date: 20-07-2021
1 Generación de ingresos expandidos a nivel Urbano
En los siguientes rpubs sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_rural_17.rds”:
1.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “ESCOLARIDAD” del campo ESCOLARIDAD del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).
1.1.1 Lectura y filtrado de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<- readRDS("../censo_personas_con_clave_17")
tabla_con_clave <- tabla_con_clave[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Despleguemos los códigos de regiones de nuestra tabla:
<- unique(tabla_con_clave$REGION)
regiones regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la region = 1, y área URBANA = 1.
<- filter(tabla_con_clave, tabla_con_clave$REGION == 11)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) tabla_con_clave
1.1.2 Cálculo de frecuencias
Obtenemos las frecuencias a la pregunta ESCOLARIDAD por zona:
<- tabla_con_clave[,c("clave","ESCOLARIDAD","COMUNA") ] tabla_con_clave_f
Renombramos y filtramos por la categoria Trabajo por un sueldo
== 1:
names(tabla_con_clave_f)[2] <- "ESCOLARIDAD"
<- filter(tabla_con_clave_f, tabla_con_clave_f$ESCOLARIDAD == 14) tabla_con_clave_ff
# Determinamos las frecuencias por zona:
<- tabla_con_clave_ff$clave
b <- tabla_con_clave_ff$ESCOLARIDAD
c <- tabla_con_clave_ff$COMUNA
d = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d names(d)[1] <- "zona"
$anio <- "2017"
d
head(d,5)
## zona unlist.c. unlist.d. Freq anio
## 1 11101022003 14 11101 1 2017
## 2 11101022031 14 11101 3 2017
## 3 11101022038 14 11101 5 2017
## 4 11101032005 14 11101 1 2017
## 5 11101032015 14 11101 2 2017
Agregamos un cero a los códigos comunales de cuatro dígitos:
<- d$unlist.d.
codigos <- seq(1:nrow(d))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
comuna_corr names(comuna_corr)[4] <- "código"
1.1.3 Tabla de frecuencias:
head(comuna_corr,5)
## zona Freq anio código
## 1 11101022003 1 2017 11101
## 2 11101022031 3 2017 11101
## 3 11101022038 5 2017 11101
## 4 11101032005 1 2017 11101
## 5 11101032015 2 2017 11101
1.2 Variable CASEN
1.2.1 Tabla de ingresos expandidos
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
<- readRDS("../ingresos_expandidos_rural_17.rds")
h_y_m_2017_censo <- head(h_y_m_2017_censo,50)
tablamadre kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | personas | comuna | promedio_i | año | ingresos_expandidos | |
---|---|---|---|---|---|---|
1 | 01101 | 191468 | Iquique | 272529.7 | 2017 | 52180713221 |
3 | 01401 | 15711 | Pozo Almonte | 243272.4 | 2017 | 3822052676 |
4 | 01402 | 1250 | Camiña | 226831.0 | 2017 | 283538750 |
6 | 01404 | 2730 | Huara | 236599.7 | 2017 | 645917134 |
7 | 01405 | 9296 | Pica | 269198.0 | 2017 | 2502464414 |
10 | 02103 | 10186 | Sierra Gorda | 322997.9 | 2017 | 3290056742 |
11 | 02104 | 13317 | Taltal | 288653.8 | 2017 | 3844002134 |
12 | 02201 | 165731 | Calama | 238080.9 | 2017 | 39457387800 |
14 | 02203 | 10996 | San Pedro de Atacama | 271472.6 | 2017 | 2985112297 |
15 | 02301 | 25186 | Tocopilla | 166115.9 | 2017 | 4183793832 |
17 | 03101 | 153937 | Copiapó | 251396.0 | 2017 | 38699138722 |
19 | 03103 | 14019 | Tierra Amarilla | 287819.4 | 2017 | 4034940816 |
21 | 03202 | 13925 | Diego de Almagro | 326439.0 | 2017 | 4545663075 |
22 | 03301 | 51917 | Vallenar | 217644.6 | 2017 | 11299454698 |
23 | 03302 | 5299 | Alto del Carmen | 196109.9 | 2017 | 1039186477 |
24 | 03303 | 7041 | Freirina | 202463.8 | 2017 | 1425547554 |
25 | 03304 | 10149 | Huasco | 205839.6 | 2017 | 2089066548 |
26 | 04101 | 221054 | La Serena | 200287.4 | 2017 | 44274327972 |
27 | 04102 | 227730 | Coquimbo | 206027.8 | 2017 | 46918711304 |
28 | 04103 | 11044 | Andacollo | 217096.4 | 2017 | 2397612293 |
29 | 04104 | 4241 | La Higuera | 231674.2 | 2017 | 982530309 |
30 | 04105 | 4497 | Paiguano | 174868.5 | 2017 | 786383423 |
31 | 04106 | 27771 | Vicuña | 169077.1 | 2017 | 4695441470 |
32 | 04201 | 30848 | Illapel | 165639.6 | 2017 | 5109649759 |
33 | 04202 | 9093 | Canela | 171370.3 | 2017 | 1558270441 |
34 | 04203 | 21382 | Los Vilos | 173238.5 | 2017 | 3704185607 |
35 | 04204 | 29347 | Salamanca | 193602.0 | 2017 | 5681637894 |
36 | 04301 | 111272 | Ovalle | 230819.8 | 2017 | 25683781418 |
37 | 04302 | 13322 | Combarbalá | 172709.2 | 2017 | 2300832587 |
38 | 04303 | 30751 | Monte Patria | 189761.6 | 2017 | 5835357638 |
39 | 04304 | 10956 | Punitaqui | 165862.0 | 2017 | 1817183694 |
40 | 04305 | 4278 | Río Hurtado | 182027.2 | 2017 | 778712384 |
41 | 05101 | 296655 | Valparaíso | 251998.5 | 2017 | 74756602991 |
42 | 05102 | 26867 | Casablanca | 252317.7 | 2017 | 6779018483 |
45 | 05105 | 18546 | Puchuncaví | 231606.0 | 2017 | 4295363979 |
46 | 05107 | 31923 | Quintero | 285125.8 | 2017 | 9102071069 |
49 | 05301 | 66708 | Los Andes | 280548.0 | 2017 | 18714795984 |
50 | 05302 | 14832 | Calle Larga | 234044.6 | 2017 | 3471349123 |
51 | 05303 | 10207 | Rinconada | 246136.9 | 2017 | 2512319225 |
52 | 05304 | 18855 | San Esteban | 211907.3 | 2017 | 3995512770 |
53 | 05401 | 35390 | La Ligua | 172675.9 | 2017 | 6111000517 |
54 | 05402 | 19388 | Cabildo | 212985.0 | 2017 | 4129354103 |
56 | 05404 | 9826 | Petorca | 270139.8 | 2017 | 2654393853 |
57 | 05405 | 7339 | Zapallar | 235661.4 | 2017 | 1729518700 |
58 | 05501 | 90517 | Quillota | 212067.6 | 2017 | 19195726144 |
59 | 05502 | 50554 | Calera | 226906.2 | 2017 | 11471016698 |
60 | 05503 | 17988 | Hijuelas | 215402.0 | 2017 | 3874650405 |
61 | 05504 | 22098 | La Cruz | 243333.4 | 2017 | 5377180726 |
62 | 05506 | 22120 | Nogales | 219800.7 | 2017 | 4861992055 |
63 | 05601 | 91350 | San Antonio | 230261.5 | 2017 | 21034388728 |
1.3 Unión Censo-Casen:
y creamos la columna multipob:
= merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
comunas_censo_casen head(comunas_censo_casen,5)
## código zona Freq personas comuna promedio_i año
## 1 11101 11101022031 3 57818 Coyhaique 230013 2017
## 2 11101 11101022003 1 57818 Coyhaique 230013 2017
## 3 11101 11101052014 3 57818 Coyhaique 230013 2017
## 4 11101 11101052039 1 57818 Coyhaique 230013 2017
## 5 11101 11101052901 3 57818 Coyhaique 230013 2017
## ingresos_expandidos
## 1 13298894369
## 2 13298894369
## 3 13298894369
## 4 13298894369
## 5 13298894369
1.4 Unión de la proporcion zonal por comuna con la tabla censo-casen:
unimos a nuestra tabla de proporciones zonales por comuna:
Para calcular la variable multipob, debemos multiplicarla por su proporcion zonal respecto a la comunal.
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
1.5 Ingreso promedio expandido por zona (multi_pob)
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
<- readRDS("../tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "zona"
= merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
comunas_censo_casen head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 11101022003 11101 1 57818 Coyhaique 230013 2017
## 2 11101022031 11101 3 57818 Coyhaique 230013 2017
## 3 11101022038 11101 5 57818 Coyhaique 230013 2017
## 4 11101032005 11101 1 57818 Coyhaique 230013 2017
## 5 11101032015 11101 2 57818 Coyhaique 230013 2017
## ingresos_expandidos Freq.y p código.y
## 1 13298894369 11 0.0001902522 11101
## 2 13298894369 55 0.0009512609 11101
## 3 13298894369 339 0.0058632260 11101
## 4 13298894369 53 0.0009166695 11101
## 5 13298894369 90 0.0015566087 11101
$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p comunas_censo_casen
head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 11101022003 11101 1 57818 Coyhaique 230013 2017
## 2 11101022031 11101 3 57818 Coyhaique 230013 2017
## 3 11101022038 11101 5 57818 Coyhaique 230013 2017
## 4 11101032005 11101 1 57818 Coyhaique 230013 2017
## 5 11101032015 11101 2 57818 Coyhaique 230013 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 13298894369 11 0.0001902522 11101 2530144
## 2 13298894369 55 0.0009512609 11101 12650718
## 3 13298894369 339 0.0058632260 11101 77974423
## 4 13298894369 53 0.0009166695 11101 12190692
## 5 13298894369 90 0.0015566087 11101 20701174
1.6 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
1.6.1 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
1.6.2 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
1.6.3 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- lm( multipob~(Freq.x) , data=comunas_censo_casen)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -97537776 -11076312 -5120611 5658842 91106152
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6445126 3278014 1.966 0.0521 .
## Freq.x 5977864 400327 14.932 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 26060000 on 100 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.6904, Adjusted R-squared: 0.6873
## F-statistic: 223 on 1 and 100 DF, p-value: < 2.2e-16
1.6.4 Gráfica de la recta de regresión lineal
ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
1.7 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos1
<- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind
<<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind <<- comunas_censo_casen
h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
1 | cuadrático | 0.687285657048526 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.687285657048526 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.657642083793764 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
5 | raíz-raíz | 0.655162496796432 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.611519510215805 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
8 | log-log | 0.572072977480392 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.549658162794281 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.543644051479293 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
Elegimos el 4 pues tiene el ma alto \(R^2\)
<- h_y_m_comuna_corr_01
h_y_m_comuna_corr <- 4
metodo
switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)summary(linearMod)
##
## Call:
## lm(formula = multipob ~ sqrt(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -97660625 -14800211 -983521 10226732 104202763
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29404628 5445175 -5.40 4.51e-07 ***
## sqrt(Freq.x) 33840753 2423307 13.96 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 27270000 on 100 degrees of freedom
## (7 observations deleted due to missingness)
## Multiple R-squared: 0.661, Adjusted R-squared: 0.6576
## F-statistic: 195 on 1 and 100 DF, p-value: < 2.2e-16
<- linearMod$coefficients[1]
aa aa
## (Intercept)
## -29404628
<- linearMod$coefficients[2]
bb bb
## sqrt(Freq.x)
## 33840753
1.8 Modelo raíz cuadrada (raíz cuadrada)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6576).
1.8.1 Diagrama de dispersión sobre raíz cuadrada
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=sqrt(comunas_censo_casen$Freq.x), y=(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
ggplot(comunas_censo_casen, aes(x = sqrt(Freq.x) , y = (multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")
1.8.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
1.8.3 Ecuación del modelo
raíz cuadrada
\[ \hat Y = \-29404628 + \33840753 \sqrt {X} \]
1.9 10 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing <- aa + bb * sqrt (h_y_m_comuna_corr$Freq.x) h_y_m_comuna_corr
1.10 11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
$ing_medio_zona <- h_y_m_comuna_corr$est_ing /( h_y_m_comuna_corr$personas * h_y_m_comuna_corr$p)
h_y_m_comuna_corr
<- h_y_m_comuna_corr[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11101022003 | 11101 | 1 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 11 | 0.0001903 | 11101 | 2530144 | 4436124 | 403284.03 |
11101022031 | 11101 | 3 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 55 | 0.0009513 | 11101 | 12650718 | 29209275 | 531077.72 |
11101022038 | 11101 | 5 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 339 | 0.0058632 | 11101 | 77974423 | 46265595 | 136476.68 |
11101032005 | 11101 | 1 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 53 | 0.0009167 | 11101 | 12190692 | 4436124 | 83700.46 |
11101032015 | 11101 | 2 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 90 | 0.0015566 | 11101 | 20701174 | 18453423 | 205038.03 |
11101032032 | 11101 | 4 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 257 | 0.0044450 | 11101 | 59113353 | 38276877 | 148937.26 |
11101032901 | 11101 | 2 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 43 | 0.0007437 | 11101 | 9890561 | 18453423 | 429149.37 |
11101052004 | 11101 | 6 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 474 | 0.0081981 | 11101 | 109026184 | 53487948 | 112843.77 |
11101052008 | 11101 | 1 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 76 | 0.0013145 | 11101 | 17480992 | 4436124 | 58370.06 |
11101052014 | 11101 | 3 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 250 | 0.0043239 | 11101 | 57503262 | 29209275 | 116837.10 |
11101052039 | 11101 | 1 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 62 | 0.0010723 | 11101 | 14260809 | 4436124 | 71550.39 |
11101052901 | 11101 | 3 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 50 | 0.0008648 | 11101 | 11500652 | 29209275 | 584185.49 |
11101062020 | 11101 | 1 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 37 | 0.0006399 | 11101 | 8510483 | 4436124 | 119895.25 |
11101072014 | 11101 | 1 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 107 | 0.0018506 | 11101 | 24611396 | 4436124 | 41459.11 |
11101072018 | 11101 | 21 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 806 | 0.0139403 | 11101 | 185390516 | 125673182 | 155922.06 |
11101072019 | 11101 | 4 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 102 | 0.0017642 | 11101 | 23461331 | 38276877 | 375263.50 |
11101072020 | 11101 | 8 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 190 | 0.0032862 | 11101 | 43702479 | 66311474 | 349007.76 |
11101072035 | 11101 | 1 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 109 | 0.0018852 | 11101 | 25071422 | 4436124 | 40698.39 |
11101072036 | 11101 | 9 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 539 | 0.0093224 | 11101 | 123977032 | 72117629 | 133798.94 |
11101092002 | 11101 | 5 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 92 | 0.0015912 | 11101 | 21161200 | 46265595 | 502886.90 |
11101092007 | 11101 | 1 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 29 | 0.0005016 | 11101 | 6670378 | 4436124 | 152969.80 |
11101102011 | 11101 | 7 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 143 | 0.0024733 | 11101 | 32891866 | 60129587 | 420486.62 |
11101102020 | 11101 | 9 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 250 | 0.0043239 | 11101 | 57503262 | 72117629 | 288470.52 |
11101102033 | 11101 | 26 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 763 | 0.0131966 | 11101 | 175499955 | 143150029 | 187614.72 |
11101112001 | 11101 | 2 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 186 | 0.0032170 | 11101 | 42782427 | 18453423 | 99211.95 |
11101112009 | 11101 | 6 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 198 | 0.0034245 | 11101 | 45542583 | 53487948 | 270141.15 |
11101112011 | 11101 | 16 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 579 | 0.0100142 | 11101 | 133177554 | 105958382 | 183002.39 |
11101112013 | 11101 | 23 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 615 | 0.0106368 | 11101 | 141458024 | 132889920 | 216081.17 |
11101112029 | 11101 | 14 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 304 | 0.0052579 | 11101 | 69923966 | 97215873 | 319789.06 |
11101122011 | 11101 | 6 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 206 | 0.0035629 | 11101 | 47382688 | 53487948 | 259650.23 |
11101132011 | 11101 | 3 | 57818 | Coyhaique | 230013.0 | 2017 | 13298894369 | 44 | 0.0007610 | 11101 | 10120574 | 29209275 | 663847.15 |
11102012004 | 11102 | 8 | NA | NA | NA | NA | NA | 308 | 0.3615023 | 11102 | NA | 66311474 | NA |
11102032001 | 11102 | 1 | NA | NA | NA | NA | NA | 56 | 0.0657277 | 11102 | NA | 4436124 | NA |
11102042003 | 11102 | 4 | NA | NA | NA | NA | NA | 244 | 0.2863850 | 11102 | NA | 38276877 | NA |
11102052002 | 11102 | 3 | NA | NA | NA | NA | NA | 203 | 0.2382629 | 11102 | NA | 29209275 | NA |
11201012009 | 11201 | 3 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 52 | 0.0021704 | 11201 | 12823956 | 29209275 | 561716.82 |
11201012012 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 17 | 0.0007095 | 11201 | 4192447 | 4436124 | 260948.49 |
11201012055 | 11201 | 4 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 148 | 0.0061772 | 11201 | 36498951 | 38276877 | 258627.55 |
11201012060 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 72 | 0.0030051 | 11201 | 17756246 | 4436124 | 61612.84 |
11201012066 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 37 | 0.0015443 | 11201 | 9124738 | 4436124 | 119895.25 |
11201012067 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 98 | 0.0040903 | 11201 | 24168224 | 18453423 | 188300.23 |
11201012901 | 11201 | 4 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 172 | 0.0071789 | 11201 | 42417699 | 38276877 | 222539.98 |
11201022014 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 60 | 0.0025043 | 11201 | 14796872 | 4436124 | 73935.41 |
11201022043 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 44 | 0.0018365 | 11201 | 10851039 | 18453423 | 419395.98 |
11201022057 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 58 | 0.0024208 | 11201 | 14303643 | 18453423 | 318162.47 |
11201032010 | 11201 | 3 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 29 | 0.0012104 | 11201 | 7151821 | 29209275 | 1007216.36 |
11201032012 | 11201 | 3 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 56 | 0.0023373 | 11201 | 13810414 | 29209275 | 521594.19 |
11201032038 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 41 | 0.0017113 | 11201 | 10111196 | 18453423 | 450083.49 |
11201032068 | 11201 | 10 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 149 | 0.0062190 | 11201 | 36745565 | 77609228 | 520867.30 |
11201042006 | 11201 | 4 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 244 | 0.0101841 | 11201 | 60173946 | 38276877 | 156872.45 |
11201052020 | 11201 | 4 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 78 | 0.0032556 | 11201 | 19235933 | 38276877 | 490729.19 |
11201052033 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 15 | 0.0006261 | 11201 | 3699218 | 4436124 | 295741.62 |
11201052035 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 15 | 0.0006261 | 11201 | 3699218 | 18453423 | 1230228.20 |
11201052901 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 14 | 0.0005843 | 11201 | 3452603 | 4436124 | 316866.02 |
11201062005 | 11201 | 4 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 229 | 0.0095580 | 11201 | 56474728 | 38276877 | 167147.93 |
11201062022 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 21 | 0.0008765 | 11201 | 5178905 | 4436124 | 211244.01 |
11201062024 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 18 | 0.0007513 | 11201 | 4439062 | 4436124 | 246451.35 |
11201062025 | 11201 | 3 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 38 | 0.0015860 | 11201 | 9371352 | 29209275 | 768665.12 |
11201062026 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 6 | 0.0002504 | 11201 | 1479687 | 4436124 | 739354.05 |
11201062027 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 37 | 0.0015443 | 11201 | 9124738 | 18453423 | 498741.16 |
11201062028 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 11 | 0.0004591 | 11201 | 2712760 | 4436124 | 403284.03 |
11201062029 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 20 | 0.0008348 | 11201 | 4932291 | 18453423 | 922671.15 |
11201062030 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 14 | 0.0005843 | 11201 | 3452603 | 4436124 | 316866.02 |
11201062031 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 68 | 0.0028382 | 11201 | 16769788 | 4436124 | 65237.12 |
11201062032 | 11201 | 9 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 155 | 0.0064694 | 11201 | 38225252 | 72117629 | 465275.03 |
11201062035 | 11201 | 4 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 49 | 0.0020452 | 11201 | 12084112 | 38276877 | 781160.75 |
11201062036 | 11201 | 6 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 112 | 0.0046747 | 11201 | 27620828 | 53487948 | 477570.96 |
11201062044 | 11201 | 6 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 541 | 0.0225802 | 11201 | 133418461 | 53487948 | 98868.67 |
11201062063 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 47 | 0.0019617 | 11201 | 11590883 | 18453423 | 392626.02 |
11201072015 | 11201 | 1 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 41 | 0.0017113 | 11201 | 10111196 | 4436124 | 108198.15 |
11201072021 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 23 | 0.0009600 | 11201 | 5672134 | 18453423 | 802322.74 |
11201072040 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 38 | 0.0015860 | 11201 | 9371352 | 18453423 | 485616.39 |
11201072901 | 11201 | 2 | 23959 | Aysén | 246614.5 | 2017 | 5908637554 | 208 | 0.0086815 | 11201 | 51295823 | 18453423 | 88718.38 |
11202012007 | 11202 | 2 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 89 | 0.0136566 | 11202 | 23354727 | 18453423 | 207341.83 |
11202012019 | 11202 | 9 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 127 | 0.0194875 | 11202 | 33326409 | 72117629 | 567855.35 |
11202022016 | 11202 | 1 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 280 | 0.0429646 | 11202 | 73475547 | 4436124 | 15843.30 |
11202022020 | 11202 | 34 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 1037 | 0.1591223 | 11202 | 272121935 | 167919172 | 161927.84 |
11202042004 | 11202 | 2 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 36 | 0.0055240 | 11202 | 9446856 | 18453423 | 512595.08 |
11202042006 | 11202 | 1 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 39 | 0.0059843 | 11202 | 10234094 | 4436124 | 113746.78 |
11202042009 | 11202 | 1 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 7 | 0.0010741 | 11202 | 1836889 | 4436124 | 633732.04 |
11202042011 | 11202 | 1 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 25 | 0.0038361 | 11202 | 6560317 | 4436124 | 177444.97 |
11202042012 | 11202 | 1 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 39 | 0.0059843 | 11202 | 10234094 | 4436124 | 113746.78 |
11202042013 | 11202 | 1 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 16 | 0.0024551 | 11202 | 4198603 | 4436124 | 277257.77 |
11202042014 | 11202 | 1 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 43 | 0.0065981 | 11202 | 11283745 | 4436124 | 103165.68 |
11202052015 | 11202 | 3 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 10 | 0.0015344 | 11202 | 2624127 | 29209275 | 2920927.45 |
11202052017 | 11202 | 3 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 79 | 0.0121221 | 11202 | 20730601 | 29209275 | 369737.65 |
11202052021 | 11202 | 4 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 239 | 0.0366733 | 11202 | 62716627 | 38276877 | 160154.30 |
11202052023 | 11202 | 4 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 170 | 0.0260856 | 11202 | 44610153 | 38276877 | 225158.10 |
11202052901 | 11202 | 3 | 6517 | Cisnes | 262412.7 | 2017 | 1710143349 | 40 | 0.0061378 | 11202 | 10496507 | 29209275 | 730231.86 |
11301012003 | 11301 | 1 | 3490 | Cochrane | 211652.6 | 2017 | 738667487 | 78 | 0.0223496 | 11301 | 16508901 | 4436124 | 56873.39 |
11301012004 | 11301 | 1 | 3490 | Cochrane | 211652.6 | 2017 | 738667487 | 76 | 0.0217765 | 11301 | 16085596 | 4436124 | 58370.06 |
11301012018 | 11301 | 6 | 3490 | Cochrane | 211652.6 | 2017 | 738667487 | 56 | 0.0160458 | 11301 | 11852544 | 53487948 | 955141.93 |
11301022016 | 11301 | 18 | 3490 | Cochrane | 211652.6 | 2017 | 738667487 | 78 | 0.0223496 | 11301 | 16508901 | 114169525 | 1463711.86 |
11302042003 | 11302 | 1 | NA | NA | NA | NA | NA | 59 | 0.0944000 | 11302 | NA | 4436124 | NA |
11302042005 | 11302 | 14 | NA | NA | NA | NA | NA | 523 | 0.8368000 | 11302 | NA | 97215873 | NA |
11303012013 | 11303 | 17 | NA | NA | NA | NA | NA | 445 | 0.8508604 | 11303 | NA | 110124369 | NA |
11401012001 | 11401 | 2 | 4865 | Chile Chico | 188913.8 | 2017 | 919065674 | 60 | 0.0123330 | 11401 | 11334828 | 18453423 | 307557.05 |
11401012002 | 11401 | 21 | 4865 | Chile Chico | 188913.8 | 2017 | 919065674 | 572 | 0.1175745 | 11401 | 108058698 | 125673182 | 219708.36 |
11401012901 | 11401 | 8 | 4865 | Chile Chico | 188913.8 | 2017 | 919065674 | 91 | 0.0187050 | 11401 | 17191157 | 66311474 | 728697.52 |
11401022008 | 11401 | 3 | 4865 | Chile Chico | 188913.8 | 2017 | 919065674 | 172 | 0.0353546 | 11401 | 32493175 | 29209275 | 169821.36 |
Guardamos:
saveRDS(h_y_m_comuna_corr, "Rural/region_11_ESCOLARIDAD_r.rds")
1.11 Referencias
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda