date: 20-07-2021
1 Generación de ingresos expandidos a nivel Urbano
En los siguientes rpubs sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_rural_17.rds”:
1.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “ESCOLARIDAD” del campo ESCOLARIDAD del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).
1.1.1 Lectura y filtrado de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<- readRDS("../censo_personas_con_clave_17")
tabla_con_clave <- tabla_con_clave[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Despleguemos los códigos de regiones de nuestra tabla:
<- unique(tabla_con_clave$REGION)
regiones regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la region = 1, y área URBANA = 1.
<- filter(tabla_con_clave, tabla_con_clave$REGION == 8)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) tabla_con_clave
1.1.2 Cálculo de frecuencias
Obtenemos las frecuencias a la pregunta ESCOLARIDAD por zona:
<- tabla_con_clave[,c("clave","ESCOLARIDAD","COMUNA") ] tabla_con_clave_f
Renombramos y filtramos por la categoria Trabajo por un sueldo
== 1:
names(tabla_con_clave_f)[2] <- "ESCOLARIDAD"
<- filter(tabla_con_clave_f, tabla_con_clave_f$ESCOLARIDAD == 14) tabla_con_clave_ff
# Determinamos las frecuencias por zona:
<- tabla_con_clave_ff$clave
b <- tabla_con_clave_ff$ESCOLARIDAD
c <- tabla_con_clave_ff$COMUNA
d = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d names(d)[1] <- "zona"
$anio <- "2017"
d
head(d,5)
## zona unlist.c. unlist.d. Freq anio
## 1 8101252025 14 8101 1 2017
## 2 8101292012 14 8101 1 2017
## 3 8101292020 14 8101 4 2017
## 4 8101292023 14 8101 1 2017
## 5 8101302001 14 8101 4 2017
Agregamos un cero a los códigos comunales de cuatro dígitos:
<- d$unlist.d.
codigos <- seq(1:nrow(d))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
comuna_corr names(comuna_corr)[4] <- "código"
1.1.3 Tabla de frecuencias:
head(comuna_corr,5)
## zona Freq anio código
## 1 8101252025 1 2017 08101
## 2 8101292012 1 2017 08101
## 3 8101292020 4 2017 08101
## 4 8101292023 1 2017 08101
## 5 8101302001 4 2017 08101
1.2 Variable CASEN
1.2.1 Tabla de ingresos expandidos
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
<- readRDS("../ingresos_expandidos_rural_17.rds")
h_y_m_2017_censo <- head(h_y_m_2017_censo,50)
tablamadre kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | personas | comuna | promedio_i | año | ingresos_expandidos | |
---|---|---|---|---|---|---|
1 | 01101 | 191468 | Iquique | 272529.7 | 2017 | 52180713221 |
3 | 01401 | 15711 | Pozo Almonte | 243272.4 | 2017 | 3822052676 |
4 | 01402 | 1250 | Camiña | 226831.0 | 2017 | 283538750 |
6 | 01404 | 2730 | Huara | 236599.7 | 2017 | 645917134 |
7 | 01405 | 9296 | Pica | 269198.0 | 2017 | 2502464414 |
10 | 02103 | 10186 | Sierra Gorda | 322997.9 | 2017 | 3290056742 |
11 | 02104 | 13317 | Taltal | 288653.8 | 2017 | 3844002134 |
12 | 02201 | 165731 | Calama | 238080.9 | 2017 | 39457387800 |
14 | 02203 | 10996 | San Pedro de Atacama | 271472.6 | 2017 | 2985112297 |
15 | 02301 | 25186 | Tocopilla | 166115.9 | 2017 | 4183793832 |
17 | 03101 | 153937 | Copiapó | 251396.0 | 2017 | 38699138722 |
19 | 03103 | 14019 | Tierra Amarilla | 287819.4 | 2017 | 4034940816 |
21 | 03202 | 13925 | Diego de Almagro | 326439.0 | 2017 | 4545663075 |
22 | 03301 | 51917 | Vallenar | 217644.6 | 2017 | 11299454698 |
23 | 03302 | 5299 | Alto del Carmen | 196109.9 | 2017 | 1039186477 |
24 | 03303 | 7041 | Freirina | 202463.8 | 2017 | 1425547554 |
25 | 03304 | 10149 | Huasco | 205839.6 | 2017 | 2089066548 |
26 | 04101 | 221054 | La Serena | 200287.4 | 2017 | 44274327972 |
27 | 04102 | 227730 | Coquimbo | 206027.8 | 2017 | 46918711304 |
28 | 04103 | 11044 | Andacollo | 217096.4 | 2017 | 2397612293 |
29 | 04104 | 4241 | La Higuera | 231674.2 | 2017 | 982530309 |
30 | 04105 | 4497 | Paiguano | 174868.5 | 2017 | 786383423 |
31 | 04106 | 27771 | Vicuña | 169077.1 | 2017 | 4695441470 |
32 | 04201 | 30848 | Illapel | 165639.6 | 2017 | 5109649759 |
33 | 04202 | 9093 | Canela | 171370.3 | 2017 | 1558270441 |
34 | 04203 | 21382 | Los Vilos | 173238.5 | 2017 | 3704185607 |
35 | 04204 | 29347 | Salamanca | 193602.0 | 2017 | 5681637894 |
36 | 04301 | 111272 | Ovalle | 230819.8 | 2017 | 25683781418 |
37 | 04302 | 13322 | Combarbalá | 172709.2 | 2017 | 2300832587 |
38 | 04303 | 30751 | Monte Patria | 189761.6 | 2017 | 5835357638 |
39 | 04304 | 10956 | Punitaqui | 165862.0 | 2017 | 1817183694 |
40 | 04305 | 4278 | Río Hurtado | 182027.2 | 2017 | 778712384 |
41 | 05101 | 296655 | Valparaíso | 251998.5 | 2017 | 74756602991 |
42 | 05102 | 26867 | Casablanca | 252317.7 | 2017 | 6779018483 |
45 | 05105 | 18546 | Puchuncaví | 231606.0 | 2017 | 4295363979 |
46 | 05107 | 31923 | Quintero | 285125.8 | 2017 | 9102071069 |
49 | 05301 | 66708 | Los Andes | 280548.0 | 2017 | 18714795984 |
50 | 05302 | 14832 | Calle Larga | 234044.6 | 2017 | 3471349123 |
51 | 05303 | 10207 | Rinconada | 246136.9 | 2017 | 2512319225 |
52 | 05304 | 18855 | San Esteban | 211907.3 | 2017 | 3995512770 |
53 | 05401 | 35390 | La Ligua | 172675.9 | 2017 | 6111000517 |
54 | 05402 | 19388 | Cabildo | 212985.0 | 2017 | 4129354103 |
56 | 05404 | 9826 | Petorca | 270139.8 | 2017 | 2654393853 |
57 | 05405 | 7339 | Zapallar | 235661.4 | 2017 | 1729518700 |
58 | 05501 | 90517 | Quillota | 212067.6 | 2017 | 19195726144 |
59 | 05502 | 50554 | Calera | 226906.2 | 2017 | 11471016698 |
60 | 05503 | 17988 | Hijuelas | 215402.0 | 2017 | 3874650405 |
61 | 05504 | 22098 | La Cruz | 243333.4 | 2017 | 5377180726 |
62 | 05506 | 22120 | Nogales | 219800.7 | 2017 | 4861992055 |
63 | 05601 | 91350 | San Antonio | 230261.5 | 2017 | 21034388728 |
1.3 Unión Censo-Casen:
y creamos la columna multipob:
= merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
comunas_censo_casen head(comunas_censo_casen,5)
## código zona Freq personas comuna promedio_i año
## 1 08101 8101302011 13 223574 Concepción 197625.8 2017
## 2 08101 8101302018 1 223574 Concepción 197625.8 2017
## 3 08101 8101302901 5 223574 Concepción 197625.8 2017
## 4 08101 8101312001 8 223574 Concepción 197625.8 2017
## 5 08101 8101312004 1 223574 Concepción 197625.8 2017
## ingresos_expandidos
## 1 44183983882
## 2 44183983882
## 3 44183983882
## 4 44183983882
## 5 44183983882
1.4 Unión de la proporcion zonal por comuna con la tabla censo-casen:
unimos a nuestra tabla de proporciones zonales por comuna:
Para calcular la variable multipob, debemos multiplicarla por su proporcion zonal respecto a la comunal.
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
1.5 Ingreso promedio expandido por zona (multi_pob)
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
<- readRDS("../tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "zona"
= merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
comunas_censo_casen head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 8101252025 08101 1 223574 Concepción 197625.8 2017
## 2 8101292012 08101 1 223574 Concepción 197625.8 2017
## 3 8101292020 08101 4 223574 Concepción 197625.8 2017
## 4 8101292023 08101 1 223574 Concepción 197625.8 2017
## 5 8101302001 08101 4 223574 Concepción 197625.8 2017
## ingresos_expandidos Freq.y p código.y
## 1 44183983882 60 0.0002683675 08101
## 2 44183983882 86 0.0003846601 08101
## 3 44183983882 61 0.0002728403 08101
## 4 44183983882 54 0.0002415308 08101
## 5 44183983882 280 0.0012523818 08101
$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p comunas_censo_casen
head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 8101252025 08101 1 223574 Concepción 197625.8 2017
## 2 8101292012 08101 1 223574 Concepción 197625.8 2017
## 3 8101292020 08101 4 223574 Concepción 197625.8 2017
## 4 8101292023 08101 1 223574 Concepción 197625.8 2017
## 5 8101302001 08101 4 223574 Concepción 197625.8 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 44183983882 60 0.0002683675 08101 11857546
## 2 44183983882 86 0.0003846601 08101 16995816
## 3 44183983882 61 0.0002728403 08101 12055172
## 4 44183983882 54 0.0002415308 08101 10671792
## 5 44183983882 280 0.0012523818 08101 55335216
1.6 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
1.6.1 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
1.6.2 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
1.6.3 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- lm( multipob~(Freq.x) , data=comunas_censo_casen)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -325662294 -13531420 -5402802 9564238 278010503
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10324730 1686460 6.122 1.66e-09 ***
## Freq.x 6582585 161133 40.852 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 34970000 on 608 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.733, Adjusted R-squared: 0.7325
## F-statistic: 1669 on 1 and 608 DF, p-value: < 2.2e-16
1.6.4 Gráfica de la recta de regresión lineal
ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
1.7 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos1
<- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind
<<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind <<- comunas_censo_casen
h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
5 | raíz-raíz | 0.735190706178707 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
1 | cuadrático | 0.732528312828263 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.732528312828263 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.704425343090495 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.673911537022858 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
8 | log-log | 0.609472771561497 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.568792599226549 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.548202342738502 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
Elegimos el 5 pues tiene el ma alto \(R^2\)
<- h_y_m_comuna_corr_01
h_y_m_comuna_corr <- 5
metodo
switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)summary(linearMod)
##
## Call:
## lm(formula = sqrt(multipob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8199.8 -1243.1 -144.9 1101.2 7521.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 949.59 141.79 6.697 4.84e-11 ***
## sqrt(Freq.x) 2445.56 59.46 41.131 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1867 on 608 degrees of freedom
## (9 observations deleted due to missingness)
## Multiple R-squared: 0.7356, Adjusted R-squared: 0.7352
## F-statistic: 1692 on 1 and 608 DF, p-value: < 2.2e-16
<- linearMod$coefficients[1]
aa aa
## (Intercept)
## 949.5944
<- linearMod$coefficients[2]
bb bb
## sqrt(Freq.x)
## 2445.561
## Modelo raíz-raíz (raíz-raíz)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.7352).
1.7.1 Diagrama de dispersión sobre raíz-raíz
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=sqrt(comunas_censo_casen$Freq.x), y=sqrt(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
ggplot(comunas_censo_casen, aes(x = sqrt(Freq.x) , y = sqrt(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")
1.7.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
1.7.3 Ecuación del modelo
Modelo raíz-raíz
\[ \hat Y = {\ 1489.315}^2 + 2 \ 1489.315 \ 2679.367 \sqrt{X}+ \ 2679.367^2 X \]
1.8 10 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing = { aa}^2 + 2 * aa * bb * sqrt(h_y_m_comuna_corr$Freq.x)+ bb^2 * (h_y_m_comuna_corr$Freq.x) h_y_m_comuna_corr
1.9 11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
$ing_medio_zona <- h_y_m_comuna_corr$est_ing /( h_y_m_comuna_corr$personas * h_y_m_comuna_corr$p)
h_y_m_comuna_corr
<- h_y_m_comuna_corr[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8101252025 | 08101 | 1 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 60 | 0.0002684 | 08101 | 11857546 | 11527077 | 192117.96 |
8101292012 | 08101 | 1 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 86 | 0.0003847 | 08101 | 16995816 | 11527077 | 134035.78 |
8101292020 | 08101 | 4 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 61 | 0.0002728 | 08101 | 12055172 | 34113958 | 559245.21 |
8101292023 | 08101 | 1 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 54 | 0.0002415 | 08101 | 10671792 | 11527077 | 213464.39 |
8101302001 | 08101 | 4 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 280 | 0.0012524 | 08101 | 55335216 | 34113958 | 121835.56 |
8101302005 | 08101 | 16 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 688 | 0.0030773 | 08101 | 135966530 | 115172319 | 167401.63 |
8101302008 | 08101 | 2 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 98 | 0.0004383 | 08101 | 19367325 | 19431692 | 198282.58 |
8101302011 | 08101 | 13 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 469 | 0.0020977 | 08101 | 92686486 | 95397970 | 203407.19 |
8101302018 | 08101 | 1 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 51 | 0.0002281 | 08101 | 10078914 | 11527077 | 226021.12 |
8101302019 | 08101 | 5 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 198 | 0.0008856 | 08101 | 39129902 | 41191162 | 208036.17 |
8101302021 | 08101 | 7 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 401 | 0.0017936 | 08101 | 79247934 | 55055502 | 137295.52 |
8101302901 | 08101 | 5 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 16 | 0.0000716 | 08101 | 3162012 | 41191162 | 2574447.59 |
8101312001 | 08101 | 8 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 90 | 0.0004026 | 08101 | 17786319 | 61884721 | 687608.01 |
8101312004 | 08101 | 1 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 63 | 0.0002818 | 08101 | 12450424 | 11527077 | 182969.48 |
8101312013 | 08101 | 25 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 1045 | 0.0046741 | 08101 | 206518930 | 173643799 | 166166.31 |
8101312014 | 08101 | 21 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 534 | 0.0023885 | 08101 | 105532161 | 147781971 | 276745.26 |
8101312017 | 08101 | 4 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 47 | 0.0002102 | 08101 | 9288411 | 34113958 | 725828.90 |
8101322025 | 08101 | 3 | 223574 | Concepción | 197625.8 | 2017 | 44183983882 | 100 | 0.0004473 | 08101 | 19762577 | 26888680 | 268886.80 |
8102062004 | 08102 | 1 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 29 | 0.0002494 | 08102 | 6293523 | 11527077 | 397485.42 |
8102062005 | 08102 | 18 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 350 | 0.0030104 | 08102 | 75956318 | 128260816 | 366459.47 |
8102062009 | 08102 | 21 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 382 | 0.0032857 | 08102 | 82900895 | 147781971 | 386863.80 |
8102072005 | 08102 | 22 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 624 | 0.0053672 | 08102 | 135419264 | 154263610 | 247217.32 |
8102092010 | 08102 | 6 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 298 | 0.0025632 | 08102 | 64671379 | 48163183 | 161621.42 |
8102102007 | 08102 | 3 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 744 | 0.0063993 | 08102 | 161461430 | 26888680 | 36140.70 |
8102102011 | 08102 | 3 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 503 | 0.0043264 | 08102 | 109160080 | 26888680 | 53456.62 |
8102112006 | 08102 | 2 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 55 | 0.0004731 | 08102 | 11935993 | 19431692 | 353303.50 |
8102112008 | 08102 | 5 | 116262 | Coronel | 217018.1 | 2017 | 25230952648 | 104 | 0.0008945 | 08102 | 22569877 | 41191162 | 396068.86 |
8103062006 | 08103 | 2 | NA | NA | NA | NA | NA | 65 | 0.0007564 | 08103 | NA | 19431692 | NA |
8104012015 | 08104 | 3 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 61 | 0.0057417 | 08104 | 8992940 | 26888680 | 440798.03 |
8104012023 | 08104 | 3 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 163 | 0.0153426 | 08104 | 24030314 | 26888680 | 164961.23 |
8104012029 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 45 | 0.0042357 | 08104 | 6634136 | 19431692 | 431815.39 |
8104012037 | 08104 | 4 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 162 | 0.0152485 | 08104 | 23882889 | 34113958 | 210579.99 |
8104012043 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 68 | 0.0064006 | 08104 | 10024916 | 11527077 | 169515.84 |
8104012044 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 214 | 0.0201431 | 08104 | 31549001 | 19431692 | 90802.30 |
8104012052 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 93 | 0.0087538 | 08104 | 13710547 | 19431692 | 208942.93 |
8104012054 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 43 | 0.0040474 | 08104 | 6339285 | 11527077 | 268071.57 |
8104022001 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 42 | 0.0039533 | 08104 | 6191860 | 19431692 | 462659.34 |
8104022035 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 29 | 0.0027297 | 08104 | 4275332 | 11527077 | 397485.42 |
8104022036 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 60 | 0.0056476 | 08104 | 8845514 | 11527077 | 192117.96 |
8104022058 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 78 | 0.0073419 | 08104 | 11499169 | 11527077 | 147783.04 |
8104022901 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 11 | 0.0010354 | 08104 | 1621678 | 11527077 | 1047916.12 |
8104032004 | 08104 | 3 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 175 | 0.0164721 | 08104 | 25799417 | 26888680 | 153649.60 |
8104032019 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 21 | 0.0019767 | 08104 | 3095930 | 11527077 | 548908.44 |
8104032028 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 174 | 0.0163780 | 08104 | 25651992 | 19431692 | 111676.39 |
8104032045 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 244 | 0.0229669 | 08104 | 35971759 | 19431692 | 79638.08 |
8104032053 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 58 | 0.0054593 | 08104 | 8550664 | 19431692 | 335029.18 |
8104032055 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 36 | 0.0033886 | 08104 | 5307309 | 11527077 | 320196.59 |
8104042012 | 08104 | 17 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 745 | 0.0701242 | 08104 | 109831804 | 121724859 | 163389.07 |
8104042014 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 118 | 0.0111069 | 08104 | 17396178 | 11527077 | 97687.10 |
8104042017 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 60 | 0.0056476 | 08104 | 8845514 | 11527077 | 192117.96 |
8104042027 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 18 | 0.0016943 | 08104 | 2653654 | 11527077 | 640393.18 |
8104042030 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 42 | 0.0039533 | 08104 | 6191860 | 11527077 | 274454.22 |
8104042042 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 89 | 0.0083773 | 08104 | 13120846 | 19431692 | 218333.62 |
8104042043 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 29 | 0.0027297 | 08104 | 4275332 | 11527077 | 397485.42 |
8104042047 | 08104 | 4 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 59 | 0.0055535 | 08104 | 8698089 | 34113958 | 578202.68 |
8104042062 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 75 | 0.0070595 | 08104 | 11056893 | 19431692 | 259089.23 |
8104042901 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 60 | 0.0056476 | 08104 | 8845514 | 11527077 | 192117.96 |
8104052003 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 34 | 0.0032003 | 08104 | 5012458 | 11527077 | 339031.69 |
8104052027 | 08104 | 3 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 15 | 0.0014119 | 08104 | 2211379 | 26888680 | 1792578.65 |
8104052029 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 11 | 0.0010354 | 08104 | 1621678 | 11527077 | 1047916.12 |
8104052031 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 61 | 0.0057417 | 08104 | 8992940 | 11527077 | 188968.48 |
8104052032 | 08104 | 3 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 47 | 0.0044239 | 08104 | 6928986 | 26888680 | 572099.57 |
8104052039 | 08104 | 5 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 181 | 0.0170369 | 08104 | 26683968 | 41191162 | 227575.48 |
8104052043 | 08104 | 8 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 291 | 0.0273908 | 08104 | 42900745 | 61884721 | 212662.27 |
8104052054 | 08104 | 3 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 124 | 0.0116717 | 08104 | 18280730 | 26888680 | 216844.19 |
8104052059 | 08104 | 6 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 115 | 0.0108245 | 08104 | 16953903 | 48163183 | 418810.28 |
8104052901 | 08104 | 2 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 87 | 0.0081890 | 08104 | 12825996 | 19431692 | 223352.79 |
8104062001 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 50 | 0.0047063 | 08104 | 7371262 | 11527077 | 230541.55 |
8104062013 | 08104 | 4 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 282 | 0.0265437 | 08104 | 41573918 | 34113958 | 120971.48 |
8104062024 | 08104 | 3 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 141 | 0.0132718 | 08104 | 20786959 | 26888680 | 190699.86 |
8104062049 | 08104 | 7 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 499 | 0.0469691 | 08104 | 73565195 | 55055502 | 110331.67 |
8104062051 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 70 | 0.0065889 | 08104 | 10319767 | 11527077 | 164672.53 |
8104062056 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 122 | 0.0114834 | 08104 | 17985879 | 11527077 | 94484.24 |
8104062901 | 08104 | 1 | 10624 | Florida | 147425.2 | 2017 | 1566245750 | 123 | 0.0115776 | 08104 | 18133305 | 11527077 | 93716.08 |
8105012028 | 08105 | 7 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 137 | 0.0056302 | 08105 | 27771971 | 55055502 | 401864.98 |
8105012034 | 08105 | 2 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 50 | 0.0020548 | 08105 | 10135756 | 19431692 | 388633.85 |
8105022025 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 64 | 0.0026302 | 08105 | 12973767 | 11527077 | 180110.58 |
8105022038 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 15 | 0.0006164 | 08105 | 3040727 | 11527077 | 768471.82 |
8105022044 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 76 | 0.0031233 | 08105 | 15406349 | 11527077 | 151672.07 |
8105022901 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 99 | 0.0040685 | 08105 | 20068796 | 11527077 | 116435.12 |
8105042001 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 31 | 0.0012740 | 08105 | 6284169 | 11527077 | 371841.20 |
8105042003 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 23 | 0.0009452 | 08105 | 4662448 | 11527077 | 501177.27 |
8105042007 | 08105 | 2 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 70 | 0.0028768 | 08105 | 14190058 | 19431692 | 277595.61 |
8105042031 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 63 | 0.0025891 | 08105 | 12771052 | 11527077 | 182969.48 |
8105062017 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 96 | 0.0039453 | 08105 | 19460651 | 11527077 | 120073.72 |
8105062037 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 38 | 0.0015617 | 08105 | 7703174 | 11527077 | 303344.14 |
8105062901 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 22 | 0.0009041 | 08105 | 4459733 | 11527077 | 523958.06 |
8105072901 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 56 | 0.0023014 | 08105 | 11352046 | 11527077 | 205840.67 |
8105082006 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 47 | 0.0019315 | 08105 | 9527610 | 11527077 | 245256.96 |
8105082010 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 135 | 0.0055480 | 08105 | 27366540 | 11527077 | 85385.76 |
8105082051 | 08105 | 9 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 348 | 0.0143016 | 08105 | 70544860 | 68662372 | 197305.67 |
8105082901 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 66 | 0.0027124 | 08105 | 13379198 | 11527077 | 174652.69 |
8105092008 | 08105 | 1 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 16 | 0.0006575 | 08105 | 3243442 | 11527077 | 720442.33 |
8105092041 | 08105 | 13 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 543 | 0.0223154 | 08105 | 110074307 | 95397970 | 175686.87 |
8105102007 | 08105 | 2 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 126 | 0.0051782 | 08105 | 25542104 | 19431692 | 154219.78 |
8105102040 | 08105 | 3 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 95 | 0.0039042 | 08105 | 19257936 | 26888680 | 283038.73 |
8105102046 | 08105 | 2 | 24333 | Hualqui | 202715.1 | 2017 | 4932666876 | 30 | 0.0012329 | 08105 | 6081453 | 19431692 | 647723.08 |
8106052901 | 08106 | 1 | NA | NA | NA | NA | NA | 31 | 0.0007121 | 08106 | NA | 11527077 | NA |
8106062001 | 08106 | 3 | NA | NA | NA | NA | NA | 49 | 0.0011255 | 08106 | NA | 26888680 | NA |
8106062901 | 08106 | 2 | NA | NA | NA | NA | NA | 28 | 0.0006432 | 08106 | NA | 19431692 | NA |
Guardamos:
saveRDS(h_y_m_comuna_corr, "Rural/region_08_ESCOLARIDAD_r.rds")
1.10 Referencias
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda