Expansión de la CASEN sobre el CENSO (Región 15)

P17 ¿Trabajó por un pago o especie?: Correlación: 0.8717

VE-CC-AJ

DataIntelligence

date: 20-07-2021

1 Resumen

Expandiremos los ingresos promedios (multiplicación del ingreso promedio y los habitantes) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de viviendas -del 2017-, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal.

Haremos el análisis sobre la región 15.

Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción zonal a nivel comunal (multipob)”

Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.

2 Generación de ingresos expandidos a nivel Urbano

En adelante sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_urbano_17.rds”


2.1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).

2.1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- 
readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/censos_con_clave/censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015


Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region = 15, y área URBANA = 1.

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 15) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1) 

2.1.2 Cálculo de frecuencias

Obtenemos las frecuencias a la pregunta P17 por zona:

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4:31,33:48),drop=FALSE]

Renombramos y filtramos por la categoria Trabajo por un sueldo == 1:

names(tabla_con_clave_f)[2] <- "Trabajo por un sueldo"
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Trabajo por un sueldo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Trabajo por un sueldo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

head(d,5)
##          zona unlist.c. unlist.d. Freq anio
## 1 15101011001         1     15101  770 2017
## 2 15101011002         1     15101  466 2017
## 3 15101021001         1     15101 2423 2017
## 4 15101031001         1     15101 3101 2017
## 5 15101031002         1     15101 1466 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 

2.1.3 Tabla de frecuencias:

head(comuna_corr,5)
##          zona Freq anio código
## 1 15101011001  770 2017  15101
## 2 15101011002  466 2017  15101
## 3 15101021001 2423 2017  15101
## 4 15101031001 3101 2017  15101
## 5 15101031002 1466 2017  15101
nrow(comuna_corr)
## [1] 74

y obtenemos la tabla de frecuencias de respuesta a la categoría = 1 de la pregunta P17 a nivel zonal.


2.2 Variable CASEN

2.2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/ingresos_expandidos_urbano_17.rds")
head(h_y_m_2017_censo,5)
##   código personas        comuna promedio_i  año ingresos_expandidos
## 1  01101   191468       Iquique   375676.9 2017         71930106513
## 2  01107   108375 Alto Hospicio   311571.7 2017         33766585496
## 3  01401    15711  Pozo Almonte   316138.5 2017          4966851883
## 7  01405     9296          Pica   330061.1 2017          3068247619
## 8  02101   361873   Antofagasta   368221.4 2017        133249367039
nrow(h_y_m_2017_censo)
## [1] 312

Unión Censo-Casen:

comunas_censo_casen = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
head(comunas_censo_casen,5)
##   código        zona Freq personas comuna promedio_i  año ingresos_expandidos
## 1  15101 15101011001  770   221364  Arica   310013.3 2017         68625788545
## 2  15101 15101011002  466   221364  Arica   310013.3 2017         68625788545
## 3  15101 15101021001 2423   221364  Arica   310013.3 2017         68625788545
## 4  15101 15101031001 3101   221364  Arica   310013.3 2017         68625788545
## 5  15101 15101031002 1466   221364  Arica   310013.3 2017         68625788545
nrow(comunas_censo_casen)
## [1] 74

2.3 Unión de la proporción zonal por comuna con la tabla censo-casen:

Para calcular la variable multipob, debemos calcular:

\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

2.3.1 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

Para calcular la variable multipob, debemos:

\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]

Unimos:

tabla_de_prop_pob <- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
names(tabla_de_prop_pob)[1]  <- "zona"
comunas_censo_casen = merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
head(comunas_censo_casen,5)
##          zona código.x Freq.x personas comuna promedio_i  año
## 1 15101011001    15101    770   221364  Arica   310013.3 2017
## 2 15101011002    15101    466   221364  Arica   310013.3 2017
## 3 15101021001    15101   2423   221364  Arica   310013.3 2017
## 4 15101031001    15101   3101   221364  Arica   310013.3 2017
## 5 15101031002    15101   1466   221364  Arica   310013.3 2017
##   ingresos_expandidos Freq.y           p código.y
## 1         68625788545   1545 0.006979455    15101
## 2         68625788545   1001 0.004521964    15101
## 3         68625788545   4454 0.020120706    15101
## 4         68625788545   6208 0.028044307    15101
## 5         68625788545   3166 0.014302235    15101

Creamos:

comunas_censo_casen$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p
head(comunas_censo_casen,5)
##          zona código.x Freq.x personas comuna promedio_i  año
## 1 15101011001    15101    770   221364  Arica   310013.3 2017
## 2 15101011002    15101    466   221364  Arica   310013.3 2017
## 3 15101021001    15101   2423   221364  Arica   310013.3 2017
## 4 15101031001    15101   3101   221364  Arica   310013.3 2017
## 5 15101031002    15101   1466   221364  Arica   310013.3 2017
##   ingresos_expandidos Freq.y           p código.y   multipob
## 1         68625788545   1545 0.006979455    15101  478970579
## 2         68625788545   1001 0.004521964    15101  310323333
## 3         68625788545   4454 0.020120706    15101 1380799327
## 4         68625788545   6208 0.028044307    15101 1924562690
## 5         68625788545   3166 0.014302235    15101  981502171

3 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

3.1 Diagrama de dispersión loess

scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

3.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

3.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multipob~(Freq.x) , data=comunas_censo_casen)
summary(linearMod) 
## 
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -443728231  -21885910   13328114   53123169  301174040 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 17543077   29399493   0.597    0.553    
## Freq.x        745763      23187  32.163   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 110900000 on 72 degrees of freedom
## Multiple R-squared:  0.9349, Adjusted R-squared:  0.934 
## F-statistic:  1034 on 1 and 72 DF,  p-value: < 2.2e-16

3.4 Gráfica de la recta de regresión lineal

ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.934 de la variabilidad de los datos de respuesta en torno a su media, el intercepto no es estadísticamente significativo. Modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

4 Modelos alternativos

### 8.1 Modelo cuadrático

linearMod <- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

modelos1 <- cbind(modelo,dato,sintaxis)


modelos1 <- cbind(modelo,dato,sintaxis)
 
### 8.2 Modelo cúbico
 
linearMod <- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

modelos2 <- cbind(modelo,dato,sintaxis)
 
### 8.3 Modelo logarítmico
 
linearMod <- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos3 <- cbind(modelo,dato,sintaxis)
 
### 8.5 Modelo con raíz cuadrada 
 
linearMod <- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos5 <- cbind(modelo,dato,sintaxis)
 
### 8.6 Modelo raíz-raíz
 
linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos6 <- cbind(modelo,dato,sintaxis)
 
### 8.7 Modelo log-raíz
 
linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos7 <- cbind(modelo,dato,sintaxis)
 
### 8.8 Modelo raíz-log
 
linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos8 <- cbind(modelo,dato,sintaxis)
 
### 8.9 Modelo log-log
 
linearMod <- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos9 <- cbind(modelo,dato,sintaxis)
 
modelos_bind <- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)

modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
h_y_m_comuna_corr_01 <<- comunas_censo_casen

kbl(modelos_bind) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
modelo dato sintaxis
5 raíz-raíz 0.946109078493207 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
8 log-log 0.943492017276426 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
1 cuadrático 0.934021930979858 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
2 cúbico 0.934021930979858 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
7 raíz-log 0.924502774235048 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
4 raíz cuadrada 0.924023175446763 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
6 log-raíz 0.875378033313212 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
3 logarítmico 0.830130639023924 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)


5 Elección del modelo.

Elegimos el modelo raíz-raíz (5) pues tiene el más alto \(R^2 (0.946)\)

h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 5
switch (metodo,
        case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multipob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5953.1  -230.1   481.4   962.8  2715.6 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   -582.04     836.71  -0.696    0.489    
## sqrt(Freq.x)   887.66      24.79  35.813   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1748 on 72 degrees of freedom
## Multiple R-squared:  0.9468, Adjusted R-squared:  0.9461 
## F-statistic:  1283 on 1 and 72 DF,  p-value: < 2.2e-16

Error: el intercepto no resulta estadísticamente significante, busquemos el tercero.

5.1 Modelo log-log (log-log)

Elegimos el modelo log-log (8) pues tiene el tercer más alto \(R^2 (0.943)\)

h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.75080 -0.01724  0.03871  0.07371  0.15581 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.02772    0.21270   61.25   <2e-16 ***
## log(Freq.x)  1.07196    0.03069   34.93   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1442 on 72 degrees of freedom
## Multiple R-squared:  0.9443, Adjusted R-squared:  0.9435 
## F-statistic:  1220 on 1 and 72 DF,  p-value: < 2.2e-16

5.1.1 Diagrama de dispersión y lm sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(comunas_censo_casen$Freq.x), y=log(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

Desplegamos la curva de regresión con sus intervalos de confianza al 95%:

ggplot(comunas_censo_casen, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")

5.1.2 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

5.1.3 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

5.1.4 Modelo real:

\[ \hat Y = e^{13.02772+1.07196\cdot ln{X}} \]


linearMod <- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
aa <- linearMod$coefficients[1]
bb <- linearMod$coefficients[2]

6 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

comunas_censo_casen$est_ing <- exp(aa+bb*log(comunas_censo_casen$Freq.x))


7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zonal


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


comunas_censo_casen$ing_medio_zona <- comunas_censo_casen$est_ing /(comunas_censo_casen$personas  * comunas_censo_casen$p)
r3_100 <- comunas_censo_casen[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x personas comuna promedio_i año ingresos_expandidos Freq.y p código.y multipob est_ing ing_medio_zona
1 15101011001 15101 770 221364 Arica 310013.3 2017 68625788545 1545 0.0069795 15101 478970579 565011282 365703.1
2 15101011002 15101 466 221364 Arica 310013.3 2017 68625788545 1001 0.0045220 15101 310323333 329805799 329476.3
3 15101021001 15101 2423 221364 Arica 310013.3 2017 68625788545 4454 0.0201207 15101 1380799327 1930830652 433504.9
4 15101031001 15101 3101 221364 Arica 310013.3 2017 68625788545 6208 0.0280443 15101 1924562690 2515373839 405182.6
5 15101031002 15101 1466 221364 Arica 310013.3 2017 68625788545 3166 0.0143022 15101 981502171 1126736774 355886.5
6 15101031003 15101 293 221364 Arica 310013.3 2017 68625788545 623 0.0028144 15101 193138298 200557761 321922.6
7 15101031004 15101 1595 221364 Arica 310013.3 2017 68625788545 4041 0.0182550 15101 1252763826 1233345377 305208.0
8 15101031005 15101 397 221364 Arica 310013.3 2017 68625788545 1010 0.0045626 15101 313113453 277750627 275000.6
9 15101031006 15101 1157 221364 Arica 310013.3 2017 68625788545 2848 0.0128657 15101 882917935 874227980 306962.1
10 15101031007 15101 1204 221364 Arica 310013.3 2017 68625788545 2762 0.0124772 15101 856256790 912351478 330322.8
11 15101041001 15101 1133 221364 Arica 310013.3 2017 68625788545 2911 0.0131503 15101 902448774 854803323 293645.9
12 15101041002 15101 1086 221364 Arica 310013.3 2017 68625788545 2836 0.0128115 15101 879197775 816849626 288028.8
13 15101041003 15101 1246 221364 Arica 310013.3 2017 68625788545 3316 0.0149799 15101 1028004169 946510154 285437.3
14 15101041004 15101 1103 221364 Arica 310013.3 2017 68625788545 2869 0.0129606 15101 889428215 830564179 289496.1
15 15101051001 15101 740 221364 Arica 310013.3 2017 68625788545 2041 0.0092201 15101 632737186 541447334 265285.3
16 15101051002 15101 643 221364 Arica 310013.3 2017 68625788545 1655 0.0074764 15101 513072044 465741184 281414.6
17 15101051003 15101 865 221364 Arica 310013.3 2017 68625788545 2345 0.0105934 15101 726981235 640056222 272945.1
18 15101051004 15101 858 221364 Arica 310013.3 2017 68625788545 2196 0.0099203 15101 680789250 634505488 288936.9
19 15101061001 15101 2325 221364 Arica 310013.3 2017 68625788545 5901 0.0266575 15101 1829388601 1847240823 313038.6
20 15101061002 15101 931 221364 Arica 310013.3 2017 68625788545 2066 0.0093330 15101 640487519 692547427 335211.7
21 15101061003 15101 263 221364 Arica 310013.3 2017 68625788545 615 0.0027782 15101 190658192 178629011 290453.7
22 15101061004 15101 289 221364 Arica 310013.3 2017 68625788545 723 0.0032661 15101 224139630 197624203 273339.1
23 15101061005 15101 431 221364 Arica 310013.3 2017 68625788545 1001 0.0045220 15101 310323333 303326043 303023.0
24 15101071001 15101 935 221364 Arica 310013.3 2017 68625788545 2416 0.0109142 15101 748992181 695737525 287970.8
25 15101071002 15101 984 221364 Arica 310013.3 2017 68625788545 2443 0.0110361 15101 757362541 734894772 300816.5
26 15101071003 15101 1428 221364 Arica 310013.3 2017 68625788545 3686 0.0166513 15101 1142709097 1095458650 297194.4
27 15101071004 15101 949 221364 Arica 310013.3 2017 68625788545 2455 0.0110903 15101 761082700 706910575 287947.3
28 15101081001 15101 1123 221364 Arica 310013.3 2017 68625788545 2735 0.0123552 15101 847886430 846718415 309586.3
29 15101081002 15101 1044 221364 Arica 310013.3 2017 68625788545 2496 0.0112755 15101 773793246 783033287 313715.3
30 15101081003 15101 1106 221364 Arica 310013.3 2017 68625788545 2823 0.0127528 15101 875167602 832985980 295071.2
31 15101081004 15101 707 221364 Arica 310013.3 2017 68625788545 1853 0.0083708 15101 574454682 515606392 278254.9
32 15101091001 15101 1075 221364 Arica 310013.3 2017 68625788545 2582 0.0116640 15101 800454392 807983717 312929.4
33 15101091002 15101 603 221364 Arica 310013.3 2017 68625788545 1634 0.0073815 15101 506561765 434754271 266067.5
34 15101101001 15101 770 221364 Arica 310013.3 2017 68625788545 1944 0.0087819 15101 602665894 565011282 290643.7
35 15101101002 15101 693 221364 Arica 310013.3 2017 68625788545 1732 0.0078242 15101 536943070 504669534 291379.6
36 15101101003 15101 599 221364 Arica 310013.3 2017 68625788545 1542 0.0069659 15101 478040539 431663550 279937.5
37 15101111001 15101 752 221364 Arica 310013.3 2017 68625788545 1879 0.0084883 15101 582515028 550864818 293169.1
38 15101111002 15101 787 221364 Arica 310013.3 2017 68625788545 1971 0.0089039 15101 611036254 578393710 293451.9
39 15101111003 15101 664 221364 Arica 310013.3 2017 68625788545 1656 0.0074809 15101 513382058 482065501 291102.4
40 15101121001 15101 1364 221364 Arica 310013.3 2017 68625788545 3627 0.0163848 15101 1124418311 1042915747 287542.3
41 15101121002 15101 1905 221364 Arica 310013.3 2017 68625788545 4645 0.0209835 15101 1440011871 1492001652 321206.0
42 15101121003 15101 1916 221364 Arica 310013.3 2017 68625788545 4990 0.0225421 15101 1546966466 1501238721 300849.4
43 15101121004 15101 1495 221364 Arica 310013.3 2017 68625788545 3686 0.0166513 15101 1142709097 1150646285 312166.7
44 15101121005 15101 1921 221364 Arica 310013.3 2017 68625788545 4822 0.0217831 15101 1494884229 1505438651 312202.1
45 15101121006 15101 144 221364 Arica 310013.3 2017 68625788545 263 0.0011881 15101 81533503 93655966 356106.3
46 15101121007 15101 1597 221364 Arica 310013.3 2017 68625788545 3635 0.0164209 15101 1126898418 1235003248 339753.3
47 15101121008 15101 1521 221364 Arica 310013.3 2017 68625788545 3757 0.0169720 15101 1164720043 1172110811 311980.5
48 15101121009 15101 1053 221364 Arica 310013.3 2017 68625788545 2707 0.0122287 15101 839206057 790271538 291936.3
49 15101121010 15101 1388 221364 Arica 310013.3 2017 68625788545 3363 0.0151922 15101 1042574795 1062598986 315967.6
50 15101141001 15101 648 221364 Arica 310013.3 2017 68625788545 1387 0.0062657 15101 429988475 469624494 338590.1
51 15101141002 15101 821 221364 Arica 310013.3 2017 68625788545 1641 0.0074131 15101 508731858 605220613 368812.1
52 15101171001 15101 1626 221364 Arica 310013.3 2017 68625788545 4176 0.0188649 15101 1294615624 1259059078 301498.8
53 15101171002 15101 809 221364 Arica 310013.3 2017 68625788545 2174 0.0098209 15101 673968957 595742990 274030.8
54 15101171003 15101 928 221364 Arica 310013.3 2017 68625788545 2503 0.0113072 15101 775963340 690155501 275731.3
55 15101171004 15101 948 221364 Arica 310013.3 2017 68625788545 2478 0.0111942 15101 768213007 706112105 284952.4
56 15101171005 15101 1011 221364 Arica 310013.3 2017 68625788545 2371 0.0107109 15101 735041581 756531713 319077.1
57 15101171006 15101 1747 221364 Arica 310013.3 2017 68625788545 4924 0.0222439 15101 1526505587 1359757683 276149.0
58 15101171007 15101 1048 221364 Arica 310013.3 2017 68625788545 2627 0.0118673 15101 814404991 786249736 299295.7
59 15101171008 15101 1130 221364 Arica 310013.3 2017 68625788545 2763 0.0124817 15101 856566803 852377310 308497.0
60 15101171009 15101 1503 221364 Arica 310013.3 2017 68625788545 3821 0.0172612 15101 1184560895 1157247915 302865.2
61 15101171010 15101 1297 221364 Arica 310013.3 2017 68625788545 3487 0.0157523 15101 1081016446 988099841 283366.7
62 15101181001 15101 1434 221364 Arica 310013.3 2017 68625788545 3763 0.0169992 15101 1166580123 1100393361 292424.5
63 15101181002 15101 1749 221364 Arica 310013.3 2017 68625788545 4627 0.0209022 15101 1434431631 1361426442 294235.2
64 15101181003 15101 2017 221364 Arica 310013.3 2017 68625788545 5211 0.0235404 15101 1615479410 1586227684 304399.9
65 15101181004 15101 974 221364 Arica 310013.3 2017 68625788545 2346 0.0105979 15101 727291248 726891864 309843.1
66 15101181005 15101 1509 221364 Arica 310013.3 2017 68625788545 3954 0.0178620 15101 1225792667 1162200798 293930.4
67 15101181006 15101 2744 221364 Arica 310013.3 2017 68625788545 7629 0.0344636 15101 2365091617 2206290669 289197.9
68 15101191001 15101 937 221364 Arica 310013.3 2017 68625788545 2482 0.0112123 15101 769453060 697332942 280956.1
69 15101191002 15101 1289 221364 Arica 310013.3 2017 68625788545 3364 0.0151967 15101 1042884808 981568064 291786.0
70 15101191003 15101 1279 221364 Arica 310013.3 2017 68625788545 3067 0.0138550 15101 950810852 973407446 317381.0
71 15101191004 15101 1052 221364 Arica 310013.3 2017 68625788545 2862 0.0129289 15101 887258122 789467068 275844.5
72 15101991999 15101 1132 221364 Arica 310013.3 2017 68625788545 1947 0.0087955 15101 603595934 853994601 438620.8
73 15201011001 15201 1013 2765 Putre 283661.5 2017 784324030 1716 0.6206148 15201 486763123 758136118 441804.3
74 15201991999 15201 376 2765 Putre 283661.5 2017 784324030 436 0.1576854 15201 123676411 262031815 600990.4
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(comunas_censo_casen, "URBANO/region_15_P17_u.rds")

9 Anexo:

9.1 Modelos alternativos

9.1.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

9.1.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

9.1.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

9.1.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

9.1.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

9.1.6 raiz raiz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

9.1.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

9.1.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

9.1.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]