df_fundraising <- readRDS("fundraising.rds")
head(df_fundraising)
## # A tibble: 6 x 21
##   zipconvert2 zipconvert3 zipconvert4 zipconvert5 homeowner num_child income
##   <fct>       <fct>       <fct>       <fct>       <fct>         <dbl>  <dbl>
## 1 Yes         No          No          No          Yes               1      1
## 2 No          No          No          Yes         No                2      5
## 3 No          No          No          Yes         Yes               1      3
## 4 No          Yes         No          No          Yes               1      4
## 5 No          Yes         No          No          Yes               1      4
## 6 No          No          No          Yes         Yes               1      4
## # ... with 14 more variables: female <fct>, wealth <dbl>, home_value <dbl>,
## #   med_fam_inc <dbl>, avg_fam_inc <dbl>, pct_lt15k <dbl>, num_prom <dbl>,
## #   lifetime_gifts <dbl>, largest_gift <dbl>, last_gift <dbl>,
## #   months_since_donate <dbl>, time_lag <dbl>, avg_gift <dbl>, target <fct>
#understanding Donor and non-donors'
#Convert the data to a matrix and a vector for the response
set.seed(12)
x = model.matrix(target~.,df_fundraising)[,-1]
y = as.factor(df_fundraising$target)

#split the data into training and validation sets(70- 30 split)
fundtrain = sample(1:nrow(x), nrow(x)/1.43) #Row indexes
fundtest = (-fundtrain)#Row indexes for test set
ytest = y[fundtest]


table(df_fundraising[fundtrain,]$target)
## 
##    Donor No Donor 
##     1038     1059
table(df_fundraising[fundtest,]$target)
## 
##    Donor No Donor 
##      461      442
#selecting lambda using 10-fold cross validation
set.seed(12)
grid=10^seq(10,-2,length=100)

lasso_cv <- cv.glmnet(x[fundtrain,],y[fundtrain],alpha=1,lambda = grid,standized = TRUE,tresh=1e-12,family = "binomial" )
plot(lasso_cv)

lasso_best=lasso_cv$lambda.min

#predicting the MSE using the best lambda
lasso_pred=predict(lasso_cv,s=lasso_best,newx=x[fundtest,])
lasso_MSE <- mean((lasso_pred -ytest)^2)
## Warning in Ops.factor(lasso_pred, ytest): '-' not meaningful for factors
lasso_MSE
## [1] NA
#getting the coefficients which are non zero
lasso_best=glmnet(x[fundtrain,],y[fundtrain],alpha=1,lambda=lasso_cv$lambda.min,family = "binomial")
lasso_best=glmnet(x,y,alpha=1,lambda=lasso_cv$lambda.min,family = "binomial")
lasso_coef=predict(lasso_best,type="coefficients",s=lasso_cv$lambda.min)[1:21,]
length(lasso_coef[lasso_coef!=0])
## [1] 7
# length(lasso_coef[lasso_coef==0])
lasso_coef
##         (Intercept)      zipconvert2Yes       zipconvert3No      zipconvert4Yes 
##        -1.588867746         0.000000000         0.000000000         0.000000000 
##      zipconvert5Yes         homeownerNo           num_child              income 
##         0.000000000         0.000000000         0.107080722        -0.029404872 
##            femaleNo              wealth          home_value         med_fam_inc 
##         0.000000000         0.000000000         0.000000000         0.000000000 
##         avg_fam_inc           pct_lt15k            num_prom      lifetime_gifts 
##         0.000000000         0.000000000        -0.001033417         0.000000000 
##        largest_gift           last_gift months_since_donate            time_lag 
##         0.000000000         0.005658545         0.049596561         0.000000000 
##            avg_gift 
##         0.001897456
target_preds <- predict(lasso_best,type="response",s=lasso_cv$lambda.min,newx=x[fundtest,])

predicted.target <- ifelse(target_preds > 0.5, "Donor", "No Donor")

mean(mean(predicted.target == y[fundtest]))
## [1] 0.4496124
#Split data into train and test 

# Recode factor levels by name
levels(df_fundraising$target) <- list("Donor"  = "Yes", 'No Donor' = "No")
df_fundraising$target <- recode_factor(df_fundraising$target, Donor = "Yes", 
                                                              'No Donor' = "No")

index <- createDataPartition(df_fundraising$target, p=0.75, list=FALSE)

trainSet <- df_fundraising[index,]
## Warning: The `i` argument of ``[`()` can't be a matrix as of tibble 3.0.0.
## Convert to a vector.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
testSet <- df_fundraising[-index,]

#Defining the training controls for multiple models
fitControl <- trainControl(
                            method = "cv",
                            number = 10,
                            savePredictions = 'final',
                            classProbs = TRUE
                          )

#Defining the predictors and outcome using the LASSO predictors

predictors<-c("num_child","income","num_prom","last_gift","months_since_donate","avg_gift")
# outcomeName<-c('target')

str(trainSet)
## tibble [2,251 x 21] (S3: tbl_df/tbl/data.frame)
##  $ zipconvert2        : Factor w/ 2 levels "No","Yes": 2 1 1 1 2 1 2 1 1 1 ...
##  $ zipconvert3        : Factor w/ 2 levels "Yes","No": 2 2 1 1 2 2 2 2 2 2 ...
##  $ zipconvert4        : Factor w/ 2 levels "No","Yes": 1 1 1 1 1 2 1 1 2 1 ...
##  $ zipconvert5        : Factor w/ 2 levels "No","Yes": 1 2 1 1 1 1 1 2 1 2 ...
##  $ homeowner          : Factor w/ 2 levels "Yes","No": 1 1 1 1 1 1 2 2 1 1 ...
##  $ num_child          : num [1:2251] 1 1 1 1 1 1 1 1 1 1 ...
##  $ income             : num [1:2251] 1 3 4 4 4 4 5 2 3 4 ...
##  $ female             : Factor w/ 2 levels "Yes","No": 2 2 2 1 1 1 2 2 1 2 ...
##  $ wealth             : num [1:2251] 7 4 8 8 8 5 8 8 5 6 ...
##  $ home_value         : num [1:2251] 698 1471 547 482 1438 ...
##  $ med_fam_inc        : num [1:2251] 422 484 386 242 458 434 399 337 434 354 ...
##  $ avg_fam_inc        : num [1:2251] 463 546 432 275 533 472 458 402 500 393 ...
##  $ pct_lt15k          : num [1:2251] 4 4 7 28 8 6 8 5 3 13 ...
##  $ num_prom           : num [1:2251] 46 94 20 38 21 59 25 27 98 60 ...
##  $ lifetime_gifts     : num [1:2251] 94 177 23 73 26 84 40 50 126 100 ...
##  $ largest_gift       : num [1:2251] 12 10 11 10 16 5 10 20 7 10 ...
##  $ last_gift          : num [1:2251] 12 8 11 10 16 3 10 20 7 10 ...
##  $ months_since_donate: num [1:2251] 34 30 30 31 30 30 32 37 33 30 ...
##  $ time_lag           : num [1:2251] 6 3 6 3 6 12 2 7 1 10 ...
##  $ avg_gift           : num [1:2251] 9.4 7.08 7.67 7.3 13 ...
##  $ target             : Factor w/ 2 levels "Yes","No": 1 2 2 1 2 2 1 2 1 1 ...
#Training the random forest model
model_rf<-train(trainSet[,predictors],trainSet$target,method='rf',trControl=fitControl,tuneLength=3)
## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.
#Predicting using random forest model
testSet$pred_rf<-predict(object = model_rf,testSet[,predictors])

#Checking the accuracy of the random forest model
confusionMatrix(testSet$target,testSet$pred_rf)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes  No
##        Yes 202 172
##        No  169 206
##                                           
##                Accuracy : 0.5447          
##                  95% CI : (0.5083, 0.5808)
##     No Information Rate : 0.5047          
##     P-Value [Acc > NIR] : 0.0155          
##                                           
##                   Kappa : 0.0894          
##                                           
##  Mcnemar's Test P-Value : 0.9138          
##                                           
##             Sensitivity : 0.5445          
##             Specificity : 0.5450          
##          Pos Pred Value : 0.5401          
##          Neg Pred Value : 0.5493          
##              Prevalence : 0.4953          
##          Detection Rate : 0.2697          
##    Detection Prevalence : 0.4993          
##       Balanced Accuracy : 0.5447          
##                                           
##        'Positive' Class : Yes             
## 
#Training the KNN model
model_knn<-train(trainSet[,predictors],trainSet$target,method='knn',trControl=fitControl,tuneLength=5)
## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.
#Predicting using KNN model
testSet$pred_knn<-predict(object = model_knn,testSet[,predictors])

#Checking the accuracy 
confusionMatrix(testSet$target,testSet$pred_knn)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes  No
##        Yes 201 173
##        No  168 207
##                                           
##                Accuracy : 0.5447          
##                  95% CI : (0.5083, 0.5808)
##     No Information Rate : 0.5073          
##     P-Value [Acc > NIR] : 0.02216         
##                                           
##                   Kappa : 0.0894          
##                                           
##  Mcnemar's Test P-Value : 0.82851         
##                                           
##             Sensitivity : 0.5447          
##             Specificity : 0.5447          
##          Pos Pred Value : 0.5374          
##          Neg Pred Value : 0.5520          
##              Prevalence : 0.4927          
##          Detection Rate : 0.2684          
##    Detection Prevalence : 0.4993          
##       Balanced Accuracy : 0.5447          
##                                           
##        'Positive' Class : Yes             
## 
#Training the logistic regression model
model_lr<-train(trainSet[,predictors],trainSet$target,method='glm',trControl=fitControl,tuneLength=3)
## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.
#Predicting using logistic regression model
testSet$pred_lr<-predict(object = model_lr,testSet[,predictors])

#Checking the accuracy 
confusionMatrix(testSet$target,testSet$pred_lr)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes  No
##        Yes 216 158
##        No  177 198
##                                           
##                Accuracy : 0.5527          
##                  95% CI : (0.5163, 0.5887)
##     No Information Rate : 0.5247          
##     P-Value [Acc > NIR] : 0.06669         
##                                           
##                   Kappa : 0.1055          
##                                           
##  Mcnemar's Test P-Value : 0.32539         
##                                           
##             Sensitivity : 0.5496          
##             Specificity : 0.5562          
##          Pos Pred Value : 0.5775          
##          Neg Pred Value : 0.5280          
##              Prevalence : 0.5247          
##          Detection Rate : 0.2884          
##    Detection Prevalence : 0.4993          
##       Balanced Accuracy : 0.5529          
##                                           
##        'Positive' Class : Yes             
## 
#Training the GBM
model_gbm<-train(trainSet[,predictors],trainSet$target,method='gbm',trControl=fitControl,tuneLength=3)
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3843             nan     0.1000    0.0003
##      2        1.3810             nan     0.1000    0.0007
##      3        1.3794             nan     0.1000    0.0001
##      4        1.3772             nan     0.1000    0.0005
##      5        1.3750             nan     0.1000    0.0010
##      6        1.3730             nan     0.1000    0.0005
##      7        1.3714             nan     0.1000    0.0001
##      8        1.3703             nan     0.1000    0.0001
##      9        1.3690             nan     0.1000    0.0002
##     10        1.3678             nan     0.1000    0.0000
##     20        1.3567             nan     0.1000    0.0003
##     40        1.3455             nan     0.1000   -0.0006
##     60        1.3394             nan     0.1000   -0.0002
##     80        1.3350             nan     0.1000   -0.0006
##    100        1.3310             nan     0.1000   -0.0003
##    120        1.3281             nan     0.1000   -0.0001
##    140        1.3259             nan     0.1000   -0.0002
##    150        1.3246             nan     0.1000   -0.0003
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3826             nan     0.1000    0.0011
##      2        1.3782             nan     0.1000    0.0017
##      3        1.3747             nan     0.1000    0.0012
##      4        1.3716             nan     0.1000    0.0012
##      5        1.3683             nan     0.1000    0.0010
##      6        1.3655             nan     0.1000    0.0005
##      7        1.3631             nan     0.1000   -0.0004
##      8        1.3610             nan     0.1000   -0.0001
##      9        1.3596             nan     0.1000   -0.0001
##     10        1.3576             nan     0.1000    0.0000
##     20        1.3450             nan     0.1000   -0.0008
##     40        1.3303             nan     0.1000   -0.0002
##     60        1.3195             nan     0.1000   -0.0003
##     80        1.3096             nan     0.1000   -0.0006
##    100        1.3022             nan     0.1000   -0.0006
##    120        1.2950             nan     0.1000   -0.0006
##    140        1.2881             nan     0.1000   -0.0006
##    150        1.2859             nan     0.1000   -0.0008
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3812             nan     0.1000    0.0017
##      2        1.3781             nan     0.1000    0.0008
##      3        1.3723             nan     0.1000    0.0020
##      4        1.3686             nan     0.1000    0.0009
##      5        1.3658             nan     0.1000   -0.0004
##      6        1.3627             nan     0.1000    0.0011
##      7        1.3594             nan     0.1000    0.0006
##      8        1.3565             nan     0.1000    0.0006
##      9        1.3540             nan     0.1000    0.0003
##     10        1.3516             nan     0.1000    0.0001
##     20        1.3356             nan     0.1000   -0.0003
##     40        1.3121             nan     0.1000   -0.0004
##     60        1.2988             nan     0.1000   -0.0001
##     80        1.2856             nan     0.1000   -0.0008
##    100        1.2738             nan     0.1000   -0.0004
##    120        1.2643             nan     0.1000   -0.0006
##    140        1.2532             nan     0.1000   -0.0002
##    150        1.2484             nan     0.1000   -0.0010
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3835             nan     0.1000    0.0012
##      2        1.3804             nan     0.1000    0.0011
##      3        1.3784             nan     0.1000    0.0005
##      4        1.3761             nan     0.1000    0.0002
##      5        1.3734             nan     0.1000    0.0009
##      6        1.3716             nan     0.1000    0.0005
##      7        1.3693             nan     0.1000    0.0007
##      8        1.3673             nan     0.1000    0.0009
##      9        1.3655             nan     0.1000    0.0006
##     10        1.3640             nan     0.1000    0.0003
##     20        1.3541             nan     0.1000    0.0000
##     40        1.3414             nan     0.1000   -0.0002
##     60        1.3339             nan     0.1000   -0.0003
##     80        1.3295             nan     0.1000   -0.0002
##    100        1.3264             nan     0.1000   -0.0003
##    120        1.3247             nan     0.1000   -0.0003
##    140        1.3223             nan     0.1000   -0.0004
##    150        1.3212             nan     0.1000   -0.0003
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3810             nan     0.1000    0.0023
##      2        1.3774             nan     0.1000    0.0013
##      3        1.3737             nan     0.1000    0.0009
##      4        1.3704             nan     0.1000    0.0009
##      5        1.3671             nan     0.1000    0.0007
##      6        1.3648             nan     0.1000    0.0004
##      7        1.3622             nan     0.1000    0.0008
##      8        1.3600             nan     0.1000    0.0007
##      9        1.3582             nan     0.1000    0.0002
##     10        1.3569             nan     0.1000   -0.0005
##     20        1.3417             nan     0.1000    0.0003
##     40        1.3257             nan     0.1000   -0.0003
##     60        1.3157             nan     0.1000   -0.0008
##     80        1.3085             nan     0.1000   -0.0006
##    100        1.3038             nan     0.1000   -0.0004
##    120        1.3005             nan     0.1000   -0.0008
##    140        1.2933             nan     0.1000   -0.0006
##    150        1.2912             nan     0.1000   -0.0004
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3800             nan     0.1000    0.0024
##      2        1.3733             nan     0.1000    0.0016
##      3        1.3680             nan     0.1000    0.0018
##      4        1.3642             nan     0.1000    0.0012
##      5        1.3609             nan     0.1000   -0.0000
##      6        1.3576             nan     0.1000    0.0008
##      7        1.3546             nan     0.1000    0.0012
##      8        1.3517             nan     0.1000   -0.0000
##      9        1.3493             nan     0.1000   -0.0003
##     10        1.3470             nan     0.1000    0.0007
##     20        1.3307             nan     0.1000   -0.0005
##     40        1.3117             nan     0.1000   -0.0005
##     60        1.2989             nan     0.1000   -0.0009
##     80        1.2876             nan     0.1000   -0.0004
##    100        1.2754             nan     0.1000   -0.0011
##    120        1.2658             nan     0.1000   -0.0009
##    140        1.2567             nan     0.1000   -0.0009
##    150        1.2524             nan     0.1000   -0.0010
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3840             nan     0.1000    0.0008
##      2        1.3821             nan     0.1000    0.0007
##      3        1.3805             nan     0.1000    0.0002
##      4        1.3778             nan     0.1000    0.0007
##      5        1.3755             nan     0.1000    0.0001
##      6        1.3739             nan     0.1000    0.0003
##      7        1.3716             nan     0.1000    0.0003
##      8        1.3704             nan     0.1000    0.0002
##      9        1.3688             nan     0.1000    0.0003
##     10        1.3676             nan     0.1000   -0.0003
##     20        1.3582             nan     0.1000   -0.0000
##     40        1.3475             nan     0.1000   -0.0001
##     60        1.3412             nan     0.1000   -0.0005
##     80        1.3377             nan     0.1000   -0.0000
##    100        1.3345             nan     0.1000   -0.0009
##    120        1.3315             nan     0.1000   -0.0004
##    140        1.3299             nan     0.1000   -0.0010
##    150        1.3291             nan     0.1000   -0.0004
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3828             nan     0.1000    0.0016
##      2        1.3793             nan     0.1000    0.0013
##      3        1.3761             nan     0.1000    0.0005
##      4        1.3728             nan     0.1000    0.0014
##      5        1.3711             nan     0.1000    0.0002
##      6        1.3686             nan     0.1000    0.0005
##      7        1.3661             nan     0.1000    0.0009
##      8        1.3638             nan     0.1000    0.0002
##      9        1.3613             nan     0.1000    0.0009
##     10        1.3592             nan     0.1000   -0.0001
##     20        1.3457             nan     0.1000   -0.0003
##     40        1.3305             nan     0.1000   -0.0004
##     60        1.3199             nan     0.1000   -0.0000
##     80        1.3096             nan     0.1000   -0.0008
##    100        1.3036             nan     0.1000   -0.0003
##    120        1.2959             nan     0.1000   -0.0008
##    140        1.2905             nan     0.1000   -0.0008
##    150        1.2866             nan     0.1000   -0.0002
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3803             nan     0.1000    0.0019
##      2        1.3754             nan     0.1000    0.0007
##      3        1.3716             nan     0.1000    0.0004
##      4        1.3686             nan     0.1000    0.0000
##      5        1.3652             nan     0.1000    0.0012
##      6        1.3623             nan     0.1000    0.0009
##      7        1.3596             nan     0.1000    0.0004
##      8        1.3570             nan     0.1000   -0.0001
##      9        1.3545             nan     0.1000    0.0006
##     10        1.3526             nan     0.1000   -0.0003
##     20        1.3359             nan     0.1000   -0.0000
##     40        1.3185             nan     0.1000   -0.0007
##     60        1.3024             nan     0.1000   -0.0011
##     80        1.2898             nan     0.1000   -0.0009
##    100        1.2787             nan     0.1000   -0.0008
##    120        1.2665             nan     0.1000   -0.0009
##    140        1.2555             nan     0.1000   -0.0003
##    150        1.2514             nan     0.1000   -0.0003
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3828             nan     0.1000    0.0013
##      2        1.3799             nan     0.1000    0.0009
##      3        1.3769             nan     0.1000    0.0008
##      4        1.3732             nan     0.1000    0.0005
##      5        1.3713             nan     0.1000    0.0007
##      6        1.3692             nan     0.1000    0.0004
##      7        1.3675             nan     0.1000    0.0002
##      8        1.3660             nan     0.1000    0.0006
##      9        1.3643             nan     0.1000    0.0006
##     10        1.3628             nan     0.1000    0.0004
##     20        1.3524             nan     0.1000    0.0000
##     40        1.3392             nan     0.1000   -0.0001
##     60        1.3323             nan     0.1000    0.0001
##     80        1.3275             nan     0.1000   -0.0001
##    100        1.3242             nan     0.1000   -0.0003
##    120        1.3214             nan     0.1000   -0.0001
##    140        1.3191             nan     0.1000   -0.0001
##    150        1.3181             nan     0.1000   -0.0002
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3805             nan     0.1000    0.0021
##      2        1.3765             nan     0.1000    0.0006
##      3        1.3730             nan     0.1000    0.0010
##      4        1.3693             nan     0.1000    0.0015
##      5        1.3657             nan     0.1000    0.0011
##      6        1.3632             nan     0.1000    0.0002
##      7        1.3608             nan     0.1000    0.0006
##      8        1.3581             nan     0.1000    0.0007
##      9        1.3557             nan     0.1000    0.0007
##     10        1.3535             nan     0.1000    0.0004
##     20        1.3408             nan     0.1000    0.0001
##     40        1.3227             nan     0.1000   -0.0002
##     60        1.3122             nan     0.1000   -0.0001
##     80        1.3054             nan     0.1000   -0.0003
##    100        1.2999             nan     0.1000   -0.0004
##    120        1.2932             nan     0.1000   -0.0004
##    140        1.2864             nan     0.1000   -0.0005
##    150        1.2843             nan     0.1000   -0.0005
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3803             nan     0.1000    0.0020
##      2        1.3745             nan     0.1000    0.0020
##      3        1.3683             nan     0.1000    0.0015
##      4        1.3646             nan     0.1000    0.0011
##      5        1.3601             nan     0.1000    0.0010
##      6        1.3568             nan     0.1000    0.0011
##      7        1.3536             nan     0.1000    0.0003
##      8        1.3514             nan     0.1000   -0.0003
##      9        1.3490             nan     0.1000    0.0001
##     10        1.3461             nan     0.1000    0.0005
##     20        1.3301             nan     0.1000   -0.0003
##     40        1.3108             nan     0.1000   -0.0004
##     60        1.2954             nan     0.1000   -0.0009
##     80        1.2843             nan     0.1000   -0.0007
##    100        1.2758             nan     0.1000   -0.0007
##    120        1.2669             nan     0.1000   -0.0008
##    140        1.2578             nan     0.1000   -0.0003
##    150        1.2534             nan     0.1000   -0.0010
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3833             nan     0.1000    0.0009
##      2        1.3809             nan     0.1000    0.0010
##      3        1.3788             nan     0.1000    0.0007
##      4        1.3768             nan     0.1000    0.0006
##      5        1.3749             nan     0.1000    0.0001
##      6        1.3728             nan     0.1000    0.0007
##      7        1.3712             nan     0.1000    0.0006
##      8        1.3690             nan     0.1000    0.0005
##      9        1.3679             nan     0.1000    0.0002
##     10        1.3664             nan     0.1000    0.0005
##     20        1.3562             nan     0.1000    0.0002
##     40        1.3441             nan     0.1000   -0.0004
##     60        1.3375             nan     0.1000   -0.0002
##     80        1.3322             nan     0.1000   -0.0004
##    100        1.3290             nan     0.1000   -0.0003
##    120        1.3264             nan     0.1000   -0.0002
##    140        1.3239             nan     0.1000   -0.0004
##    150        1.3232             nan     0.1000   -0.0004
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3829             nan     0.1000    0.0004
##      2        1.3785             nan     0.1000    0.0014
##      3        1.3746             nan     0.1000    0.0017
##      4        1.3717             nan     0.1000    0.0010
##      5        1.3688             nan     0.1000    0.0006
##      6        1.3657             nan     0.1000    0.0006
##      7        1.3630             nan     0.1000    0.0006
##      8        1.3613             nan     0.1000   -0.0001
##      9        1.3586             nan     0.1000    0.0006
##     10        1.3572             nan     0.1000   -0.0008
##     20        1.3409             nan     0.1000   -0.0000
##     40        1.3276             nan     0.1000   -0.0007
##     60        1.3160             nan     0.1000    0.0001
##     80        1.3068             nan     0.1000   -0.0008
##    100        1.2998             nan     0.1000   -0.0003
##    120        1.2923             nan     0.1000   -0.0002
##    140        1.2859             nan     0.1000   -0.0007
##    150        1.2823             nan     0.1000   -0.0006
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3812             nan     0.1000    0.0015
##      2        1.3753             nan     0.1000    0.0017
##      3        1.3713             nan     0.1000    0.0008
##      4        1.3677             nan     0.1000    0.0006
##      5        1.3644             nan     0.1000    0.0009
##      6        1.3608             nan     0.1000    0.0009
##      7        1.3581             nan     0.1000    0.0009
##      8        1.3551             nan     0.1000   -0.0001
##      9        1.3528             nan     0.1000   -0.0004
##     10        1.3499             nan     0.1000    0.0001
##     20        1.3322             nan     0.1000   -0.0009
##     40        1.3112             nan     0.1000   -0.0005
##     60        1.2976             nan     0.1000   -0.0009
##     80        1.2847             nan     0.1000   -0.0005
##    100        1.2724             nan     0.1000   -0.0007
##    120        1.2651             nan     0.1000   -0.0010
##    140        1.2567             nan     0.1000   -0.0011
##    150        1.2504             nan     0.1000   -0.0004
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3835             nan     0.1000    0.0008
##      2        1.3809             nan     0.1000    0.0005
##      3        1.3788             nan     0.1000    0.0007
##      4        1.3762             nan     0.1000    0.0009
##      5        1.3745             nan     0.1000    0.0007
##      6        1.3726             nan     0.1000    0.0006
##      7        1.3707             nan     0.1000    0.0003
##      8        1.3694             nan     0.1000    0.0004
##      9        1.3682             nan     0.1000    0.0001
##     10        1.3667             nan     0.1000    0.0002
##     20        1.3552             nan     0.1000   -0.0002
##     40        1.3427             nan     0.1000   -0.0005
##     60        1.3353             nan     0.1000   -0.0003
##     80        1.3315             nan     0.1000   -0.0005
##    100        1.3282             nan     0.1000   -0.0002
##    120        1.3268             nan     0.1000   -0.0003
##    140        1.3246             nan     0.1000   -0.0002
##    150        1.3240             nan     0.1000   -0.0008
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3827             nan     0.1000    0.0012
##      2        1.3781             nan     0.1000    0.0013
##      3        1.3751             nan     0.1000    0.0012
##      4        1.3717             nan     0.1000    0.0009
##      5        1.3680             nan     0.1000    0.0009
##      6        1.3658             nan     0.1000    0.0001
##      7        1.3625             nan     0.1000    0.0002
##      8        1.3604             nan     0.1000    0.0002
##      9        1.3579             nan     0.1000    0.0006
##     10        1.3562             nan     0.1000   -0.0004
##     20        1.3438             nan     0.1000   -0.0001
##     40        1.3287             nan     0.1000   -0.0008
##     60        1.3196             nan     0.1000   -0.0004
##     80        1.3123             nan     0.1000   -0.0006
##    100        1.3059             nan     0.1000   -0.0005
##    120        1.2996             nan     0.1000   -0.0008
##    140        1.2951             nan     0.1000   -0.0007
##    150        1.2925             nan     0.1000   -0.0007
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3813             nan     0.1000    0.0010
##      2        1.3763             nan     0.1000    0.0022
##      3        1.3730             nan     0.1000    0.0007
##      4        1.3698             nan     0.1000    0.0004
##      5        1.3657             nan     0.1000    0.0011
##      6        1.3621             nan     0.1000    0.0009
##      7        1.3596             nan     0.1000    0.0008
##      8        1.3574             nan     0.1000   -0.0001
##      9        1.3550             nan     0.1000    0.0003
##     10        1.3528             nan     0.1000    0.0001
##     20        1.3348             nan     0.1000   -0.0006
##     40        1.3144             nan     0.1000   -0.0008
##     60        1.3036             nan     0.1000   -0.0001
##     80        1.2924             nan     0.1000   -0.0005
##    100        1.2809             nan     0.1000   -0.0011
##    120        1.2716             nan     0.1000   -0.0005
##    140        1.2607             nan     0.1000   -0.0009
##    150        1.2569             nan     0.1000   -0.0007
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3834             nan     0.1000    0.0006
##      2        1.3805             nan     0.1000    0.0014
##      3        1.3782             nan     0.1000    0.0009
##      4        1.3761             nan     0.1000    0.0005
##      5        1.3736             nan     0.1000    0.0008
##      6        1.3710             nan     0.1000    0.0009
##      7        1.3689             nan     0.1000    0.0007
##      8        1.3673             nan     0.1000    0.0004
##      9        1.3659             nan     0.1000    0.0004
##     10        1.3649             nan     0.1000   -0.0001
##     20        1.3538             nan     0.1000   -0.0003
##     40        1.3411             nan     0.1000   -0.0001
##     60        1.3338             nan     0.1000   -0.0000
##     80        1.3293             nan     0.1000   -0.0003
##    100        1.3259             nan     0.1000   -0.0003
##    120        1.3234             nan     0.1000   -0.0005
##    140        1.3212             nan     0.1000   -0.0004
##    150        1.3199             nan     0.1000   -0.0002
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3814             nan     0.1000    0.0012
##      2        1.3772             nan     0.1000    0.0020
##      3        1.3742             nan     0.1000    0.0007
##      4        1.3702             nan     0.1000    0.0011
##      5        1.3662             nan     0.1000    0.0015
##      6        1.3644             nan     0.1000   -0.0001
##      7        1.3611             nan     0.1000    0.0005
##      8        1.3586             nan     0.1000    0.0006
##      9        1.3565             nan     0.1000    0.0006
##     10        1.3542             nan     0.1000    0.0005
##     20        1.3407             nan     0.1000   -0.0005
##     40        1.3238             nan     0.1000   -0.0000
##     60        1.3135             nan     0.1000   -0.0008
##     80        1.3061             nan     0.1000   -0.0008
##    100        1.2970             nan     0.1000   -0.0004
##    120        1.2906             nan     0.1000   -0.0004
##    140        1.2849             nan     0.1000   -0.0005
##    150        1.2828             nan     0.1000   -0.0004
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3794             nan     0.1000    0.0021
##      2        1.3744             nan     0.1000    0.0015
##      3        1.3693             nan     0.1000    0.0017
##      4        1.3647             nan     0.1000    0.0010
##      5        1.3615             nan     0.1000    0.0008
##      6        1.3588             nan     0.1000    0.0005
##      7        1.3554             nan     0.1000    0.0006
##      8        1.3526             nan     0.1000    0.0005
##      9        1.3495             nan     0.1000    0.0003
##     10        1.3475             nan     0.1000   -0.0002
##     20        1.3329             nan     0.1000   -0.0003
##     40        1.3116             nan     0.1000   -0.0008
##     60        1.2953             nan     0.1000   -0.0007
##     80        1.2837             nan     0.1000   -0.0001
##    100        1.2725             nan     0.1000   -0.0004
##    120        1.2619             nan     0.1000   -0.0013
##    140        1.2543             nan     0.1000   -0.0006
##    150        1.2493             nan     0.1000   -0.0012
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3833             nan     0.1000    0.0010
##      2        1.3810             nan     0.1000    0.0011
##      3        1.3783             nan     0.1000    0.0007
##      4        1.3759             nan     0.1000    0.0009
##      5        1.3735             nan     0.1000    0.0011
##      6        1.3713             nan     0.1000    0.0007
##      7        1.3698             nan     0.1000    0.0004
##      8        1.3676             nan     0.1000    0.0006
##      9        1.3665             nan     0.1000   -0.0002
##     10        1.3647             nan     0.1000    0.0006
##     20        1.3521             nan     0.1000    0.0003
##     40        1.3399             nan     0.1000    0.0001
##     60        1.3337             nan     0.1000   -0.0004
##     80        1.3301             nan     0.1000   -0.0002
##    100        1.3272             nan     0.1000   -0.0001
##    120        1.3249             nan     0.1000   -0.0002
##    140        1.3227             nan     0.1000   -0.0004
##    150        1.3214             nan     0.1000   -0.0002
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3819             nan     0.1000    0.0011
##      2        1.3770             nan     0.1000    0.0017
##      3        1.3732             nan     0.1000    0.0007
##      4        1.3688             nan     0.1000    0.0008
##      5        1.3652             nan     0.1000    0.0009
##      6        1.3628             nan     0.1000    0.0006
##      7        1.3615             nan     0.1000    0.0000
##      8        1.3592             nan     0.1000    0.0008
##      9        1.3572             nan     0.1000    0.0005
##     10        1.3559             nan     0.1000   -0.0000
##     20        1.3407             nan     0.1000   -0.0004
##     40        1.3261             nan     0.1000   -0.0001
##     60        1.3158             nan     0.1000   -0.0005
##     80        1.3072             nan     0.1000   -0.0003
##    100        1.3001             nan     0.1000   -0.0009
##    120        1.2916             nan     0.1000   -0.0004
##    140        1.2858             nan     0.1000   -0.0008
##    150        1.2828             nan     0.1000   -0.0006
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3817             nan     0.1000    0.0018
##      2        1.3757             nan     0.1000    0.0028
##      3        1.3719             nan     0.1000    0.0016
##      4        1.3673             nan     0.1000    0.0009
##      5        1.3640             nan     0.1000    0.0006
##      6        1.3601             nan     0.1000    0.0007
##      7        1.3571             nan     0.1000    0.0005
##      8        1.3544             nan     0.1000    0.0011
##      9        1.3519             nan     0.1000   -0.0001
##     10        1.3500             nan     0.1000   -0.0003
##     20        1.3320             nan     0.1000   -0.0000
##     40        1.3129             nan     0.1000   -0.0001
##     60        1.3001             nan     0.1000   -0.0004
##     80        1.2877             nan     0.1000   -0.0002
##    100        1.2749             nan     0.1000   -0.0003
##    120        1.2638             nan     0.1000   -0.0003
##    140        1.2541             nan     0.1000   -0.0008
##    150        1.2491             nan     0.1000   -0.0011
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3834             nan     0.1000    0.0010
##      2        1.3811             nan     0.1000    0.0005
##      3        1.3778             nan     0.1000    0.0010
##      4        1.3753             nan     0.1000    0.0009
##      5        1.3733             nan     0.1000    0.0009
##      6        1.3709             nan     0.1000    0.0007
##      7        1.3686             nan     0.1000   -0.0001
##      8        1.3667             nan     0.1000    0.0004
##      9        1.3654             nan     0.1000    0.0002
##     10        1.3642             nan     0.1000    0.0001
##     20        1.3524             nan     0.1000   -0.0003
##     40        1.3408             nan     0.1000   -0.0005
##     60        1.3335             nan     0.1000   -0.0004
##     80        1.3288             nan     0.1000   -0.0005
##    100        1.3257             nan     0.1000   -0.0003
##    120        1.3225             nan     0.1000   -0.0003
##    140        1.3204             nan     0.1000   -0.0004
##    150        1.3193             nan     0.1000   -0.0003
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3813             nan     0.1000    0.0011
##      2        1.3762             nan     0.1000    0.0014
##      3        1.3716             nan     0.1000    0.0009
##      4        1.3686             nan     0.1000    0.0008
##      5        1.3648             nan     0.1000    0.0010
##      6        1.3627             nan     0.1000    0.0003
##      7        1.3612             nan     0.1000    0.0002
##      8        1.3595             nan     0.1000    0.0004
##      9        1.3569             nan     0.1000    0.0009
##     10        1.3551             nan     0.1000    0.0005
##     20        1.3402             nan     0.1000    0.0001
##     40        1.3248             nan     0.1000   -0.0003
##     60        1.3136             nan     0.1000   -0.0008
##     80        1.3068             nan     0.1000   -0.0000
##    100        1.3008             nan     0.1000   -0.0002
##    120        1.2929             nan     0.1000   -0.0007
##    140        1.2862             nan     0.1000   -0.0005
##    150        1.2836             nan     0.1000   -0.0006
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3821             nan     0.1000    0.0009
##      2        1.3766             nan     0.1000    0.0020
##      3        1.3720             nan     0.1000    0.0011
##      4        1.3679             nan     0.1000    0.0009
##      5        1.3639             nan     0.1000    0.0006
##      6        1.3601             nan     0.1000    0.0010
##      7        1.3579             nan     0.1000    0.0004
##      8        1.3556             nan     0.1000    0.0002
##      9        1.3532             nan     0.1000   -0.0003
##     10        1.3514             nan     0.1000   -0.0004
##     20        1.3318             nan     0.1000   -0.0003
##     40        1.3127             nan     0.1000   -0.0008
##     60        1.3001             nan     0.1000   -0.0010
##     80        1.2878             nan     0.1000   -0.0006
##    100        1.2768             nan     0.1000   -0.0005
##    120        1.2662             nan     0.1000   -0.0009
##    140        1.2549             nan     0.1000   -0.0007
##    150        1.2498             nan     0.1000   -0.0007
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3838             nan     0.1000    0.0010
##      2        1.3811             nan     0.1000    0.0008
##      3        1.3795             nan     0.1000    0.0007
##      4        1.3772             nan     0.1000    0.0005
##      5        1.3747             nan     0.1000    0.0007
##      6        1.3726             nan     0.1000    0.0007
##      7        1.3710             nan     0.1000    0.0003
##      8        1.3689             nan     0.1000    0.0007
##      9        1.3671             nan     0.1000    0.0002
##     10        1.3654             nan     0.1000    0.0003
##     20        1.3536             nan     0.1000    0.0001
##     40        1.3428             nan     0.1000   -0.0001
##     60        1.3359             nan     0.1000   -0.0004
##     80        1.3311             nan     0.1000   -0.0003
##    100        1.3274             nan     0.1000   -0.0006
##    120        1.3253             nan     0.1000   -0.0003
##    140        1.3227             nan     0.1000   -0.0000
##    150        1.3221             nan     0.1000   -0.0005
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3808             nan     0.1000    0.0019
##      2        1.3775             nan     0.1000    0.0013
##      3        1.3739             nan     0.1000    0.0008
##      4        1.3701             nan     0.1000    0.0016
##      5        1.3672             nan     0.1000    0.0001
##      6        1.3646             nan     0.1000    0.0010
##      7        1.3627             nan     0.1000   -0.0002
##      8        1.3614             nan     0.1000    0.0000
##      9        1.3585             nan     0.1000    0.0007
##     10        1.3564             nan     0.1000    0.0004
##     20        1.3426             nan     0.1000    0.0001
##     40        1.3270             nan     0.1000   -0.0003
##     60        1.3142             nan     0.1000   -0.0007
##     80        1.3068             nan     0.1000   -0.0004
##    100        1.3005             nan     0.1000   -0.0007
##    120        1.2951             nan     0.1000   -0.0004
##    140        1.2900             nan     0.1000   -0.0004
##    150        1.2868             nan     0.1000   -0.0011
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3818             nan     0.1000    0.0016
##      2        1.3777             nan     0.1000    0.0014
##      3        1.3717             nan     0.1000    0.0017
##      4        1.3683             nan     0.1000    0.0002
##      5        1.3651             nan     0.1000    0.0008
##      6        1.3611             nan     0.1000    0.0013
##      7        1.3582             nan     0.1000    0.0007
##      8        1.3549             nan     0.1000    0.0009
##      9        1.3522             nan     0.1000    0.0004
##     10        1.3500             nan     0.1000    0.0001
##     20        1.3316             nan     0.1000    0.0001
##     40        1.3122             nan     0.1000   -0.0007
##     60        1.2954             nan     0.1000   -0.0003
##     80        1.2841             nan     0.1000    0.0001
##    100        1.2738             nan     0.1000   -0.0012
##    120        1.2640             nan     0.1000   -0.0002
##    140        1.2542             nan     0.1000   -0.0004
##    150        1.2489             nan     0.1000   -0.0007
## Warning: Setting row names on a tibble is deprecated.
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3815             nan     0.1000    0.0019
##      2        1.3770             nan     0.1000    0.0012
##      3        1.3738             nan     0.1000    0.0010
##      4        1.3709             nan     0.1000    0.0008
##      5        1.3681             nan     0.1000    0.0006
##      6        1.3656             nan     0.1000    0.0003
##      7        1.3630             nan     0.1000    0.0010
##      8        1.3610             nan     0.1000    0.0001
##      9        1.3582             nan     0.1000    0.0004
##     10        1.3560             nan     0.1000    0.0006
##     20        1.3428             nan     0.1000   -0.0003
##     40        1.3295             nan     0.1000   -0.0004
##     60        1.3201             nan     0.1000   -0.0004
##     80        1.3123             nan     0.1000   -0.0007
##    100        1.3051             nan     0.1000   -0.0007
##    120        1.2986             nan     0.1000   -0.0003
##    140        1.2939             nan     0.1000   -0.0005
##    150        1.2917             nan     0.1000   -0.0007
#Predicting 
testSet$pred_gbm<-predict(object = model_gbm,testSet[,predictors])

#Checking the accuracy 
confusionMatrix(testSet$target,testSet$pred_gbm)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes  No
##        Yes 215 159
##        No  188 187
##                                           
##                Accuracy : 0.5367          
##                  95% CI : (0.5003, 0.5729)
##     No Information Rate : 0.5381          
##     P-Value [Acc > NIR] : 0.5441          
##                                           
##                   Kappa : 0.0735          
##                                           
##  Mcnemar's Test P-Value : 0.1328          
##                                           
##             Sensitivity : 0.5335          
##             Specificity : 0.5405          
##          Pos Pred Value : 0.5749          
##          Neg Pred Value : 0.4987          
##              Prevalence : 0.5381          
##          Detection Rate : 0.2870          
##    Detection Prevalence : 0.4993          
##       Balanced Accuracy : 0.5370          
##                                           
##        'Positive' Class : Yes             
## 
# model_ctree<-train(target~.,data=trainSet,method='ctree',trControl=fitControl,tuneLength=3)

model_ctree<-train(trainSet[,predictors],trainSet$target,method='ctree',trControl=fitControl,tuneLength=3)
## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.

## Warning: Setting row names on a tibble is deprecated.
#Predicting 
testSet$pred_ctree<-predict(object = model_ctree,testSet)

#Checking the accuracy
confusionMatrix(testSet$target,testSet$pred_ctree)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction Yes  No
##        Yes 206 168
##        No  169 206
##                                           
##                Accuracy : 0.5501          
##                  95% CI : (0.5136, 0.5861)
##     No Information Rate : 0.5007          
##     P-Value [Acc > NIR] : 0.003801        
##                                           
##                   Kappa : 0.1001          
##                                           
##  Mcnemar's Test P-Value : 1.000000        
##                                           
##             Sensitivity : 0.5493          
##             Specificity : 0.5508          
##          Pos Pred Value : 0.5508          
##          Neg Pred Value : 0.5493          
##              Prevalence : 0.5007          
##          Detection Rate : 0.2750          
##    Detection Prevalence : 0.4993          
##       Balanced Accuracy : 0.5501          
##                                           
##        'Positive' Class : Yes             
##