Expansión de la CASEN sobre el CENSO (Región 12)

P17 ¿Trabajó por un pago o especie?: Correlación: 0.8717

VE-CC-AJ

DataIntelligence

date: 20-07-2021

1 Resumen

Expandiremos los ingresos promedios (multiplicación del ingreso promedio y los habitantes) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de viviendas -del 2017-, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal.

Haremos el análisis sobre la región 12.

Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción zonal a nivel comunal (multipob)”

Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.

2 Generación de ingresos expandidos a nivel Urbano

En adelante sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_urbano_17.rds”


2.1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).

2.1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- 
readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/censos_con_clave/censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015


Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region = 12, y área URBANA = 1.

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 12) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1) 

2.1.2 Cálculo de frecuencias

Obtenemos las frecuencias a la pregunta P17 por zona:

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4:31,33:48),drop=FALSE]

Renombramos y filtramos por la categoria Trabajo por un sueldo == 1:

names(tabla_con_clave_f)[2] <- "Trabajo por un sueldo"
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Trabajo por un sueldo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Trabajo por un sueldo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

head(d,5)
##          zona unlist.c. unlist.d. Freq anio
## 1 12101011001         1     12101 1571 2017
## 2 12101011002         1     12101 1410 2017
## 3 12101011003         1     12101 1372 2017
## 4 12101011004         1     12101  771 2017
## 5 12101021001         1     12101 1241 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 

2.1.3 Tabla de frecuencias:

head(comuna_corr,5)
##          zona Freq anio código
## 1 12101011001 1571 2017  12101
## 2 12101011002 1410 2017  12101
## 3 12101011003 1372 2017  12101
## 4 12101011004  771 2017  12101
## 5 12101021001 1241 2017  12101
nrow(comuna_corr)
## [1] 58

y obtenemos la tabla de frecuencias de respuesta a la categoría = 1 de la pregunta P17 a nivel zonal.


2.2 Variable CASEN

2.2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/ingresos_expandidos_urbano_17.rds")
head(h_y_m_2017_censo,5)
##   código personas        comuna promedio_i  año ingresos_expandidos
## 1  01101   191468       Iquique   375676.9 2017         71930106513
## 2  01107   108375 Alto Hospicio   311571.7 2017         33766585496
## 3  01401    15711  Pozo Almonte   316138.5 2017          4966851883
## 7  01405     9296          Pica   330061.1 2017          3068247619
## 8  02101   361873   Antofagasta   368221.4 2017        133249367039
nrow(h_y_m_2017_censo)
## [1] 312

Unión Censo-Casen:

comunas_censo_casen = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
head(comunas_censo_casen,5)
##   código        zona Freq personas       comuna promedio_i  año
## 1  12101 12101011003 1372   131592 Punta Arenas   391758.4 2017
## 2  12101 12101011004  771   131592 Punta Arenas   391758.4 2017
## 3  12101 12101011001 1571   131592 Punta Arenas   391758.4 2017
## 4  12101 12101011002 1410   131592 Punta Arenas   391758.4 2017
## 5  12101 12101031001 1130   131592 Punta Arenas   391758.4 2017
##   ingresos_expandidos
## 1         51552266922
## 2         51552266922
## 3         51552266922
## 4         51552266922
## 5         51552266922
nrow(comunas_censo_casen)
## [1] 58

2.3 Unión de la proporción zonal por comuna con la tabla censo-casen:

Para calcular la variable multipob, debemos calcular:

\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

2.3.1 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

Para calcular la variable multipob, debemos:

\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]

Unimos:

tabla_de_prop_pob <- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
names(tabla_de_prop_pob)[1]  <- "zona"
comunas_censo_casen = merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
head(comunas_censo_casen,5)
##          zona código.x Freq.x personas       comuna promedio_i  año
## 1 12101011001    12101   1571   131592 Punta Arenas   391758.4 2017
## 2 12101011002    12101   1410   131592 Punta Arenas   391758.4 2017
## 3 12101011003    12101   1372   131592 Punta Arenas   391758.4 2017
## 4 12101011004    12101    771   131592 Punta Arenas   391758.4 2017
## 5 12101021001    12101   1241   131592 Punta Arenas   391758.4 2017
##   ingresos_expandidos Freq.y          p código.y
## 1         51552266922   3531 0.02683294    12101
## 2         51552266922   3026 0.02299532    12101
## 3         51552266922   2985 0.02268375    12101
## 4         51552266922   1595 0.01212080    12101
## 5         51552266922   2549 0.01937048    12101

Creamos:

comunas_censo_casen$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p
head(comunas_censo_casen,5)
##          zona código.x Freq.x personas       comuna promedio_i  año
## 1 12101011001    12101   1571   131592 Punta Arenas   391758.4 2017
## 2 12101011002    12101   1410   131592 Punta Arenas   391758.4 2017
## 3 12101011003    12101   1372   131592 Punta Arenas   391758.4 2017
## 4 12101011004    12101    771   131592 Punta Arenas   391758.4 2017
## 5 12101021001    12101   1241   131592 Punta Arenas   391758.4 2017
##   ingresos_expandidos Freq.y          p código.y   multipob
## 1         51552266922   3531 0.02683294    12101 1383298791
## 2         51552266922   3026 0.02299532    12101 1185460816
## 3         51552266922   2985 0.02268375    12101 1169398723
## 4         51552266922   1595 0.01212080    12101  624854594
## 5         51552266922   2549 0.01937048    12101  998592075

3 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

3.1 Diagrama de dispersión loess

scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

3.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

3.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multipob~(Freq.x) , data=comunas_censo_casen)
summary(linearMod) 
## 
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -230893805  -46233530   11977411   40022731  148389517 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -39103930   24096161  -1.623     0.11    
## Freq.x         849250      17271  49.171   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 72880000 on 54 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.9782, Adjusted R-squared:  0.9777 
## F-statistic:  2418 on 1 and 54 DF,  p-value: < 2.2e-16

3.4 Gráfica de la recta de regresión lineal

ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.9777 de la variabilidad de los datos de respuesta en torno a su media, el intercepto no es estadísticamente significativo. Modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

4 Modelos alternativos

### 8.1 Modelo cuadrático

linearMod <- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

modelos1 <- cbind(modelo,dato,sintaxis)


modelos1 <- cbind(modelo,dato,sintaxis)
 
### 8.2 Modelo cúbico
 
linearMod <- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

modelos2 <- cbind(modelo,dato,sintaxis)
 
### 8.3 Modelo logarítmico
 
linearMod <- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos3 <- cbind(modelo,dato,sintaxis)
 
### 8.5 Modelo con raíz cuadrada 
 
linearMod <- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos5 <- cbind(modelo,dato,sintaxis)
 
### 8.6 Modelo raíz-raíz
 
linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos6 <- cbind(modelo,dato,sintaxis)
 
### 8.7 Modelo log-raíz
 
linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos7 <- cbind(modelo,dato,sintaxis)
 
### 8.8 Modelo raíz-log
 
linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos8 <- cbind(modelo,dato,sintaxis)
 
### 8.9 Modelo log-log
 
linearMod <- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos9 <- cbind(modelo,dato,sintaxis)
 
modelos_bind <- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)

modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
h_y_m_comuna_corr_01 <<- comunas_censo_casen

kbl(modelos_bind) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
modelo dato sintaxis
8 log-log 0.988460112298738 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
5 raíz-raíz 0.982374277670682 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
1 cuadrático 0.977748912945241 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
2 cúbico 0.977748912945241 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
4 raíz cuadrada 0.912498843143131 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
6 log-raíz 0.910351941805104 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
7 raíz-log 0.875022130054682 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
3 logarítmico 0.690676214600251 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)


5 Elección del modelo.

Elegimos el modelo log-log (8) pues tiene el más alto \(R^2 (0.9885)\)

h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.23886 -0.04641  0.01746  0.05216  0.16409 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.35730    0.10573  126.33   <2e-16 ***
## log(Freq.x)  1.03457    0.01507   68.64   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.08727 on 54 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.9887, Adjusted R-squared:  0.9885 
## F-statistic:  4712 on 1 and 54 DF,  p-value: < 2.2e-16

5.1 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.991).

5.1.1 Diagrama de dispersión y lm sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(comunas_censo_casen$Freq.x), y=log(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

Desplegamos la curva de regresión con sus intervalos de confianza al 95%:

ggplot(comunas_censo_casen, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")

5.1.2 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

5.1.3 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

5.1.4 Modelo real:

\[ \hat Y = e^{13.35730+1.03457\cdot ln{X}} \]


linearMod <- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
aa <- linearMod$coefficients[1]
bb <- linearMod$coefficients[2]

6 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

comunas_censo_casen$est_ing <- exp(aa+bb*log(comunas_censo_casen$Freq.x))


7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zonal


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


comunas_censo_casen$ing_medio_zona <- comunas_censo_casen$est_ing /(comunas_censo_casen$personas  * comunas_censo_casen$p)
r3_100 <- comunas_censo_casen[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x personas comuna promedio_i año ingresos_expandidos Freq.y p código.y multipob est_ing ing_medio_zona
1 12101011001 12101 1571 131592 Punta Arenas 391758.4 2017 51552266922 3531 0.0268329 12101 1383298791 1281358062 362888.2
2 12101011002 12101 1410 131592 Punta Arenas 391758.4 2017 51552266922 3026 0.0229953 12101 1185460816 1145750624 378635.4
3 12101011003 12101 1372 131592 Punta Arenas 391758.4 2017 51552266922 2985 0.0226837 12101 1169398723 1113819768 373139.0
4 12101011004 12101 771 131592 Punta Arenas 391758.4 2017 51552266922 1595 0.0121208 12101 624854594 613567281 384681.7
5 12101021001 12101 1241 131592 Punta Arenas 391758.4 2017 51552266922 2549 0.0193705 12101 998592075 1003982001 393872.9
6 12101021002 12101 1592 131592 Punta Arenas 391758.4 2017 51552266922 3389 0.0257538 12101 1327669103 1299082547 383323.3
7 12101031001 12101 1130 131592 Punta Arenas 391758.4 2017 51552266922 2497 0.0189753 12101 978220640 911225361 364928.1
8 12101031002 12101 1570 131592 Punta Arenas 391758.4 2017 51552266922 3363 0.0255563 12101 1317483385 1280514243 380765.5
9 12101031003 12101 1778 131592 Punta Arenas 391758.4 2017 51552266922 3844 0.0292115 12101 1505919160 1456412629 378879.5
10 12101031004 12101 1438 131592 Punta Arenas 391758.4 2017 51552266922 3035 0.0230637 12101 1188986641 1169297713 385271.1
11 12101031005 12101 985 131592 Punta Arenas 391758.4 2017 51552266922 2132 0.0162016 12101 835228837 790536128 370795.6
12 12101041001 12101 1470 131592 Punta Arenas 391758.4 2017 51552266922 2931 0.0222734 12101 1148243771 1196228071 408129.7
13 12101041002 12101 1517 131592 Punta Arenas 391758.4 2017 51552266922 3427 0.0260426 12101 1342555921 1235818676 360612.4
14 12101041003 12101 1476 131592 Punta Arenas 391758.4 2017 51552266922 3021 0.0229573 12101 1183502024 1201279784 397643.1
15 12101041004 12101 2278 131592 Punta Arenas 391758.4 2017 51552266922 4652 0.0353517 12101 1822459919 1882031761 404564.0
16 12101041005 12101 1499 131592 Punta Arenas 391758.4 2017 51552266922 3038 0.0230865 12101 1190161916 1220651234 401794.3
17 12101041006 12101 1082 131592 Punta Arenas 391758.4 2017 51552266922 2472 0.0187853 12101 968426681 871210138 352431.3
18 12101041007 12101 1536 131592 Punta Arenas 391758.4 2017 51552266922 3294 0.0250319 12101 1290452058 1251835504 380035.1
19 12101051001 12101 1080 131592 Punta Arenas 391758.4 2017 51552266922 2180 0.0165664 12101 854033238 869544150 398873.5
20 12101051002 12101 629 131592 Punta Arenas 391758.4 2017 51552266922 1013 0.0076980 12101 396851225 497052538 490673.8
21 12101061001 12101 1044 131592 Punta Arenas 391758.4 2017 51552266922 2372 0.0180254 12101 929250845 839574791 353952.3
22 12101061002 12101 1658 131592 Punta Arenas 391758.4 2017 51552266922 2905 0.0220758 12101 1138058054 1354840236 466382.2
23 12101061003 12101 957 131592 Punta Arenas 391758.4 2017 51552266922 2197 0.0166955 12101 860693130 767298692 349248.4
24 12101071001 12101 796 131592 Punta Arenas 391758.4 2017 51552266922 1765 0.0134127 12101 691453516 634161663 359298.4
25 12101071002 12101 1600 131592 Punta Arenas 391758.4 2017 51552266922 3727 0.0283224 12101 1460083431 1305836864 350372.1
26 12101071003 12101 1372 131592 Punta Arenas 391758.4 2017 51552266922 2859 0.0217262 12101 1120037169 1113819768 389583.7
27 12101071004 12101 1106 131592 Punta Arenas 391758.4 2017 51552266922 2382 0.0181014 12101 933168428 891210244 374143.7
28 12101071005 12101 1346 131592 Punta Arenas 391758.4 2017 51552266922 3151 0.0239452 12101 1234430612 1091989900 346553.4
29 12101071006 12101 1508 131592 Punta Arenas 391758.4 2017 51552266922 3159 0.0240060 12101 1237564679 1228234173 388804.7
30 12101071007 12101 1626 131592 Punta Arenas 391758.4 2017 51552266922 3543 0.0269241 12101 1387999891 1327796429 374766.1
31 12101081001 12101 1170 131592 Punta Arenas 391758.4 2017 51552266922 2522 0.0191653 12101 988014600 944616415 374550.5
32 12101081002 12101 1440 131592 Punta Arenas 391758.4 2017 51552266922 3136 0.0238312 12101 1228554236 1170980258 373399.3
33 12101081003 12101 1072 131592 Punta Arenas 391758.4 2017 51552266922 2280 0.0173263 12101 893209075 862881266 378456.7
34 12101081004 12101 2855 131592 Punta Arenas 391758.4 2017 51552266922 6468 0.0491519 12101 2533893112 2377218301 367535.3
35 12101081005 12101 1437 131592 Punta Arenas 391758.4 2017 51552266922 3165 0.0240516 12101 1239915229 1168456471 369180.6
36 12101081006 12101 2468 131592 Punta Arenas 391758.4 2017 51552266922 5200 0.0395161 12101 2037143504 2044660196 393203.9
37 12101091001 12101 441 131592 Punta Arenas 391758.4 2017 51552266922 692 0.0052587 12101 271096789 344238187 497454.0
38 12101101001 12101 100 131592 Punta Arenas 391758.4 2017 51552266922 205 0.0015578 12101 80310465 74155244 361732.9
39 12101101002 12101 652 131592 Punta Arenas 391758.4 2017 51552266922 1386 0.0105326 12101 542977096 515867824 372199.0
40 12101101003 12101 1949 131592 Punta Arenas 391758.4 2017 51552266922 3937 0.0299182 12101 1542352688 1601559930 406797.0
41 12101101004 12101 2501 131592 Punta Arenas 391758.4 2017 51552266922 5280 0.0401240 12101 2068484173 2072951305 392604.4
42 12101101005 12101 1490 131592 Punta Arenas 391758.4 2017 51552266922 3098 0.0235425 12101 1213667418 1213069869 391565.5
43 12101991999 12101 1172 131592 Punta Arenas 391758.4 2017 51552266922 2529 0.0192185 12101 990756908 946287016 374174.4
44 12201011001 12201 1062 NA NA NA NA NA 1868 0.9054775 12201 NA 854555080 NA
45 12201991999 12201 3 NA NA NA NA NA 6 0.0029084 12201 NA 1970681 NA
46 12301011001 12301 1461 6801 Porvenir 446255.2 2017 3034981682 2543 0.3739156 12301 1134826999 1188651840 467421.1
47 12301011002 12301 1966 6801 Porvenir 446255.2 2017 3034981682 3449 0.5071313 12301 1539134219 1616014517 468545.8
48 12301991999 12301 37 6801 Porvenir 446255.2 2017 3034981682 70 0.0102926 12301 31237865 26510389 378719.8
49 12401011001 12401 663 21477 Natales 336808.6 2017 7233637635 1266 0.0589468 12401 426399648 524874604 414592.9
50 12401011002 12401 917 21477 Natales 336808.6 2017 7233637635 1994 0.0928435 12401 671596286 734143281 368176.2
51 12401011003 12401 599 21477 Natales 336808.6 2017 7233637635 1327 0.0617870 12401 446944971 472546720 356101.5
52 12401011004 12401 1369 21477 Natales 336808.6 2017 7233637635 3053 0.1421521 12401 1028276561 1111300202 364002.7
53 12401011005 12401 1184 21477 Natales 336808.6 2017 7233637635 2710 0.1261815 12401 912751222 956312682 352882.9
54 12401011006 12401 1017 21477 Natales 336808.6 2017 7233637635 2158 0.1004796 12401 726832892 817121141 378647.4
55 12401011007 12401 676 21477 Natales 336808.6 2017 7233637635 1489 0.0693300 12401 501507959 535525638 359654.6
56 12401011008 12401 1803 21477 Natales 336808.6 2017 7233637635 3985 0.1855473 12401 1342182147 1477603942 370791.5
57 12401051001 12401 510 21477 Natales 336808.6 2017 7233637635 1041 0.0484705 12401 350617720 400104214 384346.0
58 12401991999 12401 76 21477 Natales 336808.6 2017 7233637635 157 0.0073101 12401 52878945 55825822 355578.5
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(comunas_censo_casen, "URBANO/region_12_P17_u.rds")

9 Anexo:

9.1 Modelos alternativos

9.1.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

9.1.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

9.1.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

9.1.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

9.1.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

9.1.6 raiz raiz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

9.1.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

9.1.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

9.1.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]