcEhpRitMUng3S093aHc3MWxUVEpDNDNURVdHc0o5cEJpdHdieVZGcWwwVWdEUGxya1Joam5PZFplZW1pcVNPS05sYUdWQ0l0TmhIdnRGaTVJakVzbGNRQ0oxSnVIb1R6RHcxQ1J3RnFSSW84ZVJ3WVNiOEl4V2tmaGVvU0VSMEVFN3IxblRBV2pIcXdCeFVnSEIyQWNJSmR1Z3Q2eWU1dks3dmtmZldUTXZCZ1hSQkhlMG1aTXRvZ3h6TGozakV5bE1xOHFNb2JIODNuOGw3NFNyM3NZVGNXVHhCaFNodGpNNldNTWp3d3JML1BvQ1hGck4wRjRrNWVwRG1PczNJYjB0WDFrQlRuNkNOYzFJL2tGTEJOY0s2dmFWWFEwRjZyNHB5NytzYUFTemtkOHN6SDBrMGE0dmpyWFhoVGNCaGVPbGFtYmlrdWd4anA3amY5MEVtNVFOMlZtaFFucU95N0ZIWDZ2RzJxVW9STzBVKzdEOGUxREU5ZG4vd2tuSnczTW5UTnRETnlLS0pxN1FEZ1lManc4WHZKMHVSZ2E0Z01GTHpiVXdTMkJNZmpEd0hlZzhLaWh0VWRVQXRkOTVDTk1lVUZ3ZTJ2cStwTlRFcURtUlBtVHJ1WklPTDh2c1hUYmRETmN1UkhEbWJ1WmdBczVzYUhDSWNIUUdKZmxjM2ZwbDNDbjlkRmI5NlpyNEhSaWh6enlTQlpjODRuNGE2bUdDOVdhUzhkbG41SlEvZHRVemJpVWIrR1dabVhwc2dPRG9iWnc1SVRvclhZNHk3Sm5MZjFvN0NzZExGSHRhdy8xbEVQVDdtM0V3UWxIb1dudDNwM0RibzhHYStHdWtHUEtUV0NaUDlWODBMZ0pyREVmV014RHFxQWgrMjVadDlJS2paYmhxbFBYWnNQZFlhc1g1V2NQZ29aS2Jjczg2eHZ3ZUZEdDkybGI4NkJseDcwdFQ0TjN3d05GYU1MdHBPZGduVlhOajV4WUJIY1dOdWI1K2M2RkI4bXpqZFhQZE5ESzdhcmlEeW9HUzZhaS9YeCtGOXlYWFl3Y2x4SUxEZnQybWpsYlZvQjEyNnJLMGNJNmVKajlLRk5RV3d6V0JHdW5zWHNkM0Z6VS9XSk9UQmMwRE1oT3k2bXZnSmJGeXJpbnY2WkJVNDlpUUd3RkN5eVhkK1Nwemo0RXl3Rk5WT3VsMytGQjFOVTkwZmtaVUQvUnBJMlRaY09qbmxKRmlpYmpsUTVQRW4rbzRXVmRCbnRRcmlweS9CbTU3L0NGelpJVUx0ZzZ6ODFZczN3bGRFaDBmcHlVVFdEdlZMRFBzWmVEYldmWm5hdkQ1MEg3dE1CeWRzc1dlQkp0VXBmdkRRVGJmdW5OK0NsK2N2YVp3TU9sNGpsZ0c1eHpaTitiQm5qMlZYbkI1eWZMd0w2NWVMSTUzZzV0Q1QvWFpoNGs1YnpZeWFrL3BoYkwyU0orWmwxT05IUlVLTmtsUTBlQUxTaXA0RXhkQUhSZS9TN3BsK1pjc0dWTUtqenhkekRZNUdNZXg0NS9HOXFXelQ4OTRyNFoybVo5NFQvV2FKU3o5a1I5cGozQkIvdTdldjdBVVFYd1BHdjd6UHJ0UDBIUC9udzFWQzRCMjVYaWpVdUtwTkErYWwzNnNnMHJ3R2F5TngrcU1NaTU2eTlHVDZ6NTJ2MmpwbE9tcXAwZk5WL25JWXA3ZnpHQk1JbXc4MGl5TmM1VmRyb1RjVlQ2VkxmNC9nYjkyakRNNGJ4WU9SOHJDQmNrWFpCeVFaRUxpbDFRNG9KU0Y1UzVvUE5HNDlJVVFvUUpoRW1FS1lSRkNJc1JsaUFzUlZpR01PSWxFUytKZUVuRVN5SmVFdkdTaUpkRXZDVGlKUkV2aVhncHhFc2hYb3IwY2w4R0pDcE55ckJWQnJwRGZiY21vM3QrK2pSVHNsNUg5NDd0K09YS2M5dnNZM0JiNEtmckhMMU9GS2cwNmJyVkFyb3FtcUhYMy9jZjJQOE1RZGkzajVQanpJelhIOHRYclV0SzFxbWRjNnBWcmxScis0MGdlcWg2Wnlvc3paQ3NNemxMb1ZlTllTYTlTZWw4TDBDbDF6cFgrajRKTC84Qkg5VUszN0lMQUFBPSJ9 -->

<div data-pagedtable="false">
  <script data-pagedtable-source type="application/json">
{"columns":[{"label":[""],"name":["_rn_"],"type":[""],"align":["left"]},{"label":["WLS1"],"name":[1],"type":["S3: AsIs"],"align":["right"]},{"label":["WLS2"],"name":[2],"type":["S3: AsIs"],"align":["right"]},{"label":["WLS3"],"name":[3],"type":["S3: AsIs"],"align":["right"]},{"label":["h2"],"name":[4],"type":["dbl"],"align":["right"]},{"label":["u2"],"name":[5],"type":["dbl"],"align":["right"]},{"label":["com"],"name":[6],"type":["dbl"],"align":["right"]}],"data":[{"1":"0.11","2":"0.46","3":"0.10","4":"0.30322816","5":"0.6967718","6":"1.212056","_rn_":"q_1"},{"1":"-0.15","2":"-0.03","3":"0.59","4":"0.26201287","5":"0.7379871","6":"1.128571","_rn_":"q_2"},{"1":"0.27","2":"0.38","3":"-0.31","4":"0.26664657","5":"0.7333534","6":"2.760406","_rn_":"q_3"},{"1":"0.01","2":"0.41","3":"-0.07","4":"0.16606325","5":"0.8339368","6":"1.060243","_rn_":"q_4"},{"1":"0.04","2":"0.19","3":"0.47","4":"0.30344413","5":"0.6965559","6":"1.325789","_rn_":"q_5"},{"1":"-0.04","2":"-0.13","3":"0.44","4":"0.17745261","5":"0.8225474","6":"1.185149","_rn_":"q_6"},{"1":"0.60","2":"-0.02","3":"0.08","4":"0.42054903","5":"0.5794510","6":"1.038030","_rn_":"q_7"},{"1":"-0.15","2":"0.59","3":"0.15","4":"0.31566363","5":"0.6843364","6":"1.264417","_rn_":"q_8"},{"1":"-0.13","2":"0.21","3":"0.78","4":"0.56125371","5":"0.4387463","6":"1.207386","_rn_":"q_9"},{"1":"-0.09","2":"0.67","3":"0.04","4":"0.41217951","5":"0.5878205","6":"1.039848","_rn_":"q_10"},{"1":"-0.18","2":"0.21","3":"0.33","4":"0.09217950","5":"0.9078205","6":"2.343288","_rn_":"q_11"},{"1":"0.01","2":"0.00","3":"0.32","4":"0.10609505","5":"0.8939049","6":"1.004288","_rn_":"q_12"},{"1":"0.42","2":"0.21","3":"0.10","4":"0.36338503","5":"0.6366150","6":"1.596871","_rn_":"q_13"},{"1":"0.10","2":"0.37","3":"-0.01","4":"0.17897698","5":"0.8210230","6":"1.158619","_rn_":"q_14"},{"1":"0.73","2":"0.14","3":"-0.06","4":"0.57324847","5":"0.4267515","6":"1.084869","_rn_":"q_15"},{"1":"0.38","2":"-0.24","3":"0.32","4":"0.36214902","5":"0.6378510","6":"2.666097","_rn_":"q_16"},{"1":"0.05","2":"0.14","3":"0.14","4":"0.06189307","5":"0.9381069","6":"2.275422","_rn_":"q_17"},{"1":"-0.13","2":"0.56","3":"0.19","4":"0.29695131","5":"0.7030487","6":"1.362397","_rn_":"q_18"},{"1":"0.00","2":"0.63","3":"0.03","4":"0.39931810","5":"0.6006819","6":"1.003517","_rn_":"q_19"},{"1":"0.47","2":"0.04","3":"0.22","4":"0.41765045","5":"0.5823496","6":"1.425433","_rn_":"q_20"},{"1":"0.04","2":"0.39","3":"0.02","4":"0.16901836","5":"0.8309816","6":"1.029337","_rn_":"q_21"},{"1":"-0.04","2":"-0.01","3":"0.51","4":"0.23304200","5":"0.7669580","6":"1.015652","_rn_":"q_22"},{"1":"0.07","2":"-0.03","3":"0.38","4":"0.17627956","5":"0.8237204","6":"1.085032","_rn_":"q_23"},{"1":"0.94","2":"-0.04","3":"-0.18","4":"0.66693211","5":"0.3330679","6":"1.079473","_rn_":"q_24"},{"1":"0.37","2":"-0.07","3":"0.38","4":"0.43645742","5":"0.5635426","6":"2.077292","_rn_":"q_25"},{"1":"0.29","2":"0.07","3":"0.03","4":"0.11482175","5":"0.8851783","6":"1.135848","_rn_":"q_26"},{"1":"0.42","2":"0.22","3":"-0.11","4":"0.25007676","5":"0.7499232","6":"1.656884","_rn_":"q_27"},{"1":"0.24","2":"0.34","3":"0.10","4":"0.28764599","5":"0.7123540","6":"1.977460","_rn_":"q_28"},{"1":"-0.03","2":"0.54","3":"0.08","4":"0.29230867","5":"0.7076913","6":"1.050221","_rn_":"q_29"},{"1":"0.55","2":"-0.15","3":"0.13","4":"0.36574620","5":"0.6342538","6":"1.256220","_rn_":"q_30"},{"1":"0.63","2":"0.02","3":"0.07","4":"0.46381167","5":"0.5361883","6":"1.028552","_rn_":"q_31"},{"1":"0.25","2":"-0.21","3":"0.14","4":"0.12502891","5":"0.8749711","6":"2.560443","_rn_":"q_32"}],"options":{"columns":{"min":{},"max":[10],"total":[6]},"rows":{"min":[10],"max":[10],"total":[32]},"pages":{}}}
  </script>
</div>

<!-- rnb-frame-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->




<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuZmF0b3Jlc19pdGVucyhzb2xfcGFyYWxsZWxfcmF3KVxuYGBgXG5gYGAifQ== -->

```r
```r
fatores_itens(sol_parallel_raw)

<!-- rnb-source-end -->

<!-- rnb-output-begin eyJkYXRhIjoiIG1haW5fZmFjdG9yICAgICAgICAgICAgICAgICBpdGVuc19mYWN0b3IgbnVtZXJvXG4gICAgICAgIFdMUzIgMSwzLDQsOCwxMCwxNCwxOCwxOSwyMSwyOCwyOSAgICAgMTFcbiAgICAgICAgV0xTMyAgICAgICAyLDUsNiw5LDExLDEyLDIyLDIzLDI1ICAgICAgOVxuICAgICAgICBXTFMxICAgIDcsMTMsMTUsMTYsMjAsMjQsMjcsMzAsMzEgICAgICA5XG4gICAgICAgVG90YWwgICAgICAgICAgICAgICAgICAgICAgICAgICAgLSAgICAgMjlcbiJ9 -->

main_factor itens_factor numero WLS2 1,3,4,8,10,14,18,19,21,28,29 11 WLS3 2,5,6,9,11,12,22,23,25 9 WLS1 7,13,15,16,20,24,27,30,31 9 Total - 29




<!-- rnb-output-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->





<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuI2xpYnJhcnkoc2VtUGxvdClcbiNzZW1QYXRocyhzZW1QbG90TW9kZWwoc29sX3BhcmFsbGVsJGxvYWRpbmdzKSwgXG4jICAgICAgICAgbGF5b3V0PVxcY2lyY2xlXFwsXG4jICAgICAgICAgbkNoYXJOb2RlcyA9IDYpXG5xZ3JhcGg6OnFncmFwaC5sb2FkaW5ncyhzb2xfcGFyYWxsZWwkbG9hZGluZ3MsIFxuICAgICAgICAgICAgICAgICAgICAgICAgbW9kZWwgPSBcXHJlZmxlY3RpdmVcXCxcbiAgICAgICAgICAgICAgICAgICAgICAgIHBvc0NvbD1cXGJsdWVcXCxuZWdDb2w9XFxwdXJwbGVcXCxcbiAgICAgICAgICAgICAgICAgICAgICAgIGxheW91dD1cXGNpcmNsZVxcLFxuICAgICAgICAgICAgICAgICAgICAgICAgd2lkdGg9MjAsbWluaW11bSA9IDAuMyxcbiAgICAgICAgICAgICAgICAgICAgICAgIHRpdGxlID0gXFxFeHBsb3JhdG9yeSBGYWN0b3IgQW5hbHlzaXMgKFBhcmFsbGVsIEFuYWx5c2lzKVxcKVxuYGBgXG5gYGAifQ== -->

```r
```r
#library(semPlot)
#semPaths(semPlotModel(sol_parallel$loadings), 
#         layout=\circle\,
#         nCharNodes = 6)
qgraph::qgraph.loadings(sol_parallel$loadings, 
                        model = \reflective\,
                        posCol=\blue\,negCol=\purple\,
                        layout=\circle\,
                        width=20,minimum = 0.3,
                        title = \Exploratory Factor Analysis (Parallel Analysis)\)

<!-- rnb-source-end -->

<!-- rnb-plot-begin -->

<img src="" />

<!-- rnb-plot-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



## SOL PCA (Polychoric and Varimax)


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuc29sX3BjYSA8LSBwcmluY2lwYWwocmhvXzYwLFxuICAgICAgICAgICAgICAgICAgICAgbmZhY3RvcnMgPSAyLCByb3RhdGUgPSBcInZhcmltYXhcIilcbnNvbF9wY2FcbmBgYCJ9 -->

```r
sol_pca <- principal(rho_60,
                     nfactors = 2, rotate = "varimax")
sol_pca
Principal Components Analysis
Call: principal(r = rho_60, nfactors = 2, rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix

                       RC1  RC2
SS loadings           8.21 6.98
Proportion Var        0.26 0.22
Cumulative Var        0.26 0.47
Proportion Explained  0.54 0.46
Cumulative Proportion 0.54 1.00

Mean item complexity =  1.3
Test of the hypothesis that 2 components are sufficient.

The root mean square of the residuals (RMSR) is  0.08 

Fit based upon off diagonal values = 0.94

7.3 SOL PCA (Pearson)

sol_pca_raw <- ds_60_random %>% 
  select(starts_with("q")) %>% 
  mutate_all(., ~case_when(. == "0" ~ 1,
                           . == "5" ~ 2,
                           . == "10" ~ 3)) %>% 
  principal(.,
            nfactors = 2, rotate = "varimax")
sol_pca_raw
Principal Components Analysis
Call: principal(r = ., nfactors = 2, rotate = "varimax")
Standardized loadings (pattern matrix) based upon correlation matrix

                       RC1  RC2
SS loadings           5.40 4.56
Proportion Var        0.17 0.14
Cumulative Var        0.17 0.31
Proportion Explained  0.54 0.46
Cumulative Proportion 0.54 1.00

Mean item complexity =  1.3
Test of the hypothesis that 2 components are sufficient.

The root mean square of the residuals (RMSR) is  0.06 
 with the empirical chi square  2046.33  with prob <  3.6e-207 

Fit based upon off diagonal values = 0.91
```r
qgraph::qgraph.loadings(sol_pca$loadings, 
                        model = \formative\,
                        posCol=\blue\,negCol=\purple\,
                        layout=\circle\,
                        width=20,minimum = 0.3,
                        title = \Principal Component Analysis (Parallel Analysis)\)

<!-- rnb-source-end -->

<!-- rnb-plot-begin -->

<img src="" />

<!-- rnb-plot-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->



## Network


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxubGlicmFyeShFR0FuZXQpXG5zZXQuc2VlZCgxMikgI29yIDFcbmVnYV82MCA8LSBkc182MF9yYW5kb20gJT4lIHNlbGVjdChzdGFydHNfd2l0aChcInFcIikpICU+JSBcbiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtdXRhdGVfYWxsKC4sIH5jYXNlX3doZW4oLiA9PSBcIjBcIiB+IDEsXG4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gXCI1XCIgfiAyLFxuICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAuID09IFwiMTBcIiB+IDMpKSAlPiUgXG4gXG4gIEVHQSguKVxuYGBgIn0= -->

```r
library(EGAnet)
set.seed(12) #or 1
ega_60 <- ds_60_random %>% select(starts_with("q")) %>% 
                                           mutate_all(., ~case_when(. == "0" ~ 1,
                                                                    . == "5" ~ 2,
                                                                    . == "10" ~ 3)) %>% 
 
  EGA(.)
Warning in EGA(.) :
  Previous versions of EGAnet (<= 0.9.8) checked unidimensionality using uni.method = "expand" as the default

Exploratory Graph Analysis

 • model = glasso
 • algorithm = walktrap
 • correlation = cor_auto
 • unidimensional check = leading eigenvalue

Variables detected as ordinal: q_1; q_2; q_3; q_4; q_5; q_6; q_7; q_8; q_9; q_10; q_11; q_12; q_13; q_14; q_15; q_16; q_17; q_18; q_19; q_20; q_21; q_22; q_23; q_24; q_25; q_26; q_27; q_28; q_29; q_30; q_31; q_32
Warning in qgraph::cor_auto(data, forcePD = TRUE) :
  Correlation matrix is not positive definite. Finding nearest positive definite matrix

ega_60
EGA Results:

Number of Dimensions:
[1] 6

Items per Dimension:
```r
#methods.section(ega.wmt)

<!-- rnb-source-end -->

<!-- rnb-chunk-end -->


<!-- rnb-text-begin -->




## Hull method

I need to export the dataset as CSV file and then run the analysis in Factor.


<!-- rnb-text-end -->


<!-- rnb-chunk-begin -->


<!-- rnb-source-begin eyJkYXRhIjpbImRzXzYwX3JhbmRvbSAlPiUgc2VsZWN0KHN0YXJ0c193aXRoKFwicVwiKSkgJT4lICIsIiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtdXRhdGVfYWxsKC4sIH5jYXNlX3doZW4oLiA9PSBcIjBcIiB+IDEsIiwiICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAuID09IFwiNVwiIH4gMiwiLCIgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gXCIxMFwiIH4gMykpICU+JSB3cml0ZS5jc3YoLiwgXCJkc182MF9yYW5kb20uY3N2XCIsIHJvdy5uYW1lcyA9IEYpIl19 -->

```r
ds_60_random %>% select(starts_with("q")) %>% 
                                           mutate_all(., ~case_when(. == "0" ~ 1,
                                                                    . == "5" ~ 2,
                                                                    . == "10" ~ 3)) %>% write.csv(., "ds_60_random.csv", row.names = F)

! Done.

If you use this syntax in your work, please cite it. Contact me at
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2sgLSBFeHBsb3JhdG9yeSBhbmFseXNpcyAtIERBIg0KYXV0aG9yOiAiTHVpcyBBbnVuY2lhw6fDo28iDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICAgIG51bWJlcl9zZWN0aW9uczogeWVzDQogICAgdGhlbWU6IHVuaXRlZA0KICAgIGhpZ2hsaWdodDogdGV4dG1hdGUNCmVkaXRvcl9vcHRpb25zOiANCiAgY2h1bmtfb3V0cHV0X3R5cGU6IGlubGluZQ0KLS0tDQoNCjxkaXYgY2xhc3M9ImFsZXJ0IGFsZXJ0LWluZm8iPg0KKipOb3RlKio6IFRoaXMgaXMgdGhlIFIgbWFya2Rvd24gb2YgdGhlIG1hbnVzY3JpcHQgIkFuIEV4cGxvcmF0b3J5IEFuYWx5c2lzIG9mIHRoZSBJbnRlcm5hbCBTdHJ1Y3R1cmUgb2YgVGVzdCBUaHJvdWdoIGEgTXVsdGktbWV0aG9kcyBFeHBsb3JhdG9yeSBBcHByb2FjaCBvZiB0aGUgQVNROlNFIGluIEJyYXppbCIuIFRoZSBmaXJzdCBzZXQgb2YgY2h1bmtzIHJlcHJvZHVjZSBhIHByZXZpb3VzIHB1Ymxpc2hlZCBwYXBlciAoIkNvbmZpcm1hdG9yeSBhbmFseXNpcyBhbmQgbm9ybWF0aXZlIHRhYmxlcyBmb3IgdGhlIEJyYXppbGlhbg0KQWdlcyBhbmQgU3RhZ2VzIFF1ZXN0aW9ubmFpcmVzOiBTb2NpYWzigJNFbW90aW9uYWwiKSB0aGF0IHVzZWQgdGhlIHNhbWUgZGF0YWZyYW1lLg0KDQpDbGljayBydW4gdG8gcmVwcm9kdWNlIGFsbCBhbmFseXplcy4NCg0KSWYgeW91IGhhdmUgYW55IHF1ZXN0aW9ucyBvciBxdWVyaWVzLCBwbGVhc2UgcmVhY2ggbWUgb3V0IGF0IGx1aXNmY2FAcHVjLXJpby5icg0KDQpsYXN0IHVwZGF0ZWQ6IGByIGZvcm1hdChTeXMudGltZSgpLCAnJWQgJUIsICVZJylgDQo8L2Rpdj4NCg0KIyBNYWluIGFuYWx5c2lzDQoNCkxhc3QgcmV2aWV3IG9uIEphbnVhcnkgNCwgMjAyMi4gICANCg0KYGBge3J9DQpsb2FkKHVybCgiaHR0cHM6Ly9vc2YuaW8vczhyeGIvZG93bmxvYWQiKSkNCmBgYA0KDQpgYGB7cn0NCiNQYWNrYWdlcw0KcGFjbWFuOjpwX2xvYWQodGlkeXZlcnNlLCAjZW5yaXJvbm1lbnQNCiAgICAgICAgICAgICAgIGFyc2VuYWwsDQogICAgICAgICAgICAgICBrbml0ciwNCiAgICAgICAgICAgICAgIHBzeWNoKSAjY2xhc3NpY2FsIHRlc3QNCmBgYA0KDQoNCiMgUHJldmlvdXMgV2lsZXkgDQoNCiMjIERlc2NyaXB0aXZlcw0KDQpQYWdlIDMNCg0KYGBge3J9DQpkc182MCAlPiUgDQogIHRhYmxlYnkoc2V4IH4gc2NvcmUsIGRhdGEgPSAuKSAlPiUgDQogIHN1bW1hcnkoKQ0KYGBgDQoNCiMjIElSVA0KDQpgYGB7cn0NCmNmYTYwIDwtICcNCkYxID0gMiwgNSwgNiwgNywgOSwgMTEsIDEyLCAxMywgMTUsIDE2LCAxNywgMjAsIDIyLCAyMywgMjQsIDI1LCAyNiwgMzAsIDMxLCAzMg0KRjIgPSAxLCAzLCA0LCA4LCAxMCwgMTQsIDE4LCAxOSwgMjEsIDI3LCAyOCwgMjkNCkNPViA9IEYxKkYyJw0KYGBgDQoNCmh0dHBzOi8vb25saW5lbGlicmFyeS53aWxleS5jb20vZG9pLzEwLjExMTEvY2NoLjEyNjQ5ICAgICANCk1vbnRocyA2MCAgIA0KTTIgMSwwMzUuMTQ1IChjdXJyZW50ID0gMTA1My44ODEpICAgDQpkZiA0MzEgICANClAgPDAuMDAxICAgDQpSTVNFQSAwLjA1ICAgDQpTUk1TUiAwLjA4ICAgDQpUTEkgMC45MSAoMC45MykgIA0KQ0ZJIDAuOTIgKDAuOTQpICANCg0KYGBge3J9DQptaXJ0OjptaXJ0KGRzXzYwX3JhbmRvbVstYygxOjQsMzcpXSAsIA0KICAgICBjZmE2MCwgDQogICAgIGl0ZW10eXBlPSAnZ3JhZGVkJywgbWV0aG9kID0gJ01IUk0nKSAlPiUgDQogIG1pcnQ6Ok0yKC4pDQpgYGANCg0KDQoNCiMgRGVzY3JpcHRpdmUgcmVzdWx0cw0KDQojIyBQYXJ0aWNpcGFudHMNCg0KUGFnZSAyLiBUaGVyZWZvcmUsIGEgdG90YWwgb2YgNTAwIGNoaWxkcmVuIHdlcmUgcmFuZG9tbHkgc2VsZWN0ZWQgZm9yIHRoZSBhbmFseXNlcy4gVGhlIHJhbmRvbW5lc3MgcHJvY2Vzc3dhcyANCmluaXRpYXRlZCBpbiB0aGUgZmFpcnN1YnNldCBSIHBhY2thZ2UsMTcgd2l0aCB0aGUgc2VlZCBkZWZpbmVkIGF0IDE1IGFuZCBSTkd2ZXJzaW9uIHNldCBhdCAzLjYuIFRoaXMgc3Vic2FtcGxlIGNvbXByaXNlZCAyNzYgbWFsZXMNCig1NS4yJSkgYW5kIDIyNCBmZW1hbGVzICg0NC44JSkuDQoNCmBgYHtyLCByZXN1bHRzPSdhc2lzJ30NCmRzXzYwX3JhbmRvbSAlPiUgDQogIG11dGF0ZShzZXggPSBmYWN0b3Ioc2V4KSkgJT4lIA0KICB0YWJsZWJ5KH4gc2V4LCBkYXRhID0gLikgJT4lIHN1bW1hcnkoKQ0KYGBgDQojIyBNZWFuIHNjb3JlDQoNClBhZ2UgMy4gVGhlIG1lYW4gc2NvcmUgZm9yIHRoZXNlIHBhcnRpY2lwYW50cyB3YXMgNDEgKHN0YW5kYXJkDQpkZXZpYXRpb24gPSA2LjQsIHJhbmdlOiAw4oCTMjA1KS4NCg0KYGBge3IsIHJlc3VsdHM9J2FzaXMnfQ0KZHNfNjBfcmFuZG9tICU+JSANCiAgdGFibGVieSh+IHNjb3JlLCBkYXRhID0gLikgJT4lIHN1bW1hcnkoKQ0KYGBgDQoNCg0KUGFnZSAzLiBObyBkaWZmZXJlbmNlIHdhcyBmb3VuZCBiZXR3ZWVuIHRoaXMgc2NvcmUgYW5kIHRoZSBzY29yZSB0aGF0IHdhcyBvYnRhaW5lZCB3aXRoIHRoZSBmdWxsIGRhdGEgc2V0ICh0IDIyODI5ID0gLTAuOTgyLCBwID0gMC4zMjYpLg0KDQpgYGB7cn0NCnQudGVzdChkc182MCRzY29yZSwgZHNfNjBfcmFuZG9tJHNjb3JlLCB2YXIuZXF1YWwgPSBUKQ0KYGBgDQoNCg0KDQojIyBBU1EgSXRlbXMNCg0KYGBge3IsIHJlc3VsdHM9J2FzaXMnfQ0KZHNfNjBfcmFuZG9tICU+JSBzZWxlY3Qoc3RhcnRzX3dpdGgoInEiKSkgJT4lIA0KICBtdXRhdGVfYWxsKC4sIH5hcy5mYWN0b3IoLikpICU+JSANCiAgdGFibGVieSh+LiwgZGF0YSA9IC4pICU+JSBzdW1tYXJ5KCkNCmBgYA0KDQojIFJlbGlhYmlsaXR5DQoNClBhZ2UgMy4gQ3JvbmJhY2jigJlzIM6xIGZvciB0aGlzIGludGVydmFsIHdhcyAwLjg2ICg5NSUgY29uZmlkZW5jZQ0KaW50ZXJ2YWwgW0NJXTogMC44NeKAkzAuODgpLCB3aXRoIGFuIGF2ZXJhZ2UgaW50ZXJpdGVtIGNvcnJlbGF0aW9uDQpvZiAwLjE3ICg5NSUgQ0k6IDAuMTXigJMwLjE5KS4gVGhpcyBhZ2UgaW50ZXJ2YWwgaXMgY29tcG9zZWQNCm9mIDMyIGl0ZW1zLCBpbiB3aGljaCByZXNwb25kZW50cyBjaG9vc2Ugb25lIG9wdGlvbiB0aGF0DQpiZXN0IGFsaWducyB3aXRoIGEgdGFyZ2V0IGJlaGF2aW9yIG9mIHRoZSBjaGlsZC4NCg0KYGBge3J9DQpkc182MF9yYW5kb20gJT4lIHNlbGVjdChzdGFydHNfd2l0aCgicSIpKSU+JSBhbHBoYSgpDQpgYGANCg0KIyBJdGVtcw0KDQoNClBhZ2UgNC4gVGhlIGRpc3RyaWJ1dGlvbiBvZiBBU1E6U0UgaXRlbXMgd2FzIHJpZ2h0LXNrZXdlZCwgaW5kaWNhdGluZw0KZGV2aWF0aW9uIGZyb21ub3JtYWxpdHkgYW5kIHRoYXQgdGhlIGl0ZW1z4oCZbWVhbnN3ZXJlDQpncmVhdGVyIHRoYW4gdGhlIG1lZGlhbnMuIFNrZXdzIHJhbmdlZCBmcm9tIDAuODcgdG8gNi4wNC4NCkt1cnRvc2lzIHJhbmdlZCBmcm9tIAIwLjgxIHRvIDM3LjI5LiBUaGUgS2Fpc2Vy4oCTTWV5ZXLigJMNCk9sa2luIHRlc3QgcmVzdWx0IHdhcyAwLjg2Lg0KDQpgYGB7cn0NCmRzXzYwX3JhbmRvbSAlPiUgc2VsZWN0KHN0YXJ0c193aXRoKCJxIikpICU+JSANCiAgbXV0YXRlX2FsbCguLCB+Y2FzZV93aGVuKC4gPT0gIjAiIH4gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjUiIH4gMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjEwIiB+IDMpKSAlPiUgDQogIHBzeWNoOjpkZXNjcmliZSgpICU+JSBEVDo6ZGF0YXRhYmxlKC4pICN0aGV5IGRlZmluZSBrdXJ0b3NpcyBhcyAwDQoNCiNwc3ljaDo6ZGVzY3JpYmUocm5vcm0oMTAwMCwwLDEwKSkNCmBgYA0KDQpQYWdlIDkuIEZpcnN0IHJlc3VsdA0KDQpgYGB7cn0NCmRzXzYwX3JhbmRvbSAlPiUgc2VsZWN0KHN0YXJ0c193aXRoKCJxIikpICU+JSANCiAgbXV0YXRlX2FsbCguLCB+Y2FzZV93aGVuKC4gPT0gIjAiIH4gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjUiIH4gMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjEwIiB+IDMpKSAlPiUgDQogIHBpdm90X2xvbmdlcihldmVyeXRoaW5nKCkpICU+JSANCiAgZ2dwbG90KC4sIGFlcyhhcy5udW1lcmljKHZhbHVlKSwgZmlsbCA9IG5hbWUpKSArDQogIGdlb21fZGVuc2l0eShhbHBoYSAgPSAwLjMpDQpgYGANCg0KDQojIEV4cGxvcmF0b3J5IGFuYWx5c2lzIA0KDQpQYWdlIDQuIFRoZSBLYWlzZXLigJNNZXllcuKAkw0KT2xraW4gdGVzdCByZXN1bHQgd2FzIDAuODYuIFRoZSBCYXJ0bGV0dCB0ZXN0IHJlc3VsdCB3YXMNCjQ2MjkuNTE3IChkZsK8NDk2LCBwPDAuMDAxKS4NCg0KIyMgS01PDQoNCg0KYGBge3J9DQpkc182MF9yYW5kb20gJT4lIHNlbGVjdChzdGFydHNfd2l0aCgicSIpKSAlPiUgDQogIG11dGF0ZV9hbGwoLiwgfmNhc2Vfd2hlbiguID09ICIwIiB+IDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAuID09ICI1IiB+IDIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAuID09ICIxMCIgfiAzKSkgJT4lIEtNTygpDQpgYGANCiMjIEJhcnRsZXR0DQoNCmBgYHtyfQ0KZHNfNjBfcmFuZG9tICU+JSBzZWxlY3Qoc3RhcnRzX3dpdGgoInEiKSkgJT4lIA0KICBtdXRhdGVfYWxsKC4sIH5jYXNlX3doZW4oLiA9PSAiMCIgfiAxLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiNSIgfiAyLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiMTAiIH4gMykpICU+JSBwc3ljaDo6Y29ydGVzdC5iYXJ0bGV0dCgpDQoNCmBgYA0KDQojIyBEZWNpZGUgaG93IG1hbnkgZmFjdG9ycyB3aWxsIGJlIHJldGFpbmVkDQoNCiMjIFBvbHljaG9yaWMgbWF0cml4IGFzIGlucHV0DQoNCg0KYGBge3J9DQpSTkd2ZXJzaW9uKDMuNikNCnNldC5zZWVkKDMpDQoNCnJob182MCA8LSBkc182MF9yYW5kb20gJT4lIHNlbGVjdChzdGFydHNfd2l0aCgicSIpKSAlPiUgDQogIG11dGF0ZV9hbGwoLiwgfmNhc2Vfd2hlbiguID09ICIwIiB+IDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAuID09ICI1IiB+IDIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAuID09ICIxMCIgfiAzKSkgJT4lIA0KICBwb2x5Y2hvcmljKC4pDQpgYGANCg0KIyMgR2V0IHJobyBmcm9tIHRoZSBwb2x5Y2hvcmljIG1hdHJpeA0KDQoNCmBgYHtyfQ0KcmhvXzYwIDwtIHJob182MCRyaG8gDQpgYGANCg0KDQojIyBQYXJhbGxlbCBBbmFseXNpcyAocG9seWNob3JpYykNCg0KVGhlIGZvbGxvd2luZyBwYXJhbGxlbCBhbmFseXNpcyB3aWxsIGRlZmluZSBhbiBhcmJpdHJhcmlseSBzZXQgb2Ygc3ViamVjdHMNCg0KYGBge3IgcGFyYWxsZWwgYW5hbHlzaXMgd2l0aCBwb2x5Y2hvcmljIGNvcnJlbGF0aW9uIH0NCnBhcmFsbGVsIDwtIHJob182MCAlPiUNCiAgZmEucGFyYWxsZWwoLikgI2FyYml0cmFyaWx5IHNldA0KYGBgDQpPbiB0aGUgb3RoZXIgaGFuZCwgdGhlIGZvbGxvd2luZyBQQSB3aWxsIHVzZSB0aGUgZnVsbCByYW5kb20gZGF0YXNldA0KDQpgYGB7cn0NCnBhcmFsbGVsX2Z1bGwgPC0gcmhvXzYwICU+JQ0KICBmYS5wYXJhbGxlbCguLG4ub2JzID0gNTAwKQ0KYGBgDQoNCg0KUGFyYWxsZWwgQW5hbHlzaXMgdXNpbmcgcG9seWNob3JpYyBjb3JyZWxhdGlvbiBhcyBpbnB1dCAgDQpQQ0E6ICAxMC43MiAgNC40NiAgMS45MSAgMS40OCAgMS4zMyAgMS4yNiAgMS4xMyAgMS4wMiAgMC45Mg0KRUZBOiAxMC4xMyAgMy43MCAgMS4yMiAgMC43Mw0KDQpQYWdlIDQuIFBvbHljaG9yaWMgY29ycmVsYXRpb25zIG9mIHRoZSBQQ0EgcmVzdWx0cyB3ZXJlIDEwLjcyLCA0LjQ2LCBhbmQgMS45MSwNCnJlc3BlY3RpdmVseS4gVA0KDQpFRkEgb3V0Y29tZXMgd2VyZSAxMC4xMywgMy43MCwgYW5kIDEuMjIgZm9yDQpwb2x5Y2hvcmljIGNvcnJlbGF0aW9ucyBhbmQgNi4xMiwgMi4yNiwgYW5kIDAuODMgZm9yIFBlYXJzb24NCmNvcnJlbGF0aW9ucy4NCg0KYGBge3J9DQpwYXJhbGxlbF9mdWxsDQpgYGANCiMjIEJ1aWxkIGRhdGFzZXQgZm9yIHBhcmFsbGVsIGFuYWx5c2lzIHJlc3VsdHMgKFBvbHljaG9yaWMpIA0KDQpgYGB7ciB9DQojYnVpbGQgdGhlIHRhYmxlDQpvYnMgPC0gZGF0YS5mcmFtZShwYXJhbGxlbCRmYS52YWx1ZXMsIHBhcmFsbGVsJHBjLnZhbHVlcykNCm9icyR0eXBlIDwtIGMoJ09ic2VydmVkIERhdGEnKQ0Kb2JzJG51bSA8LSBjKHJvdy5uYW1lcyhvYnMpKQ0Kb2JzJG51bSA8LSBhcy5udW1lcmljKG9icyRudW0pDQpjb2xuYW1lcyhvYnMpIDwtIGMoJ2VpZ2VudmFsdWVfZmEnLCAnZWlnZW52YWx1ZV9wY2EnLCd0eXBlJywgJ251bScpDQoNCm9icyA8LSBvYnMgJT4lIA0KICBwaXZvdF9sb25nZXIoLWMobnVtLCB0eXBlKSkgJT4lIA0KICBtdXRhdGUobmFtZSA9IHN0cl9yZW1vdmUobmFtZSwiZWlnZW52YWx1ZV8iKSkgJT4lIA0KICBtdXRhdGUobmFtZSA9IHN0cl9yZW1vdmUobmFtZSwiZWlnZW52YWx1ZV8iKSkgJT4lIA0KICBtdXRhdGUobmFtZSA9IHRvdXBwZXIobmFtZSkpDQpgYGANCg0KDQojIyBQYXJhbGxlbCBBbmFseXNpcyAoUGVhcnNvbiBjb3JyZWxhdGlvbikNCg0KSWYgSSB3YW50IHRvIHVzZSB0aGUgcmF3IGRhdGEgKGluc3RlYWQgb2YgYSBwb2x5Y2hvcmljIG1hdHJpeCBhcyBpbnB1dCksIHRoZSByZXN1bHRzIGJlY29tZSBmdXp6eS4gNyBmYWN0b3JzIGFuZCAzIHdlcmUgcmVjb21tZW5kZWQuIEhvd2V2ZXIsIGR1ZSB0byB0aGUgb3JkaW5hbCBuYXR1cmUgb2YgdGhlIHJlc3BvbnNlcywgdGhlIHVzZSBvZiBhIHBvbHljaG9yaWMgbWF0cml4IGlzIHJlY29tbWVuZGVkLiAgDQoNCmBgYHtyIHBhcmFsbGVsIGFuYWx5c2lzIHdpdGggUGVhcnNvbiBjb3JyZWxhdGlvbiB9DQpwYXJhbGxlbF9yYXcgPC0gZHNfNjBfcmFuZG9tICU+JSBzZWxlY3Qoc3RhcnRzX3dpdGgoInEiKSkgJT4lIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG11dGF0ZV9hbGwoLiwgfmNhc2Vfd2hlbiguID09ICIwIiB+IDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjUiIH4gMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiMTAiIH4gMykpICU+JQ0KICBmYS5wYXJhbGxlbCguLCBjb3IgPSAiY29yIikNCmBgYA0KDQoNClBhZ2UgNC4gUGVhcnNvbiBlaWdlbnZhbHVlcw0KUENBOiA2LjgzLCAzLjEyLCAxLjYwIDEuMzggMS4zNyAxLjIxIDEuMTUgMS4wNzQgMC45ODcNCkVGQTogNi4xMiwgMi4yNiwgMC44Mw0KDQpgYGB7cn0NCnBhcmFsbGVsX3Jhdw0KYGBgDQoNCiMjIEJ1aWxkIGRhdGFzZXQgZm9yIHBhcmFsbGVsIGFuYWx5c2lzIHJlc3VsdHMgKFBlYXJzb24pIA0KDQpBIGJldHRlciBwbG90IHVzaW5nIHRoZSByYXcgZGF0YSBhcyBpbnB1dA0KDQpgYGB7ciB9DQojYnVpbGQgdGhlIHRhYmxlDQpvYnNfcmF3IDwtIGRhdGEuZnJhbWUocGFyYWxsZWxfcmF3JGZhLnZhbHVlcywgcGFyYWxsZWxfcmF3JHBjLnZhbHVlcykNCm9ic19yYXckdHlwZSA8LSBjKCdPYnNlcnZlZCBEYXRhJykNCm9ic19yYXckbnVtIDwtIGMocm93Lm5hbWVzKG9ic19yYXcpKQ0Kb2JzX3JhdyRudW0gPC0gYXMubnVtZXJpYyhvYnNfcmF3JG51bSkNCmNvbG5hbWVzKG9ic19yYXcpIDwtIGMoJ2VpZ2VudmFsdWVfZmEnLCAnZWlnZW52YWx1ZV9wY2EnLCd0eXBlJywgJ251bScpDQoNCm9ic19yYXcgPC0gb2JzX3JhdyAlPiUgDQogIHBpdm90X2xvbmdlcigtYyhudW0sIHR5cGUpKSAlPiUgDQogIG11dGF0ZShuYW1lID0gc3RyX3JlbW92ZShuYW1lLCJlaWdlbnZhbHVlXyIpKSAlPiUgDQogIG11dGF0ZShuYW1lID0gc3RyX3JlbW92ZShuYW1lLCJlaWdlbnZhbHVlXyIpKSAlPiUgDQogIG11dGF0ZShuYW1lID0gdG91cHBlcihuYW1lKSkNCmBgYA0KDQpQbG90dGluZyB2aWEgZ2dwbG90Mg0KDQpgYGB7ciwgZXZhbCA9IEZBTFNFIH0NCnBsb3Rfc2NyZWVfcGVhcnNvbiA8LSBnZ3Bsb3Qob2JzX3JhdywgYWVzKHggPSBudW0sIHkgPSB2YWx1ZSwgY29sb3IgPSBuYW1lKSkgKw0KICBnZW9tX3BvaW50KHNpemU9MikgKw0KICBnZW9tX2xpbmUoKSArIA0KICBzY2FsZV95X2NvbnRpbnVvdXMobmFtZT0nRWlnZW52YWx1ZScpKw0KICBzY2FsZV94X2NvbnRpbnVvdXMobmFtZT0nRmFjdG9yIE51bWJlcicsIGJyZWFrcz1taW4ob2JzJG51bSk6bWF4KG9icyRudW0pKSsNCiAgZ2VvbV9obGluZSh5aW50ZXJjZXB0ID0gMSwgbGluZXR5cGUgPSAnZGFzaGVkJykgKw0KICBsYWJzKGNvbG9yID0gIk1ldGhvZCIpICsNCiAgZ2d0aXRsZSgiUGVhcnNvbiBjb3JyZWxhdGlvbiIpICsNCiAgdGhlbWVfY2xhc3NpYygpDQpgYGANCg0KDQojIyBQbG90IHRoZSBzY3JlZSBwbG90IHZpYSBQYXJhbGxlbCBBbmFsc3lzaXMNCg0KYGBge3J9DQpkYXRhX3Bsb3Rfc2NyZWUgPC0gYmluZF9yb3dzKA0Kb2JzX3JhdyAlPiUgDQogIG11dGF0ZShjb3JyZWxhdGlvbiA9ICJQZWFyc29uIikNCiAgLA0Kb2JzICU+JSANCiAgbXV0YXRlKGNvcnJlbGF0aW9uID0gIlBvbHljaG9yaWMiKQ0KKSAlPiUgDQogIGFycmFuZ2UobnVtKQ0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoZGF0YV9wbG90X3NjcmVlLCBhZXMoeCA9IG51bSwgeSA9IHZhbHVlLCAgc2hhcGUgPSBmYWN0b3IoY29ycmVsYXRpb24pLCBsaW5ldHlwZSA9IGZhY3Rvcihjb3JyZWxhdGlvbiksIGNvbG9yID0gZmFjdG9yKG5hbWUpKSkgKw0KICBnZW9tX3BvaW50KHNpemU9MykgKw0KICBnZW9tX2xpbmUoc2l6ZT0wLjUpICsgDQogIHNjYWxlX3lfY29udGludW91cyhuYW1lPSdFaWdlbnZhbHVlJywgYnJlYWtzID0gMDoxMikrDQogIHNjYWxlX3hfY29udGludW91cyhuYW1lPSdGYWN0b3IgTnVtYmVyJywgYnJlYWtzPW1pbihvYnMkbnVtKTptYXgob2JzJG51bSkpKw0KICBnZW9tX2hsaW5lKHlpbnRlcmNlcHQgPSAxLCBsaW5ldHlwZSA9ICdkYXNoZWQnKSArDQogIGxhYnMoY29sb3IgPSAiRUZBIG9yIFBDQSIsIGxpbmV0eXBlID0gIlR5cGUgb2YgY29ycmVsYXRpb24iLCBzaGFwZSA9ICJUeXBlIG9mIGNvcnJlbGF0aW9uIikgKw0KICBhbm5vdGF0ZShnZW9tPSJ0ZXh0IiwgeD0yOCwgeT0xLjUsIGxhYmVsPSJLYWlzZXIgY3JpdGVyaW9uIikrDQogIGdlb21fc2VnbWVudChhZXMoeCA9IDMgLCB5PS1JbmYsIHhlbmQgPSAzLCB5ZW5kID0gNyksIGxpbmV0eXBlPTIsIGNvbG9yID0gImJsYWNrIikrDQogIGFubm90YXRlKGdlb209InRleHQiLCB4PTYsIHk9NywgbGFiZWw9IkVsYm93IFJ1bGUiKSsNCiAgdGhlbWVfY2xhc3NpYygpDQpgYGANCg0KDQojIyBOZXN0IChSYXcgRGF0YSkNCg0KYGBge3J9DQpzb3VyY2UoIkM6L1VzZXJzL2x1aXNmL0Ryb3Bib3gvUHVjLVJpby9BcnRpZ28gLSBUaGVvcnkgYW5kIG1vZGVscy9ORVNULlIiKQ0KYGBgDQoNCmBgYHtyLCBldmFsID0gRkFMU0UgfQ0KZHNfNjBfcmFuZG9tICU+JSBzZWxlY3Qoc3RhcnRzX3dpdGgoInEiKSkgJT4lIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG11dGF0ZV9hbGwoLiwgfmNhc2Vfd2hlbiguID09ICIwIiB+IDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjUiIH4gMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiMTAiIH4gMykpICU+JQ0KICBORVNUKC4pDQpgYGANCg0KDQojIFNvbHV0aW9ucw0KDQoNCmBgYHtyIGZ1bmN0aW9uIH0NCmZhdG9yZXNfaXRlbnMgPC0gZnVuY3Rpb24oLi4uKSB7DQogIGogPC0gdW5jbGFzcyguLi4kbG9hZGluZ3MpICU+JSAjZ2V0IHZlY3Rvcg0KICAgIGFzLmRhdGEuZnJhbWUoKSAlPiUgICN0cmFuc2Zvcm0gaW50byBkYXRhZnJhbWUNCiAgICByb3duYW1lc190b19jb2x1bW4oIml0ZW0iKSAlPiUgICNhc3NpZ24gYSBjb25zaXN0ZW50IG5hbWUNCiAgICBtdXRhdGUobGFtYmRhID0gcG1hcF9jaHIoc2VsZWN0KC4sIC1jKGl0ZW0pKSwgfiBpZl9lbHNlKGFicyhjKC4uLikpICU+JSANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbWF4ICA+PSAwLjMsImluIiwib3V0IikpKSAgJT4lIA0KICAgIGZpbHRlcihsYW1iZGEgPT0gImluIikgJT4lICNleGNsdXNpb24gY3JpdGVyaWEgKGZhY3RvciBsb2FkaW5ncykNCiAgICBtdXRhdGUobWFpbl9mYWN0b3IgPSBwbWFwX2NocihzZWxlY3QoLiwgLWMoaXRlbSwgbGFtYmRhKSksIH4gYWJzKGMoLi4uKSkgJT4lIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgd2hpY2gubWF4ICU+JSANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5hbWVzKSkgJT4lICAjcmV0dXJuIHRoZSBpdGVtcw0KICAgICNyZXR1cm4gdGhlIGl0ZW1zDQogICAgZ3JvdXBfYnkobWFpbl9mYWN0b3IpICU+JSANCiAgICBtdXRhdGUoaXRlbnNfZmFjdG9yID0gcGFzdGUwKGl0ZW0sIGNvbGxhcHNlID0gIiwiKSkgJT4lICNpbnNlcnQgeQ0KICAgIHNlbGVjdChtYWluX2ZhY3RvciwgaXRlbnNfZmFjdG9yKSAlPiUgI3NlbGVjdCBmaW5hbCByZXN1bHRzDQogICAgZGlzdGluY3QobWFpbl9mYWN0b3IsIC5rZWVwX2FsbCA9IFRSVUUpICU+JSAjcmVtb3ZlIGR1cGxpY2F0ZXMNCiAgICBhcnJhbmdlKG1haW5fZmFjdG9yKSAlPiUgI3RvIGJlY29tZSBlYXN5IHRvIHVuZGVyc3RhbmQNCiAgICBtdXRhdGUoaXRlbnNfZmFjdG9yID0gc3RyX3JlbW92ZV9hbGwoc3RyaW5nID0gaXRlbnNfZmFjdG9yLCBwYXR0ZXJuID0gInFfIikpICU+JSAjY29tcGlsZSBhIGJldHRlciByZXBvcnQNCiAgICBtdXRhdGUobnVtZXJvID0gc3RyX2NvdW50KGl0ZW5zX2ZhY3RvciwgIlxcZCsiKSkgJT4lICNjb3VudCBob3cgbWFueSBub24tZXhjbHVzaXZlIGl0ZW1zDQogICAgamFuaXRvcjo6YWRvcm5fdG90YWxzKCkNCg0KICByZXR1cm4oaikNCn0NCg0KYGBgDQoNCg0KIyMgU29sdXRpb246IEVsYm93IChQb2x5Y2hvcmljKQ0KDQpgYGB7ciBzb2wgZWxib3cgcG9seWNob3JpYyB9DQpzb2xfZWxib3cgPC0gZmEocmhvXzYwLA0KICAgZm0gPSAid2xzIiwNCiAgIG5mYWN0b3JzID0gMiwgcm90YXRlID0gIlByb21heCIpDQpgYGANCg0KYGBge3Igc29sIGVsYm93IGRpc3BsYXkgcG9seSB9DQpzb2xfZWxib3cNCmBgYA0KDQpgYGB7ciBzb2wgZWxib3cgbWFpbiBmYWN0b3IgaXRlbXMgcG9seSB9DQpmYXRvcmVzX2l0ZW5zKHNvbF9lbGJvdykNCmBgYA0KDQojIyBTb2x1dGlvbjogRWxib3cgKFBlYXJzb24pDQoNCmBgYHtyIHNvbCBlbGJvdyBwZWFyc29uIH0NCnNvbF9lbGJvd19yYXcgPC0gZHNfNjBfcmFuZG9tICU+JSBzZWxlY3Qoc3RhcnRzX3dpdGgoInEiKSkgJT4lIA0KICBtdXRhdGVfYWxsKC4sIH5jYXNlX3doZW4oLiA9PSAiMCIgfiAxLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiNSIgfiAyLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiMTAiIH4gMykpICU+JSANCiAgZmEoLiwNCiAgICAgZm0gPSAid2xzIiwNCiAgICAgbmZhY3RvcnMgPSAyLCANCiAgICAgcm90YXRlID0gIlByb21heCIpDQpgYGANCg0KYGBge3Igc29sIGVsYm93IGRpc3BsYXkgcGVhcnNvbiB9DQpzb2xfZWxib3dfcmF3DQpgYGANCg0KYGBge3Igc29sIGVsYm93IG1haW4gZmFjdG9yIGl0ZW1zIHBlYXJzb24gfQ0KZmF0b3Jlc19pdGVucyhzb2xfZWxib3dfcmF3KQ0KYGBgDQoNCmBgYHtyIGdyYXBoIHNvbCBlbGJvdyB9DQpxZ3JhcGg6OnFncmFwaC5sb2FkaW5ncyhzb2xfZWxib3ckbG9hZGluZ3MsIA0KICAgICAgICAgICAgICAgICAgICAgICAgbW9kZWwgPSAicmVmbGVjdGl2ZSIsDQogICAgICAgICAgICAgICAgICAgICAgICBwb3NDb2w9ImJsdWUiLG5lZ0NvbD0icHVycGxlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgIGxheW91dD0iY2lyY2xlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgIHdpZHRoPTIwLCBtaW5pbXVtID0gMC4zLA0KICAgICAgICAgICAgICAgICAgICAgICAgdGl0bGUgPSAiRXhwbG9yYXRvcnkgRmFjdG9yIEFuYWx5c2lzIChFbGJvdyBtZXRob2QpIikNCmBgYA0KDQoNCiMjIFNvbHV0aW9uOiBQYXJhbGxlbCAoUG9seWNob3JpYykNCg0KYGBge3Igc29sIHBhcmFsZWwgcG9seWNob3JpYyB9DQpzb2xfcGFyYWxsZWwgPC0gZmEocmhvXzYwLA0KICAgICAgICAgICAgICAgICAgIGZtID0gIndscyIsDQogICAgICAgICAgICAgICAgICAgIG5mYWN0b3JzID0gMywgI3VzaW5nIHRoZSBzcGVjaWZpYyBzZXQgb2Ygc3ViamVjdHMNCiAgICAgICAgICAgICAgICAgICByb3RhdGUgPSAiUHJvbWF4IikNCmBgYA0KDQpgYGB7cn0NCnNvbF9wYXJhbGxlbA0KYGBgDQoNCmBgYHtyfQ0KZmF0b3Jlc19pdGVucyhzb2xfcGFyYWxsZWwpDQpgYGANCg0KDQoNCiMjIFNvbHV0aW9uOiBQYXJhbGxlbCAoUGVhcnNvbikNCg0KYGBge3Igc29sIHBhcmFsZWwgcGVhcnNvbiB9DQpzb2xfcGFyYWxsZWxfcmF3IDwtIGRzXzYwX3JhbmRvbSAlPiUgc2VsZWN0KHN0YXJ0c193aXRoKCJxIikpICU+JSANCiAgbXV0YXRlX2FsbCguLCB+Y2FzZV93aGVuKC4gPT0gIjAiIH4gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjUiIH4gMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjEwIiB+IDMpKSAlPiUgDQogIGZhKC4sDQogICAgIGZtID0gIndscyIsDQogICAgIG5mYWN0b3JzID0gMywgDQogICAgIHJvdGF0ZSA9ICJQcm9tYXgiKQ0KYGBgDQoNCg0KYGBge3J9DQpzb2xfcGFyYWxsZWxfcmF3DQpgYGANCg0KDQpgYGB7cn0NCmZhdG9yZXNfaXRlbnMoc29sX3BhcmFsbGVsX3JhdykNCmBgYA0KDQoNCg0KYGBge3J9DQojbGlicmFyeShzZW1QbG90KQ0KI3NlbVBhdGhzKHNlbVBsb3RNb2RlbChzb2xfcGFyYWxsZWwkbG9hZGluZ3MpLCANCiMgICAgICAgICBsYXlvdXQ9ImNpcmNsZSIsDQojICAgICAgICAgbkNoYXJOb2RlcyA9IDYpDQpxZ3JhcGg6OnFncmFwaC5sb2FkaW5ncyhzb2xfcGFyYWxsZWwkbG9hZGluZ3MsIA0KICAgICAgICAgICAgICAgICAgICAgICAgbW9kZWwgPSAicmVmbGVjdGl2ZSIsDQogICAgICAgICAgICAgICAgICAgICAgICBwb3NDb2w9ImJsdWUiLG5lZ0NvbD0icHVycGxlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgIGxheW91dD0iY2lyY2xlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgIHdpZHRoPTIwLG1pbmltdW0gPSAwLjMsDQogICAgICAgICAgICAgICAgICAgICAgICB0aXRsZSA9ICJFeHBsb3JhdG9yeSBGYWN0b3IgQW5hbHlzaXMgKFBhcmFsbGVsIEFuYWx5c2lzKSIpDQpgYGANCg0KDQojIyBTT0wgUENBIChQb2x5Y2hvcmljIGFuZCBWYXJpbWF4KQ0KDQpgYGB7ciBzb2wgUENBIHBvbHkgfQ0Kc29sX3BjYSA8LSBwcmluY2lwYWwocmhvXzYwLA0KICAgICAgICAgICAgICAgICAgICAgbmZhY3RvcnMgPSAyLCByb3RhdGUgPSAidmFyaW1heCIpDQpzb2xfcGNhDQpgYGANCg0KDQojIyBTT0wgUENBIChQZWFyc29uKQ0KDQoNCmBgYHtyIHNvbCBQQ0EgcGVhcnNvbiAgfQ0Kc29sX3BjYV9yYXcgPC0gZHNfNjBfcmFuZG9tICU+JSANCiAgc2VsZWN0KHN0YXJ0c193aXRoKCJxIikpICU+JSANCiAgbXV0YXRlX2FsbCguLCB+Y2FzZV93aGVuKC4gPT0gIjAiIH4gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjUiIH4gMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjEwIiB+IDMpKSAlPiUgDQogIHByaW5jaXBhbCguLA0KICAgICAgICAgICAgbmZhY3RvcnMgPSAyLCByb3RhdGUgPSAidmFyaW1heCIpDQpzb2xfcGNhX3Jhdw0KYGBgDQoNCg0KDQpgYGB7cn0NCnFncmFwaDo6cWdyYXBoLmxvYWRpbmdzKHNvbF9wY2EkbG9hZGluZ3MsIA0KICAgICAgICAgICAgICAgICAgICAgICAgbW9kZWwgPSAiZm9ybWF0aXZlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgIHBvc0NvbD0iYmx1ZSIsbmVnQ29sPSJwdXJwbGUiLA0KICAgICAgICAgICAgICAgICAgICAgICAgbGF5b3V0PSJjaXJjbGUiLA0KICAgICAgICAgICAgICAgICAgICAgICAgd2lkdGg9MjAsbWluaW11bSA9IDAuMywNCiAgICAgICAgICAgICAgICAgICAgICAgIHRpdGxlID0gIlByaW5jaXBhbCBDb21wb25lbnQgQW5hbHlzaXMgKFBhcmFsbGVsIEFuYWx5c2lzKSIpDQpgYGANCg0KDQojIyBOZXR3b3JrDQoNCmBgYHtyfQ0KbGlicmFyeShFR0FuZXQpDQpzZXQuc2VlZCgxMikgI29yIDENCmVnYV82MCA8LSBkc182MF9yYW5kb20gJT4lIHNlbGVjdChzdGFydHNfd2l0aCgicSIpKSAlPiUgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbXV0YXRlX2FsbCguLCB+Y2FzZV93aGVuKC4gPT0gIjAiIH4gMSwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiNSIgfiAyLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAuID09ICIxMCIgfiAzKSkgJT4lIA0KIA0KICBFR0EoLikNCmBgYA0KDQpgYGB7cn0NCmVnYV82MA0KYGBgDQoNCg0KYGBge3J9DQptZXRob2RzLnNlY3Rpb24oZWdhLndtdCkNCmBgYA0KDQoNCg0KIyMgSHVsbCBtZXRob2QNCg0KSSBuZWVkIHRvIGV4cG9ydCB0aGUgZGF0YXNldCBhcyBDU1YgZmlsZSBhbmQgdGhlbiBydW4gdGhlIGFuYWx5c2lzIGluIEZhY3Rvci4NCg0KYGBge3IsIGV2YWw9RkFMU0UgfQ0KZHNfNjBfcmFuZG9tICU+JSBzZWxlY3Qoc3RhcnRzX3dpdGgoInEiKSkgJT4lIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG11dGF0ZV9hbGwoLiwgfmNhc2Vfd2hlbiguID09ICIwIiB+IDEsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIC4gPT0gIjUiIH4gMiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiMTAiIH4gMykpICU+JSB3cml0ZS5jc3YoLiwgImRzXzYwX3JhbmRvbS5jc3YiLCByb3cubmFtZXMgPSBGKQ0KYGBgDQoNCg0KISBEb25lLg0KDQpJZiB5b3UgdXNlIHRoaXMgc3ludGF4IGluIHlvdXIgd29yaywgcGxlYXNlIGNpdGUgaXQuIA0KQ29udGFjdCBtZSBhdCBsdWlzZmNhQHB1Yy1yaW8uYnIgICANClRoaXMgd29yayBpcyBsaWNlbnNlZCB1bmRlciBhIENyZWF0aXZlIENvbW1vbnMgQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1TaGFyZUFsaWtlIDQuMCBJbnRlcm5hdGlvbmFsIExpY2Vuc2UuIGh0dHBzOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1zYS80LjAvDQoNCg0KDQoNCg==