Data processing
package versions
packageVersion("psych")
[1] ‘2.1.6’
packageVersion("EGANet")
[1] ‘0.9.8’
Get the raw data
Always load the main dataset
load("https://osf.io/e4m53/download")
cannot open compressed file 'https://osf.io/e4m53/download', probable reason 'Invalid argument'Error in readChar(con, 5L, useBytes = TRUE) : cannot open the connection
Change vector labels
Note: “dados” and “original” vectors refer to the same dataset. All items that should have been reversed were reversed already.
For this specific paper, change labels
ds_60 <- original_60
ds_48 <- original_48
ds_36 <- original_36
ds_30 <- original_30
ds_24 <- original_24
ds_18 <- original_18
ds_12 <- original_12
backup_60 <- ds_60
backup_48 <- ds_48
backup_36 <- ds_36
backup_30 <- ds_30
backup_24 <- ds_24
backup_18 <- ds_18
backup_12 <- ds_12
Than I’ll remove all the other things
to.remove <- ls()
to.remove <- c(to.remove[!grepl(pattern = "^ds|^backup", to.remove)], "to.remove")
rm(list=to.remove)
#rm(list=setdiff(ls(), c("ds")))
In this project, we are using the 2011 data only.
Data set 48 months
This ds was not used in this manuscript. However, future analyses will use it.
ds_48 <- ds_48 %>%
select(-c(sum_emo, sum_soc)) %>%
filter(year == "2011") %>%
mutate(score = rowSums(select(., starts_with("q")), na.rm=T))
ds_48 %>% count(year)
Data set 60 months
This manuscript was used in the manuscript.
ds_60 <- ds_60 %>%
select(-c(sum_emo, sum_soc)) %>%
filter(year == "2011") %>%
mutate(score = rowSums(select(., starts_with("q")), na.rm=T))
ds_60 %>% count(year)
Visual check: Original data (48 months)
ds_48 %>%
select(starts_with("q_")) %>%
mutate_all(factor) %>%
DataExplorer::plot_bar()




Visual check: Original data (60 months)
ds_60 %>%
select(starts_with("q_")) %>%
mutate_all(factor) %>%
DataExplorer::plot_bar()




Tabular check (48 months)
ds_48 %>%
select(starts_with("q_")) %>% summarytools::freq() %>% kable()
| 0 |
11073 |
88.775756 |
88.77576 |
88.775756 |
88.77576 |
| 5 |
1249 |
10.013629 |
98.78939 |
10.013629 |
98.78939 |
| 10 |
151 |
1.210615 |
100.00000 |
1.210615 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
8386 |
67.23322 |
67.23322 |
67.23322 |
67.23322 |
| 5 |
2720 |
21.80710 |
89.04033 |
21.80710 |
89.04033 |
| 10 |
1367 |
10.95967 |
100.00000 |
10.95967 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
12473 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
| 0 |
10222 |
81.953018 |
81.95302 |
81.953018 |
81.95302 |
| 5 |
1745 |
13.990219 |
95.94324 |
13.990219 |
95.94324 |
| 10 |
506 |
4.056763 |
100.00000 |
4.056763 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
10489 |
84.093642 |
84.09364 |
84.093642 |
84.09364 |
| 5 |
1476 |
11.833561 |
95.92720 |
11.833561 |
95.92720 |
| 10 |
508 |
4.072797 |
100.00000 |
4.072797 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
10441 |
83.708811 |
83.70881 |
83.708811 |
83.70881 |
| 5 |
1685 |
13.509180 |
97.21799 |
13.509180 |
97.21799 |
| 10 |
347 |
2.782009 |
100.00000 |
2.782009 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
9901 |
79.379460 |
79.37946 |
79.379460 |
79.37946 |
| 5 |
1653 |
13.252626 |
92.63209 |
13.252626 |
92.63209 |
| 10 |
919 |
7.367915 |
100.00000 |
7.367915 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
9452 |
75.77968 |
75.77968 |
75.77968 |
75.77968 |
| 5 |
2380 |
19.08122 |
94.86090 |
19.08122 |
94.86090 |
| 10 |
641 |
5.13910 |
100.00000 |
5.13910 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
12473 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
| 0 |
9286 |
74.448809 |
74.44881 |
74.448809 |
74.44881 |
| 5 |
2180 |
17.477752 |
91.92656 |
17.477752 |
91.92656 |
| 10 |
1007 |
8.073439 |
100.00000 |
8.073439 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
11417 |
91.533713 |
91.53371 |
91.533713 |
91.53371 |
| 5 |
903 |
7.239638 |
98.77335 |
7.239638 |
98.77335 |
| 10 |
153 |
1.226650 |
100.00000 |
1.226650 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
11711 |
93.890804 |
93.89080 |
93.890804 |
93.89080 |
| 5 |
553 |
4.433577 |
98.32438 |
4.433577 |
98.32438 |
| 10 |
209 |
1.675619 |
100.00000 |
1.675619 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
11355 |
91.03664 |
91.03664 |
91.03664 |
91.03664 |
| 5 |
477 |
3.82426 |
94.86090 |
3.82426 |
94.86090 |
| 10 |
641 |
5.13910 |
100.00000 |
5.13910 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
12473 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
| 0 |
9672 |
77.54349 |
77.54349 |
77.54349 |
77.54349 |
| 5 |
2391 |
19.16941 |
96.71290 |
19.16941 |
96.71290 |
| 10 |
410 |
3.28710 |
100.00000 |
3.28710 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
12473 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
| 0 |
9613 |
77.070472 |
77.07047 |
77.070472 |
77.07047 |
| 5 |
2619 |
20.997354 |
98.06783 |
20.997354 |
98.06783 |
| 10 |
241 |
1.932173 |
100.00000 |
1.932173 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
11364 |
91.108795 |
91.10880 |
91.108795 |
91.10880 |
| 5 |
984 |
7.889040 |
98.99784 |
7.889040 |
98.99784 |
| 10 |
125 |
1.002165 |
100.00000 |
1.002165 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
11523 |
92.383549 |
92.38355 |
92.383549 |
92.38355 |
| 5 |
689 |
5.523932 |
97.90748 |
5.523932 |
97.90748 |
| 10 |
261 |
2.092520 |
100.00000 |
2.092520 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
7917 |
63.47310 |
63.47310 |
63.47310 |
63.47310 |
| 5 |
2394 |
19.19346 |
82.66656 |
19.19346 |
82.66656 |
| 10 |
2162 |
17.33344 |
100.00000 |
17.33344 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
12473 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
| 0 |
11259 |
90.266977 |
90.26698 |
90.266977 |
90.26698 |
| 5 |
895 |
7.175499 |
97.44248 |
7.175499 |
97.44248 |
| 10 |
319 |
2.557524 |
100.00000 |
2.557524 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
10366 |
83.107512 |
83.10751 |
83.107512 |
83.10751 |
| 5 |
1707 |
13.685561 |
96.79307 |
13.685561 |
96.79307 |
| 10 |
400 |
3.206927 |
100.00000 |
3.206927 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
9780 |
78.409364 |
78.40936 |
78.409364 |
78.40936 |
| 5 |
1865 |
14.952297 |
93.36166 |
14.952297 |
93.36166 |
| 10 |
828 |
6.638339 |
100.00000 |
6.638339 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
10480 |
84.021486 |
84.02149 |
84.021486 |
84.02149 |
| 5 |
1694 |
13.581336 |
97.60282 |
13.581336 |
97.60282 |
| 10 |
299 |
2.397178 |
100.00000 |
2.397178 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
10162 |
81.471980 |
81.47198 |
81.471980 |
81.47198 |
| 5 |
1930 |
15.473423 |
96.94540 |
15.473423 |
96.94540 |
| 10 |
381 |
3.054598 |
100.00000 |
3.054598 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
11785 |
94.484086 |
94.48409 |
94.484086 |
94.48409 |
| 5 |
354 |
2.838130 |
97.32222 |
2.838130 |
97.32222 |
| 10 |
334 |
2.677784 |
100.00000 |
2.677784 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
12086 |
96.897298 |
96.8973 |
96.897298 |
96.8973 |
| 5 |
214 |
1.715706 |
98.6130 |
1.715706 |
98.6130 |
| 10 |
173 |
1.386996 |
100.0000 |
1.386996 |
100.0000 |
|
0 |
NA |
NA |
0.000000 |
100.0000 |
| Total |
12473 |
100.000000 |
100.0000 |
100.000000 |
100.0000 |
| 0 |
8781 |
70.400064 |
70.40006 |
70.400064 |
70.40006 |
| 5 |
3110 |
24.933857 |
95.33392 |
24.933857 |
95.33392 |
| 10 |
582 |
4.666079 |
100.00000 |
4.666079 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
10713 |
85.889521 |
85.88952 |
85.889521 |
85.88952 |
| 5 |
1282 |
10.278201 |
96.16772 |
10.278201 |
96.16772 |
| 10 |
478 |
3.832278 |
100.00000 |
3.832278 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
9669 |
77.519442 |
77.51944 |
77.519442 |
77.51944 |
| 5 |
1732 |
13.885994 |
91.40544 |
13.885994 |
91.40544 |
| 10 |
1072 |
8.594564 |
100.00000 |
8.594564 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
11938 |
95.710735 |
95.71074 |
95.710735 |
95.71074 |
| 5 |
345 |
2.765975 |
98.47671 |
2.765975 |
98.47671 |
| 10 |
190 |
1.523290 |
100.00000 |
1.523290 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
7964 |
63.849916 |
63.84992 |
63.849916 |
63.84992 |
| 5 |
3447 |
27.635693 |
91.48561 |
27.635693 |
91.48561 |
| 10 |
1062 |
8.514391 |
100.00000 |
8.514391 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
11694 |
93.7545097 |
93.75451 |
93.7545097 |
93.75451 |
| 5 |
690 |
5.5319490 |
99.28646 |
5.5319490 |
99.28646 |
| 10 |
89 |
0.7135412 |
100.00000 |
0.7135412 |
100.00000 |
|
0 |
NA |
NA |
0.0000000 |
100.00000 |
| Total |
12473 |
100.0000000 |
100.00000 |
100.0000000 |
100.00000 |
| 0 |
11734 |
94.075202 |
94.07520 |
94.075202 |
94.07520 |
| 5 |
579 |
4.642027 |
98.71723 |
4.642027 |
98.71723 |
| 10 |
160 |
1.282771 |
100.00000 |
1.282771 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
9838 |
78.874369 |
78.87437 |
78.874369 |
78.87437 |
| 5 |
2032 |
16.291189 |
95.16556 |
16.291189 |
95.16556 |
| 10 |
603 |
4.834442 |
100.00000 |
4.834442 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
10832 |
86.843582 |
86.84358 |
86.843582 |
86.84358 |
| 5 |
1164 |
9.332157 |
96.17574 |
9.332157 |
96.17574 |
| 10 |
477 |
3.824260 |
100.00000 |
3.824260 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
12473 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
Original data (60 months)
ds_60 %>%
select(starts_with("q_")) %>% summarytools::freq() %>% kable()
| 0 |
19080 |
85.441763 |
85.44176 |
85.441763 |
85.44176 |
| 5 |
2937 |
13.152120 |
98.59388 |
13.152120 |
98.59388 |
| 10 |
314 |
1.406117 |
100.00000 |
1.406117 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
14230 |
63.72308 |
63.72308 |
63.72308 |
63.72308 |
| 5 |
5214 |
23.34871 |
87.07178 |
23.34871 |
87.07178 |
| 10 |
2887 |
12.92822 |
100.00000 |
12.92822 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
22331 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
| 0 |
16489 |
73.839058 |
73.83906 |
73.839058 |
73.83906 |
| 5 |
4835 |
21.651516 |
95.49057 |
21.651516 |
95.49057 |
| 10 |
1007 |
4.509426 |
100.00000 |
4.509426 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
17370 |
77.784246 |
77.78425 |
77.784246 |
77.78425 |
| 5 |
3881 |
17.379428 |
95.16367 |
17.379428 |
95.16367 |
| 10 |
1080 |
4.836326 |
100.00000 |
4.836326 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
18083 |
80.977117 |
80.97712 |
80.977117 |
80.97712 |
| 5 |
3240 |
14.508978 |
95.48610 |
14.508978 |
95.48610 |
| 10 |
1008 |
4.513904 |
100.00000 |
4.513904 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
16967 |
75.979580 |
75.97958 |
75.979580 |
75.97958 |
| 5 |
3500 |
15.673279 |
91.65286 |
15.673279 |
91.65286 |
| 10 |
1864 |
8.347141 |
100.00000 |
8.347141 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
16652 |
74.568985 |
74.56898 |
74.568985 |
74.56898 |
| 5 |
4693 |
21.015628 |
95.58461 |
21.015628 |
95.58461 |
| 10 |
986 |
4.415387 |
100.00000 |
4.415387 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
19763 |
88.500291 |
88.50029 |
88.500291 |
88.50029 |
| 5 |
2276 |
10.192110 |
98.69240 |
10.192110 |
98.69240 |
| 10 |
292 |
1.307599 |
100.00000 |
1.307599 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
17211 |
77.072231 |
77.07223 |
77.072231 |
77.07223 |
| 5 |
3503 |
15.686713 |
92.75894 |
15.686713 |
92.75894 |
| 10 |
1617 |
7.241055 |
100.00000 |
7.241055 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
20337 |
91.070709 |
91.07071 |
91.070709 |
91.07071 |
| 5 |
1768 |
7.917245 |
98.98795 |
7.917245 |
98.98795 |
| 10 |
226 |
1.012046 |
100.00000 |
1.012046 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
21546 |
96.484707 |
96.48471 |
96.484707 |
96.48471 |
| 5 |
441 |
1.974833 |
98.45954 |
1.974833 |
98.45954 |
| 10 |
344 |
1.540460 |
100.00000 |
1.540460 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
20431 |
91.491648 |
91.49165 |
91.491648 |
91.49165 |
| 5 |
822 |
3.680982 |
95.17263 |
3.680982 |
95.17263 |
| 10 |
1078 |
4.827370 |
100.00000 |
4.827370 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
18227 |
81.621961 |
81.62196 |
81.621961 |
81.62196 |
| 5 |
3348 |
14.992611 |
96.61457 |
14.992611 |
96.61457 |
| 10 |
756 |
3.385428 |
100.00000 |
3.385428 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
15083 |
67.542878 |
67.54288 |
67.542878 |
67.54288 |
| 5 |
6124 |
27.423761 |
94.96664 |
27.423761 |
94.96664 |
| 10 |
1124 |
5.033362 |
100.00000 |
5.033362 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
15975 |
71.537325 |
71.53732 |
71.537325 |
71.53732 |
| 5 |
5675 |
25.413103 |
96.95043 |
25.413103 |
96.95043 |
| 10 |
681 |
3.049572 |
100.00000 |
3.049572 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
13456 |
60.25704 |
60.25704 |
60.25704 |
60.25704 |
| 5 |
5085 |
22.77104 |
83.02808 |
22.77104 |
83.02808 |
| 10 |
3790 |
16.97192 |
100.00000 |
16.97192 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
22331 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
| 0 |
19557 |
87.577807 |
87.57781 |
87.577807 |
87.57781 |
| 5 |
2231 |
9.990596 |
97.56840 |
9.990596 |
97.56840 |
| 10 |
543 |
2.431597 |
100.00000 |
2.431597 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
20446 |
91.558820 |
91.55882 |
91.558820 |
91.55882 |
| 5 |
1540 |
6.896243 |
98.45506 |
6.896243 |
98.45506 |
| 10 |
345 |
1.544938 |
100.00000 |
1.544938 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
17580 |
78.724643 |
78.72464 |
78.724643 |
78.72464 |
| 5 |
3555 |
15.919574 |
94.64422 |
15.919574 |
94.64422 |
| 10 |
1196 |
5.355783 |
100.00000 |
5.355783 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
17589 |
78.764946 |
78.76495 |
78.764946 |
78.76495 |
| 5 |
4100 |
18.360127 |
97.12507 |
18.360127 |
97.12507 |
| 10 |
642 |
2.874927 |
100.00000 |
2.874927 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
16848 |
75.446688 |
75.44669 |
75.446688 |
75.44669 |
| 5 |
4443 |
19.896109 |
95.34280 |
19.896109 |
95.34280 |
| 10 |
1040 |
4.657203 |
100.00000 |
4.657203 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
20668 |
92.552953 |
92.55295 |
92.552953 |
92.55295 |
| 5 |
893 |
3.998925 |
96.55188 |
3.998925 |
96.55188 |
| 10 |
770 |
3.448121 |
100.00000 |
3.448121 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
21545 |
96.48023 |
96.48023 |
96.48023 |
96.48023 |
| 5 |
458 |
2.05096 |
98.53119 |
2.05096 |
98.53119 |
| 10 |
328 |
1.46881 |
100.00000 |
1.46881 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
22331 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
| 0 |
14573 |
65.259057 |
65.25906 |
65.259057 |
65.25906 |
| 5 |
6580 |
29.465765 |
94.72482 |
29.465765 |
94.72482 |
| 10 |
1178 |
5.275178 |
100.00000 |
5.275178 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
18832 |
84.331199 |
84.33120 |
84.331199 |
84.33120 |
| 5 |
2467 |
11.047423 |
95.37862 |
11.047423 |
95.37862 |
| 10 |
1032 |
4.621378 |
100.00000 |
4.621378 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
17647 |
79.024674 |
79.02467 |
79.024674 |
79.02467 |
| 5 |
3206 |
14.356724 |
93.38140 |
14.356724 |
93.38140 |
| 10 |
1478 |
6.618602 |
100.00000 |
6.618602 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
14105 |
63.163316 |
63.16332 |
63.163316 |
63.16332 |
| 5 |
6691 |
29.962832 |
93.12615 |
29.962832 |
93.12615 |
| 10 |
1535 |
6.873852 |
100.00000 |
6.873852 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
20182 |
90.3766065 |
90.37661 |
90.3766065 |
90.37661 |
| 5 |
1946 |
8.7143433 |
99.09095 |
8.7143433 |
99.09095 |
| 10 |
203 |
0.9090502 |
100.00000 |
0.9090502 |
100.00000 |
|
0 |
NA |
NA |
0.0000000 |
100.00000 |
| Total |
22331 |
100.0000000 |
100.00000 |
100.0000000 |
100.00000 |
| 0 |
20720 |
92.785813 |
92.78581 |
92.785813 |
92.78581 |
| 5 |
1345 |
6.023017 |
98.80883 |
6.023017 |
98.80883 |
| 10 |
266 |
1.191169 |
100.00000 |
1.191169 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
17795 |
79.687430 |
79.68743 |
79.687430 |
79.68743 |
| 5 |
3425 |
15.337423 |
95.02485 |
15.337423 |
95.02485 |
| 10 |
1111 |
4.975147 |
100.00000 |
4.975147 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
13290 |
59.513680 |
59.51368 |
59.513680 |
59.51368 |
| 5 |
7825 |
35.040974 |
94.55465 |
35.040974 |
94.55465 |
| 10 |
1216 |
5.445345 |
100.00000 |
5.445345 |
100.00000 |
|
0 |
NA |
NA |
0.000000 |
100.00000 |
| Total |
22331 |
100.000000 |
100.00000 |
100.000000 |
100.00000 |
| 0 |
18996 |
85.06560 |
85.06560 |
85.06560 |
85.06560 |
| 5 |
2262 |
10.12942 |
95.19502 |
10.12942 |
95.19502 |
| 10 |
1073 |
4.80498 |
100.00000 |
4.80498 |
100.00000 |
|
0 |
NA |
NA |
0.00000 |
100.00000 |
| Total |
22331 |
100.00000 |
100.00000 |
100.00000 |
100.00000 |
Reliability of the original data 48 months
ds_48 %>%
select(starts_with("q_")) %>%
alpha(.)
Reliability analysis
Call: alpha(x = .)
lower alpha upper 95% confidence boundaries
0.82 0.83 0.83
Reliability if an item is dropped:
Item statistics
Non missing response frequency for each item
0 5 10 miss
q_1 0.89 0.10 0.01 0
q_2 0.67 0.22 0.11 0
q_3 0.82 0.14 0.04 0
q_4 0.84 0.12 0.04 0
q_5 0.84 0.14 0.03 0
q_6 0.79 0.13 0.07 0
q_7 0.76 0.19 0.05 0
q_8 0.74 0.17 0.08 0
q_9 0.92 0.07 0.01 0
q_10 0.94 0.04 0.02 0
q_11 0.91 0.04 0.05 0
q_12 0.78 0.19 0.03 0
q_13 0.77 0.21 0.02 0
q_14 0.91 0.08 0.01 0
q_15 0.92 0.06 0.02 0
q_16 0.63 0.19 0.17 0
q_17 0.90 0.07 0.03 0
q_18 0.83 0.14 0.03 0
q_19 0.78 0.15 0.07 0
q_20 0.84 0.14 0.02 0
q_21 0.81 0.15 0.03 0
q_22 0.94 0.03 0.03 0
q_23 0.97 0.02 0.01 0
q_24 0.70 0.25 0.05 0
q_25 0.86 0.10 0.04 0
q_26 0.78 0.14 0.09 0
q_27 0.96 0.03 0.02 0
q_28 0.64 0.28 0.09 0
q_29 0.94 0.06 0.01 0
q_30 0.94 0.05 0.01 0
q_31 0.79 0.16 0.05 0
q_32 0.87 0.09 0.04 0
Reliability of the original data 60 months
ds_60 %>%
select(starts_with("q_")) %>%
alpha(.)
Reliability analysis
Call: alpha(x = .)
lower alpha upper 95% confidence boundaries
0.84 0.85 0.85
Reliability if an item is dropped:
Item statistics
Non missing response frequency for each item
0 5 10 miss
q_1 0.85 0.13 0.01 0
q_2 0.64 0.23 0.13 0
q_3 0.74 0.22 0.05 0
q_4 0.78 0.17 0.05 0
q_5 0.81 0.15 0.05 0
q_6 0.76 0.16 0.08 0
q_7 0.75 0.21 0.04 0
q_8 0.89 0.10 0.01 0
q_9 0.77 0.16 0.07 0
q_10 0.91 0.08 0.01 0
q_11 0.96 0.02 0.02 0
q_12 0.91 0.04 0.05 0
q_13 0.82 0.15 0.03 0
q_14 0.68 0.27 0.05 0
q_15 0.72 0.25 0.03 0
q_16 0.60 0.23 0.17 0
q_17 0.88 0.10 0.02 0
q_18 0.92 0.07 0.02 0
q_19 0.79 0.16 0.05 0
q_20 0.79 0.18 0.03 0
q_21 0.75 0.20 0.05 0
q_22 0.93 0.04 0.03 0
q_23 0.96 0.02 0.01 0
q_24 0.65 0.29 0.05 0
q_25 0.84 0.11 0.05 0
q_26 0.79 0.14 0.07 0
q_27 0.63 0.30 0.07 0
q_28 0.90 0.09 0.01 0
q_29 0.93 0.06 0.01 0
q_30 0.80 0.15 0.05 0
q_31 0.60 0.35 0.05 0
q_32 0.85 0.10 0.05 0
Table 1 48 months from the published paper
This is from where we are getting the data .. Check here: 10.1111/cch.12649
ds_48 %>%
select(sex, score) %>%
group_by(sex) %>%
summarytools::descr()
Descriptive Statistics
score by sex
Data Frame: ds_48
N: 6495
sex = M sex = F
----------------- --------- ---------
Mean 37.38 29.08
Std.Dev 33.10 27.55
Min 0.00 0.00
Q1 15.00 10.00
Median 30.00 20.00
Q3 55.00 40.00
Max 240.00 230.00
MAD 29.65 22.24
IQR 40.00 30.00
CV 0.89 0.95
Skewness 1.43 1.58
SE.Skewness 0.03 0.03
Kurtosis 2.52 3.32
N.Valid 6495.00 5978.00
Pct.Valid 100.00 100.00
Table 1 60 months from the published paper
This is from where we are getting the data .. Check here: 10.1111/cch.12649
ds_60 %>%
select(sex, score) %>%
group_by(sex) %>%
summarytools::descr()
Descriptive Statistics
score by sex
Data Frame: ds_60
N: 11291
sex = 1 sex = 2
----------------- ---------- ----------
Mean 44.82 34.02
Std.Dev 36.66 30.44
Min 0.00 0.00
Q1 15.00 10.00
Median 35.00 25.00
Q3 65.00 50.00
Max 275.00 290.00
MAD 29.65 22.24
IQR 50.00 40.00
CV 0.82 0.89
Skewness 1.24 1.49
SE.Skewness 0.02 0.02
Kurtosis 1.92 2.91
N.Valid 11291.00 11040.00
Pct.Valid 100.00 100.00
Random 48 months
As described, I’ll get a random sample from the main data (items-only)
set.seed(123)
ds_48_random <- ds_48 %>% sample_n(.,500)
Random 60 months
60 months
set.seed(15)
ds_60_random <- ds_60 %>% sample_n(.,500)
Sampling via Fairsubset
library(fairsubset)
check_ds <- fairSubset(ds_60, subset_setting = "ks", manual_N = 500, random_subsets = 10)
ds_60_random2 <- check_ds$best_subset %>% as.data.frame
Check the randomness of the data
Descriptives
bind_rows(
ds_60_random %>% mutate(base = "random") %>% select(-months),
ds_60 %>% mutate(base = "original") %>% select(-months)) %>%
group_by(base) %>%
select(score) %>%
summarytools::descr()
Adding missing grouping variables: `base`
Descriptive Statistics
score by base
N: 22331
base = original base = random
----------------- ----------------- ---------------
Mean 39.48 41.00
Std.Dev 34.16 36.40
Min 0.00 0.00
Q1 15.00 15.00
Median 30.00 30.00
Q3 55.00 60.00
Max 290.00 205.00
MAD 29.65 29.65
IQR 40.00 45.00
CV 0.87 0.89
Skewness 1.38 1.20
SE.Skewness 0.02 0.11
Kurtosis 2.44 1.24
N.Valid 22331.00 500.00
Pct.Valid 100.00 100.00
Total scores
bind_rows(
ds_60_random %>% mutate(base = "random") %>% select(-months),
ds_60 %>% mutate(base = "original") %>% select(-months)) %>%
{t.test(score ~ base, var.equal = T,.)}
Two Sample t-test
data: score by base
t = -0.98204, df = 22829, p-value = 0.3261
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-4.551496 1.513030
sample estimates:
mean in group original mean in group random
39.48077 41.00000
bind_rows(
ds_60_random %>% mutate(base = "random") %>% select(-months),
ds_60 %>% mutate(base = "original") %>% select(-months)) %>%
{descr::crosstab(.$sex,.$base, chisq = T, plot = F)}
Cell Contents
|-------------------------|
| Count |
|-------------------------|
==================================
.$base
.$sex original random Total
----------------------------------
1 11291 276 11567
----------------------------------
2 11040 224 11264
----------------------------------
Total 22331 500 22831
==================================
Statistics for All Table Factors
Pearson's Chi-squared test
------------------------------------------------------------
Chi^2 = 4.208733 d.f. = 1 p = 0.0402
Pearson's Chi-squared test with Yates' continuity correction
------------------------------------------------------------
Chi^2 = 4.025226 d.f. = 1 p = 0.0448
Minimum expected frequency: 246.6821
Cronbach’s alpha (Random)
ds_60_random %>% select(starts_with("q")) %>%
mutate_all(., ~case_when(. == "0" ~ 1,
. == "5" ~ 2,
. == "10" ~ 3)) %>% alpha(.)
Reliability analysis
Call: alpha(x = .)
lower alpha upper 95% confidence boundaries
0.85 0.86 0.88
Reliability if an item is dropped:
Item statistics
Non missing response frequency for each item
1 2 3 miss
q_1 0.83 0.15 0.01 0
q_2 0.65 0.22 0.13 0
q_3 0.71 0.25 0.04 0
q_4 0.78 0.16 0.05 0
q_5 0.82 0.13 0.04 0
q_6 0.77 0.13 0.10 0
q_7 0.74 0.20 0.06 0
q_8 0.89 0.08 0.02 0
q_9 0.76 0.15 0.09 0
q_10 0.90 0.09 0.00 0
q_11 0.97 0.02 0.02 0
q_12 0.92 0.04 0.04 0
q_13 0.81 0.17 0.03 0
q_14 0.62 0.34 0.04 0
q_15 0.71 0.26 0.03 0
q_16 0.60 0.22 0.18 0
q_17 0.85 0.13 0.02 0
q_18 0.91 0.07 0.02 0
q_19 0.78 0.18 0.05 0
q_20 0.76 0.19 0.05 0
q_21 0.76 0.18 0.06 0
q_22 0.93 0.03 0.04 0
q_23 0.97 0.02 0.01 0
q_24 0.65 0.29 0.06 0
q_25 0.83 0.11 0.05 0
q_26 0.79 0.15 0.06 0
q_27 0.61 0.31 0.08 0
q_28 0.90 0.09 0.01 0
q_29 0.94 0.05 0.01 0
q_30 0.79 0.15 0.06 0
q_31 0.59 0.35 0.06 0
q_32 0.83 0.11 0.06 0
Done
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQphdXRob3I6ICJMdWlzIEFudW5jaWHDp8OjbyINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0b2M6IHllcw0KICAgIHRvY19mbG9hdDogeWVzDQogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMNCiAgICB0aGVtZTogdW5pdGVkDQogICAgaGlnaGxpZ2h0OiB0ZXh0bWF0ZQ0KZWRpdG9yX29wdGlvbnM6IA0KICBjaHVua19vdXRwdXRfdHlwZTogaW5saW5lDQotLS0NCg0KDQo8ZGl2IGNsYXNzPSJhbGVydCBhbGVydC1zdWNjZXNzIj4NCjx1Pk5vdGU8L3U+IFRoaXMgaXMgYW4gUiBtYXJrZG93biBkb2N1bWVudCBhbmQgcmVmZXJzIHRvIHRoZSA8dT5kYXRhIHByb2Nlc3Npbmc8L3U+IHN0ZXAgb2YgdGhlIG1hbnVzY3JpcHQgdGl0bGVkICJBbiBFeHBsb3JhdG9yeSBBbmFseXNpcyBvZiB0aGUgSW50ZXJuYWwgU3RydWN0dXJlIG9mIFRlc3QgVGhyb3VnaCBhIE11bHRpLW1ldGhvZHMgRXhwbG9yYXRvcnkgQXBwcm9hY2ggb2YgdGhlIEFTUTpTRSBpbiBCcmF6aWwiLCBieSBMdWlzIEFudW5jaWHDp8OjbywgSmFuZSBTcXVpcmVzLCBBamF5IFNpbmdoLCBhbmQgSi4gTGFuZGVpcmEtRmVybmFuZGV6LiBEYXRhIGFuZCBjb2RlcyBhcmUgYXZhaWxhYmUgYXQgaHR0cHM6Ly9vc2YuaW8vejZnd3YvLiAgDQpGZWVsIGZyZWUgdG8gY29udGFjdCBtZSBhdCBsdWlzZmNhQHB1Yy1yaW8uYnIgIA0KTGFzdCB1cGRhdGU6IGByIGZvcm1hdChTeXMudGltZSgpLCAnJWQgJUIsICVZJylgDQpUaGFuayB5b3UuICANCg0KPC9kaXY+IA0KDQpgYGB7cn0NCiNQYWNrYWdlcw0KcGFjbWFuOjpwX2xvYWQodGlkeXZlcnNlLCAjZW5yaXJvbm1lbnQNCiAgICAgICAgICAgICAgIGtuaXRyLA0KICAgICAgICAgICAgICAgcHN5Y2gpICNjbGFzc2ljYWwgdGVzdA0KYGBgDQoNCiMgRGF0YSBwcm9jZXNzaW5nDQoNCg0KDQojIyBwYWNrYWdlIHZlcnNpb25zDQoNCmBgYHtyfQ0KcGFja2FnZVZlcnNpb24oInBzeWNoIikNCnBhY2thZ2VWZXJzaW9uKCJFR0FOZXQiKQ0KYGBgDQoNCg0KIyMgR2V0IHRoZSByYXcgZGF0YQ0KDQpBbHdheXMgbG9hZCB0aGUgbWFpbiBkYXRhc2V0DQoNCmBgYHtyfQ0KbG9hZCh1cmwoImh0dHBzOi8vb3NmLmlvL2U0bTUzL2Rvd25sb2FkIikpDQojbG9hZCgiQzovVXNlcnMvbHVpc2YvRHJvcGJveC9QdWMtUmlvL1Rlc2UgZSBwYXBlcnMvUi9iYXNlIGVtIFIgKHRvZGFzIGFzIGZhaXhhcyBldGFyaWFzKS5SRGF0YSIpDQpgYGANCg0KDQojIyBDaGFuZ2UgdmVjdG9yIGxhYmVscw0KDQpOb3RlOiAiZGFkb3MiIGFuZCAib3JpZ2luYWwiIHZlY3RvcnMgcmVmZXIgdG8gdGhlIHNhbWUgZGF0YXNldC4gQWxsIGl0ZW1zIHRoYXQgc2hvdWxkIGhhdmUgYmVlbiByZXZlcnNlZCB3ZXJlIHJldmVyc2VkIGFscmVhZHkuDQoNCg0KRm9yIHRoaXMgc3BlY2lmaWMgcGFwZXIsIGNoYW5nZSBsYWJlbHMNCg0KYGBge3J9DQpkc182MCA8LSBvcmlnaW5hbF82MA0KZHNfNDggPC0gb3JpZ2luYWxfNDgNCmRzXzM2IDwtIG9yaWdpbmFsXzM2DQpkc18zMCA8LSBvcmlnaW5hbF8zMA0KZHNfMjQgPC0gb3JpZ2luYWxfMjQNCmRzXzE4IDwtIG9yaWdpbmFsXzE4DQpkc18xMiA8LSBvcmlnaW5hbF8xMg0KDQpiYWNrdXBfNjAgPC0gZHNfNjANCmJhY2t1cF80OCA8LSBkc180OA0KYmFja3VwXzM2IDwtIGRzXzM2DQpiYWNrdXBfMzAgPC0gZHNfMzANCmJhY2t1cF8yNCA8LSBkc18yNA0KYmFja3VwXzE4IDwtIGRzXzE4DQpiYWNrdXBfMTIgPC0gZHNfMTINCg0KYGBgDQoNClRoYW4gSSdsbCByZW1vdmUgYWxsIHRoZSBvdGhlciB0aGluZ3MNCg0KYGBge3J9DQp0by5yZW1vdmUgPC0gbHMoKQ0KdG8ucmVtb3ZlIDwtIGModG8ucmVtb3ZlWyFncmVwbChwYXR0ZXJuID0gIl5kc3xeYmFja3VwIiwgdG8ucmVtb3ZlKV0sICJ0by5yZW1vdmUiKQ0Kcm0obGlzdD10by5yZW1vdmUpDQojcm0obGlzdD1zZXRkaWZmKGxzKCksIGMoImRzIikpKQ0KYGBgDQoNCg0KSW4gdGhpcyBwcm9qZWN0LCB3ZSBhcmUgdXNpbmcgdGhlIDIwMTEgZGF0YSBvbmx5Lg0KDQojIyBEYXRhIHNldCA0OCBtb250aHMNCg0KVGhpcyBkcyB3YXMgbm90IHVzZWQgaW4gdGhpcyBtYW51c2NyaXB0LiBIb3dldmVyLCBmdXR1cmUgYW5hbHlzZXMgd2lsbCB1c2UgaXQuDQoNCmBgYHtyfQ0KZHNfNDggPC0gZHNfNDggJT4lIA0KICBzZWxlY3QoLWMoc3VtX2Vtbywgc3VtX3NvYykpICU+JSANCiAgZmlsdGVyKHllYXIgPT0gIjIwMTEiKSAlPiUgDQogIG11dGF0ZShzY29yZSA9IHJvd1N1bXMoc2VsZWN0KC4sIHN0YXJ0c193aXRoKCJxIikpLCBuYS5ybT1UKSkNCmBgYA0KDQoNCmBgYHtyfQ0KZHNfNDggJT4lIGNvdW50KHllYXIpDQpgYGANCg0KDQojIyBEYXRhIHNldCA2MCBtb250aHMNCg0KVGhpcyBtYW51c2NyaXB0IHdhcyB1c2VkIGluIHRoZSBtYW51c2NyaXB0Lg0KDQpgYGB7cn0NCmRzXzYwIDwtIGRzXzYwICU+JSANCiAgc2VsZWN0KC1jKHN1bV9lbW8sIHN1bV9zb2MpKSAlPiUgDQogIGZpbHRlcih5ZWFyID09ICIyMDExIikgJT4lDQogIG11dGF0ZShzY29yZSA9IHJvd1N1bXMoc2VsZWN0KC4sIHN0YXJ0c193aXRoKCJxIikpLCBuYS5ybT1UKSkNCmBgYA0KDQpgYGB7cn0NCmRzXzYwICU+JSBjb3VudCh5ZWFyKQ0KYGBgDQoNCg0KIyMgVmlzdWFsIGNoZWNrOiBPcmlnaW5hbCBkYXRhICg0OCBtb250aHMpDQoNCmBgYHtyfQ0KZHNfNDggJT4lIA0KICBzZWxlY3Qoc3RhcnRzX3dpdGgoInFfIikpICU+JSANCiAgbXV0YXRlX2FsbChmYWN0b3IpICU+JSANCiAgRGF0YUV4cGxvcmVyOjpwbG90X2JhcigpDQpgYGANCg0KIyMgVmlzdWFsIGNoZWNrOiBPcmlnaW5hbCBkYXRhICg2MCBtb250aHMpDQoNCmBgYHtyfQ0KZHNfNjAgJT4lIA0KICBzZWxlY3Qoc3RhcnRzX3dpdGgoInFfIikpICU+JSANCiAgbXV0YXRlX2FsbChmYWN0b3IpICU+JSANCiAgRGF0YUV4cGxvcmVyOjpwbG90X2JhcigpDQpgYGANCg0KIyMgVGFidWxhciBjaGVjayAoNDggbW9udGhzKQ0KDQpgYGB7cn0NCmRzXzQ4ICU+JSANCiAgc2VsZWN0KHN0YXJ0c193aXRoKCJxXyIpKSAlPiUgc3VtbWFyeXRvb2xzOjpmcmVxKCkgJT4lIGthYmxlKCkNCmBgYA0KDQojIyBPcmlnaW5hbCBkYXRhICg2MCBtb250aHMpDQoNCmBgYHtyfQ0KZHNfNjAgJT4lIA0KICBzZWxlY3Qoc3RhcnRzX3dpdGgoInFfIikpICU+JSBzdW1tYXJ5dG9vbHM6OmZyZXEoKSAlPiUga2FibGUoKQ0KYGBgDQoNCiMjIFJlbGlhYmlsaXR5IG9mIHRoZSBvcmlnaW5hbCBkYXRhIDQ4IG1vbnRocw0KDQpgYGB7cn0NCmRzXzQ4ICU+JSANCiAgc2VsZWN0KHN0YXJ0c193aXRoKCJxXyIpKSAlPiUgDQogIGFscGhhKC4pDQpgYGANCg0KIyMgUmVsaWFiaWxpdHkgb2YgdGhlIG9yaWdpbmFsIGRhdGEgNjAgbW9udGhzDQoNCmBgYHtyfQ0KZHNfNjAgJT4lIA0KICBzZWxlY3Qoc3RhcnRzX3dpdGgoInFfIikpICU+JSANCiAgYWxwaGEoLikNCmBgYA0KDQojIyBUYWJsZSAxIDQ4IG1vbnRocyBmcm9tIHRoZSBwdWJsaXNoZWQgcGFwZXIgDQoNClRoaXMgaXMgZnJvbSB3aGVyZSB3ZSBhcmUgZ2V0dGluZyB0aGUgZGF0YSAuLiBDaGVjayBoZXJlOiAxMC4xMTExL2NjaC4xMjY0OQ0KDQpgYGB7cn0NCmRzXzQ4ICU+JSANCiAgc2VsZWN0KHNleCwgc2NvcmUpICU+JSANCiAgZ3JvdXBfYnkoc2V4KSAlPiUgDQogIHN1bW1hcnl0b29sczo6ZGVzY3IoKQ0KYGBgDQoNCg0KIyMgVGFibGUgMSA2MCBtb250aHMgZnJvbSB0aGUgcHVibGlzaGVkIHBhcGVyIA0KDQpUaGlzIGlzIGZyb20gd2hlcmUgd2UgYXJlIGdldHRpbmcgdGhlIGRhdGEgLi4gQ2hlY2sgaGVyZTogMTAuMTExMS9jY2guMTI2NDkNCg0KYGBge3J9DQpkc182MCAlPiUgDQogIHNlbGVjdChzZXgsIHNjb3JlKSAlPiUgDQogIGdyb3VwX2J5KHNleCkgJT4lIA0KICBzdW1tYXJ5dG9vbHM6OmRlc2NyKCkNCmBgYA0KDQoNCg0KDQoNCg0KIyMgUmFuZG9tIDQ4IG1vbnRocw0KDQpBcyBkZXNjcmliZWQsIEknbGwgZ2V0IGEgcmFuZG9tIHNhbXBsZSBmcm9tIHRoZSBtYWluIGRhdGEgKGl0ZW1zLW9ubHkpDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0KZHNfNDhfcmFuZG9tIDwtIGRzXzQ4ICU+JSBzYW1wbGVfbiguLDUwMCkNCmBgYA0KDQoNCiMjIFJhbmRvbSA2MCBtb250aHMNCg0KNjAgbW9udGhzDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTUpDQpkc182MF9yYW5kb20gPC0gZHNfNjAgJT4lIHNhbXBsZV9uKC4sNTAwKQ0KYGBgDQoNCg0KIyMgU2FtcGxpbmcgdmlhIEZhaXJzdWJzZXQNCg0KYGBge3IsIGV2YWwgPSBGQUxTRSB9DQpsaWJyYXJ5KGZhaXJzdWJzZXQpDQpjaGVja19kcyA8LSBmYWlyU3Vic2V0KGRzXzYwLCBzdWJzZXRfc2V0dGluZyA9ICJrcyIsIG1hbnVhbF9OID0gNTAwLCByYW5kb21fc3Vic2V0cyA9IDEwKQ0KZHNfNjBfcmFuZG9tMiA8LSBjaGVja19kcyRiZXN0X3N1YnNldCAlPiUgYXMuZGF0YS5mcmFtZQ0KYGBgDQoNCg0KDQojIyBDaGVjayB0aGUgcmFuZG9tbmVzcyBvZiB0aGUgZGF0YQ0KDQojIyMgRGVzY3JpcHRpdmVzDQoNCmBgYHtyIH0NCmJpbmRfcm93cygNCiAgZHNfNjBfcmFuZG9tICU+JSBtdXRhdGUoYmFzZSA9ICJyYW5kb20iKSAlPiUgc2VsZWN0KC1tb250aHMpLA0KICBkc182MCAlPiUgbXV0YXRlKGJhc2UgPSAib3JpZ2luYWwiKSAlPiUgc2VsZWN0KC1tb250aHMpKSAlPiUNCiAgZ3JvdXBfYnkoYmFzZSkgJT4lIA0KICBzZWxlY3Qoc2NvcmUpICU+JSANCiAgc3VtbWFyeXRvb2xzOjpkZXNjcigpDQoNCmBgYA0KDQojIyMgIFRvdGFsIHNjb3Jlcw0KDQpgYGB7cn0NCmJpbmRfcm93cygNCiAgZHNfNjBfcmFuZG9tICU+JSBtdXRhdGUoYmFzZSA9ICJyYW5kb20iKSAlPiUgc2VsZWN0KC1tb250aHMpLA0KICBkc182MCAlPiUgbXV0YXRlKGJhc2UgPSAib3JpZ2luYWwiKSAlPiUgc2VsZWN0KC1tb250aHMpKSAlPiUgDQogIHt0LnRlc3Qoc2NvcmUgfiBiYXNlLCB2YXIuZXF1YWwgPSBULC4pfQ0KYGBgDQoNCg0KYGBge3J9DQpiaW5kX3Jvd3MoDQogIGRzXzYwX3JhbmRvbSAlPiUgbXV0YXRlKGJhc2UgPSAicmFuZG9tIikgJT4lIHNlbGVjdCgtbW9udGhzKSwNCiAgZHNfNjAgJT4lIG11dGF0ZShiYXNlID0gIm9yaWdpbmFsIikgJT4lIHNlbGVjdCgtbW9udGhzKSkgJT4lIA0KICB7ZGVzY3I6OmNyb3NzdGFiKC4kc2V4LC4kYmFzZSwgY2hpc3EgPSBULCBwbG90ID0gRil9DQoNCmBgYA0KDQojIyBDcm9uYmFjaCdzIGFscGhhIChSYW5kb20pDQoNCmBgYHtyfQ0KZHNfNjBfcmFuZG9tICU+JSBzZWxlY3Qoc3RhcnRzX3dpdGgoInEiKSkgJT4lIA0KICBtdXRhdGVfYWxsKC4sIH5jYXNlX3doZW4oLiA9PSAiMCIgfiAxLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiNSIgfiAyLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgLiA9PSAiMTAiIH4gMykpICU+JSBhbHBoYSguKQ0KYGBgDQoNCiMjIERvbmUNCg0K