date: 20-07-2021
1 Generación de ingresos expandidos a nivel Urbano
En los siguientes rpubs sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_rural_17.rds”:
1.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “ESCOLARIDAD” del campo ESCOLARIDAD del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).
1.1.1 Lectura y filtrado de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<- readRDS("../censo_personas_con_clave_17")
tabla_con_clave <- tabla_con_clave[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Despleguemos los códigos de regiones de nuestra tabla:
<- unique(tabla_con_clave$REGION)
regiones regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la region = 1, y área URBANA = 1.
<- filter(tabla_con_clave, tabla_con_clave$REGION == 7)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) tabla_con_clave
1.1.2 Cálculo de frecuencias
Obtenemos las frecuencias a la pregunta ESCOLARIDAD por zona:
<- tabla_con_clave[,c("clave","ESCOLARIDAD","COMUNA") ] tabla_con_clave_f
Renombramos y filtramos por la categoria Trabajo por un sueldo
== 1:
names(tabla_con_clave_f)[2] <- "ESCOLARIDAD"
<- filter(tabla_con_clave_f, tabla_con_clave_f$ESCOLARIDAD == 14) tabla_con_clave_ff
# Determinamos las frecuencias por zona:
<- tabla_con_clave_ff$clave
b <- tabla_con_clave_ff$ESCOLARIDAD
c <- tabla_con_clave_ff$COMUNA
d = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d names(d)[1] <- "zona"
$anio <- "2017"
d
head(d,5)
## zona unlist.c. unlist.d. Freq anio
## 1 7101092003 14 7101 8 2017
## 2 7101092024 14 7101 1 2017
## 3 7101102004 14 7101 2 2017
## 4 7101102005 14 7101 4 2017
## 5 7101102017 14 7101 22 2017
Agregamos un cero a los códigos comunales de cuatro dígitos:
<- d$unlist.d.
codigos <- seq(1:nrow(d))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
comuna_corr names(comuna_corr)[4] <- "código"
1.1.3 Tabla de frecuencias:
head(comuna_corr,5)
## zona Freq anio código
## 1 7101092003 8 2017 07101
## 2 7101092024 1 2017 07101
## 3 7101102004 2 2017 07101
## 4 7101102005 4 2017 07101
## 5 7101102017 22 2017 07101
1.2 Variable CASEN
1.2.1 Tabla de ingresos expandidos
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
<- readRDS("../ingresos_expandidos_rural_17.rds")
h_y_m_2017_censo <- head(h_y_m_2017_censo,50)
tablamadre kbl(tablamadre) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | personas | comuna | promedio_i | año | ingresos_expandidos | |
---|---|---|---|---|---|---|
1 | 01101 | 191468 | Iquique | 272529.7 | 2017 | 52180713221 |
3 | 01401 | 15711 | Pozo Almonte | 243272.4 | 2017 | 3822052676 |
4 | 01402 | 1250 | Camiña | 226831.0 | 2017 | 283538750 |
6 | 01404 | 2730 | Huara | 236599.7 | 2017 | 645917134 |
7 | 01405 | 9296 | Pica | 269198.0 | 2017 | 2502464414 |
10 | 02103 | 10186 | Sierra Gorda | 322997.9 | 2017 | 3290056742 |
11 | 02104 | 13317 | Taltal | 288653.8 | 2017 | 3844002134 |
12 | 02201 | 165731 | Calama | 238080.9 | 2017 | 39457387800 |
14 | 02203 | 10996 | San Pedro de Atacama | 271472.6 | 2017 | 2985112297 |
15 | 02301 | 25186 | Tocopilla | 166115.9 | 2017 | 4183793832 |
17 | 03101 | 153937 | Copiapó | 251396.0 | 2017 | 38699138722 |
19 | 03103 | 14019 | Tierra Amarilla | 287819.4 | 2017 | 4034940816 |
21 | 03202 | 13925 | Diego de Almagro | 326439.0 | 2017 | 4545663075 |
22 | 03301 | 51917 | Vallenar | 217644.6 | 2017 | 11299454698 |
23 | 03302 | 5299 | Alto del Carmen | 196109.9 | 2017 | 1039186477 |
24 | 03303 | 7041 | Freirina | 202463.8 | 2017 | 1425547554 |
25 | 03304 | 10149 | Huasco | 205839.6 | 2017 | 2089066548 |
26 | 04101 | 221054 | La Serena | 200287.4 | 2017 | 44274327972 |
27 | 04102 | 227730 | Coquimbo | 206027.8 | 2017 | 46918711304 |
28 | 04103 | 11044 | Andacollo | 217096.4 | 2017 | 2397612293 |
29 | 04104 | 4241 | La Higuera | 231674.2 | 2017 | 982530309 |
30 | 04105 | 4497 | Paiguano | 174868.5 | 2017 | 786383423 |
31 | 04106 | 27771 | Vicuña | 169077.1 | 2017 | 4695441470 |
32 | 04201 | 30848 | Illapel | 165639.6 | 2017 | 5109649759 |
33 | 04202 | 9093 | Canela | 171370.3 | 2017 | 1558270441 |
34 | 04203 | 21382 | Los Vilos | 173238.5 | 2017 | 3704185607 |
35 | 04204 | 29347 | Salamanca | 193602.0 | 2017 | 5681637894 |
36 | 04301 | 111272 | Ovalle | 230819.8 | 2017 | 25683781418 |
37 | 04302 | 13322 | Combarbalá | 172709.2 | 2017 | 2300832587 |
38 | 04303 | 30751 | Monte Patria | 189761.6 | 2017 | 5835357638 |
39 | 04304 | 10956 | Punitaqui | 165862.0 | 2017 | 1817183694 |
40 | 04305 | 4278 | Río Hurtado | 182027.2 | 2017 | 778712384 |
41 | 05101 | 296655 | Valparaíso | 251998.5 | 2017 | 74756602991 |
42 | 05102 | 26867 | Casablanca | 252317.7 | 2017 | 6779018483 |
45 | 05105 | 18546 | Puchuncaví | 231606.0 | 2017 | 4295363979 |
46 | 05107 | 31923 | Quintero | 285125.8 | 2017 | 9102071069 |
49 | 05301 | 66708 | Los Andes | 280548.0 | 2017 | 18714795984 |
50 | 05302 | 14832 | Calle Larga | 234044.6 | 2017 | 3471349123 |
51 | 05303 | 10207 | Rinconada | 246136.9 | 2017 | 2512319225 |
52 | 05304 | 18855 | San Esteban | 211907.3 | 2017 | 3995512770 |
53 | 05401 | 35390 | La Ligua | 172675.9 | 2017 | 6111000517 |
54 | 05402 | 19388 | Cabildo | 212985.0 | 2017 | 4129354103 |
56 | 05404 | 9826 | Petorca | 270139.8 | 2017 | 2654393853 |
57 | 05405 | 7339 | Zapallar | 235661.4 | 2017 | 1729518700 |
58 | 05501 | 90517 | Quillota | 212067.6 | 2017 | 19195726144 |
59 | 05502 | 50554 | Calera | 226906.2 | 2017 | 11471016698 |
60 | 05503 | 17988 | Hijuelas | 215402.0 | 2017 | 3874650405 |
61 | 05504 | 22098 | La Cruz | 243333.4 | 2017 | 5377180726 |
62 | 05506 | 22120 | Nogales | 219800.7 | 2017 | 4861992055 |
63 | 05601 | 91350 | San Antonio | 230261.5 | 2017 | 21034388728 |
1.3 Unión Censo-Casen:
y creamos la columna multipob:
= merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
comunas_censo_casen head(comunas_censo_casen,5)
## código zona Freq personas comuna promedio_i año ingresos_expandidos
## 1 07101 7101092003 8 220357 Talca 244658 2017 53912095394
## 2 07101 7101092024 1 220357 Talca 244658 2017 53912095394
## 3 07101 7101102004 2 220357 Talca 244658 2017 53912095394
## 4 07101 7101102005 4 220357 Talca 244658 2017 53912095394
## 5 07101 7101102017 22 220357 Talca 244658 2017 53912095394
1.4 Unión de la proporcion zonal por comuna con la tabla censo-casen:
unimos a nuestra tabla de proporciones zonales por comuna:
Para calcular la variable multipob, debemos multiplicarla por su proporcion zonal respecto a la comunal.
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
1.5 Ingreso promedio expandido por zona (multi_pob)
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]
<- readRDS("../tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "zona"
= merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
comunas_censo_casen head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 7101092003 07101 8 220357 Talca 244658 2017
## 2 7101092024 07101 1 220357 Talca 244658 2017
## 3 7101102004 07101 2 220357 Talca 244658 2017
## 4 7101102005 07101 4 220357 Talca 244658 2017
## 5 7101102017 07101 22 220357 Talca 244658 2017
## ingresos_expandidos Freq.y p código.y
## 1 53912095394 191 0.0008667753 07101
## 2 53912095394 50 0.0002269045 07101
## 3 53912095394 66 0.0002995140 07101
## 4 53912095394 260 0.0011799035 07101
## 5 53912095394 991 0.0044972476 07101
$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p comunas_censo_casen
head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 7101092003 07101 8 220357 Talca 244658 2017
## 2 7101092024 07101 1 220357 Talca 244658 2017
## 3 7101102004 07101 2 220357 Talca 244658 2017
## 4 7101102005 07101 4 220357 Talca 244658 2017
## 5 7101102017 07101 22 220357 Talca 244658 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 53912095394 191 0.0008667753 07101 46729671
## 2 53912095394 50 0.0002269045 07101 12232898
## 3 53912095394 66 0.0002995140 07101 16147426
## 4 53912095394 260 0.0011799035 07101 63611071
## 5 53912095394 991 0.0044972476 07101 242456044
1.6 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
1.6.1 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
1.6.2 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
1.6.3 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- lm( multipob~(Freq.x) , data=comunas_censo_casen)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -148083479 -17348870 -5384417 11966568 205005300
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9781981 1640685 5.962 3.69e-09 ***
## Freq.x 9728826 208711 46.614 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35600000 on 827 degrees of freedom
## Multiple R-squared: 0.7243, Adjusted R-squared: 0.724
## F-statistic: 2173 on 1 and 827 DF, p-value: < 2.2e-16
1.6.4 Gráfica de la recta de regresión lineal
ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
1.7 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos1
<- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind
<<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind <<- comunas_censo_casen
h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
1 | cuadrático | 0.723987124639391 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.723987124639391 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
5 | raíz-raíz | 0.707838503880098 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.684110596175769 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.658081642054467 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
8 | log-log | 0.607581426033394 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.57883443871533 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.565082793967918 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
Elegimos el 1 pues tiene el ma alto \(R^2\)
<- h_y_m_comuna_corr_01
h_y_m_comuna_corr <- 1
metodo
switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x^2), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -148083479 -17348870 -5384417 11966568 205005300
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9781981 1640685 5.962 3.69e-09 ***
## Freq.x 9728826 208711 46.614 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35600000 on 827 degrees of freedom
## Multiple R-squared: 0.7243, Adjusted R-squared: 0.724
## F-statistic: 2173 on 1 and 827 DF, p-value: < 2.2e-16
<- linearMod$coefficients[1]
aa aa
## (Intercept)
## 9781981
<- linearMod$coefficients[2]
bb bb
## Freq.x
## 9728826
1.8 Modelo cuadrático (cuadrático)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.724).
1.8.1 Diagrama de dispersión sobre cuadrático
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x= (comunas_censo_casen$Freq.x)^2, y= (comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
ggplot(comunas_censo_casen, aes(x = (Freq.x)^2 , y = (multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")
1.8.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
1.8.3 Ecuación del modelo
1.8.4 8.1 Modelo cuadrático
\[ \hat Y = \9781981 + \9728826 X^2 \]
1.9 10 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing = aa + bb * (h_y_m_comuna_corr$Freq.x)^2 h_y_m_comuna_corr
1.10 11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
$ing_medio_zona <- h_y_m_comuna_corr$est_ing /( h_y_m_comuna_corr$personas * h_y_m_comuna_corr$p)
h_y_m_comuna_corr
<- h_y_m_comuna_corr[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7101092003 | 07101 | 8 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 191 | 0.0008668 | 07101 | 46729671 | 632426862 | 3311135.40 |
7101092024 | 07101 | 1 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 50 | 0.0002269 | 07101 | 12232898 | 19510807 | 390216.14 |
7101102004 | 07101 | 2 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 66 | 0.0002995 | 07101 | 16147426 | 48697286 | 737837.67 |
7101102005 | 07101 | 4 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 260 | 0.0011799 | 07101 | 63611071 | 165443201 | 636320.00 |
7101102017 | 07101 | 22 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 991 | 0.0044972 | 07101 | 242456044 | 4718533891 | 4761386.37 |
7101102018 | 07101 | 3 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 123 | 0.0005582 | 07101 | 30092930 | 97341417 | 791393.64 |
7101112010 | 07101 | 3 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 74 | 0.0003358 | 07101 | 18104689 | 97341417 | 1315424.56 |
7101112015 | 07101 | 7 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 349 | 0.0015838 | 07101 | 85385630 | 486494468 | 1393966.96 |
7101112020 | 07101 | 15 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 668 | 0.0030314 | 07101 | 163431521 | 2198767889 | 3291568.70 |
7101112022 | 07101 | 9 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 287 | 0.0013024 | 07101 | 70216836 | 797816908 | 2779849.85 |
7101122001 | 07101 | 29 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 795 | 0.0036078 | 07101 | 194503083 | 8191724866 | 10304056.43 |
7101122010 | 07101 | 11 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 223 | 0.0010120 | 07101 | 54558726 | 1186969958 | 5322735.24 |
7101122014 | 07101 | 2 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 59 | 0.0002677 | 07101 | 14434820 | 48697286 | 825377.73 |
7101122021 | 07101 | 2 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 41 | 0.0001861 | 07101 | 10030977 | 48697286 | 1187738.68 |
7101122022 | 07101 | 12 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 435 | 0.0019741 | 07101 | 106426215 | 1410732962 | 3243064.28 |
7101122901 | 07101 | 1 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 31 | 0.0001407 | 07101 | 7584397 | 19510807 | 629380.88 |
7101152008 | 07101 | 11 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 1194 | 0.0054185 | 07101 | 292121611 | 1186969958 | 994112.19 |
7101152010 | 07101 | 7 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 300 | 0.0013614 | 07101 | 73397390 | 486494468 | 1621648.23 |
7101152016 | 07101 | 4 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 308 | 0.0013977 | 07101 | 75354654 | 165443201 | 537153.25 |
7101152023 | 07101 | 6 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 287 | 0.0013024 | 07101 | 70216836 | 360019726 | 1254424.13 |
7101162002 | 07101 | 7 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 465 | 0.0021102 | 07101 | 113765954 | 486494468 | 1046224.66 |
7101162007 | 07101 | 11 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 601 | 0.0027274 | 07101 | 147039438 | 1186969958 | 1974991.61 |
7101162010 | 07101 | 6 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 212 | 0.0009621 | 07101 | 51867489 | 360019726 | 1698206.26 |
7101162019 | 07101 | 27 | 220357 | Talca | 244658.0 | 2017 | 53912095394 | 1358 | 0.0061627 | 07101 | 332245518 | 7102096325 | 5229820.56 |
7102022033 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 22 | 0.0004776 | 07102 | 4362924 | 19510807 | 886854.87 |
7102022038 | 07102 | 2 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 180 | 0.0039073 | 07102 | 35696650 | 48697286 | 270540.48 |
7102022046 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 22 | 0.0004776 | 07102 | 4362924 | 19510807 | 886854.87 |
7102022060 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 154 | 0.0033429 | 07102 | 30540467 | 19510807 | 126693.55 |
7102032001 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 44 | 0.0009551 | 07102 | 8725848 | 19510807 | 443427.44 |
7102032030 | 07102 | 2 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 59 | 0.0012807 | 07102 | 11700569 | 48697286 | 825377.73 |
7102032038 | 07102 | 2 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 262 | 0.0056872 | 07102 | 51958457 | 48697286 | 185867.50 |
7102032043 | 07102 | 2 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 18 | 0.0003907 | 07102 | 3569665 | 48697286 | 2705404.77 |
7102032045 | 07102 | 8 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 776 | 0.0168447 | 07102 | 153892225 | 632426862 | 814983.07 |
7102032056 | 07102 | 21 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 1833 | 0.0397890 | 07102 | 363510887 | 4300194362 | 2345987.10 |
7102032060 | 07102 | 2 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 148 | 0.0032126 | 07102 | 29350579 | 48697286 | 329035.72 |
7102042007 | 07102 | 3 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 353 | 0.0076626 | 07102 | 70005097 | 97341417 | 275754.72 |
7102042016 | 07102 | 6 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 178 | 0.0038639 | 07102 | 35300021 | 360019726 | 2022582.73 |
7102042024 | 07102 | 5 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 382 | 0.0082921 | 07102 | 75756224 | 253002637 | 662310.57 |
7102042036 | 07102 | 2 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 181 | 0.0039290 | 07102 | 35894965 | 48697286 | 269045.78 |
7102042047 | 07102 | 11 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 328 | 0.0071199 | 07102 | 65047229 | 1186969958 | 3618810.85 |
7102042901 | 07102 | 12 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 350 | 0.0075975 | 07102 | 69410153 | 1410732962 | 4030665.61 |
7102052012 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 128 | 0.0027785 | 07102 | 25384285 | 19510807 | 152428.18 |
7102052017 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 28 | 0.0006078 | 07102 | 5552812 | 19510807 | 696814.54 |
7102052032 | 07102 | 2 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 9 | 0.0001954 | 07102 | 1784833 | 48697286 | 5410809.55 |
7102062018 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 77 | 0.0016714 | 07102 | 15270234 | 19510807 | 253387.11 |
7102062053 | 07102 | 3 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 378 | 0.0082053 | 07102 | 74962965 | 97341417 | 257516.98 |
7102062057 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 129 | 0.0028002 | 07102 | 25582599 | 19510807 | 151246.57 |
7102062059 | 07102 | 5 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 903 | 0.0196015 | 07102 | 179078195 | 253002637 | 280180.11 |
7102072027 | 07102 | 7 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 462 | 0.0100287 | 07102 | 91621402 | 486494468 | 1053018.33 |
7102072048 | 07102 | 1 | 46068 | Constitución | 198314.7 | 2017 | 9135962663 | 124 | 0.0026917 | 07102 | 24591026 | 19510807 | 157345.22 |
7103012027 | 07103 | 2 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 158 | 0.0167231 | 07103 | 30295409 | 48697286 | 308210.67 |
7103012038 | 07103 | 4 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 143 | 0.0151355 | 07103 | 27419262 | 165443201 | 1156945.46 |
7103012042 | 07103 | 2 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 147 | 0.0155588 | 07103 | 28186235 | 48697286 | 331274.05 |
7103012054 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 61 | 0.0064564 | 07103 | 11696329 | 19510807 | 319849.30 |
7103022003 | 07103 | 6 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 328 | 0.0347163 | 07103 | 62891735 | 360019726 | 1097621.12 |
7103022019 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 61 | 0.0064564 | 07103 | 11696329 | 19510807 | 319849.30 |
7103022020 | 07103 | 2 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 167 | 0.0176757 | 07103 | 32021097 | 48697286 | 291600.51 |
7103022025 | 07103 | 5 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 252 | 0.0266723 | 07103 | 48319260 | 253002637 | 1003978.72 |
7103022052 | 07103 | 2 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 181 | 0.0191575 | 07103 | 34705500 | 48697286 | 269045.78 |
7103032007 | 07103 | 4 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 242 | 0.0256139 | 07103 | 46401829 | 165443201 | 683649.59 |
7103032012 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 202 | 0.0213802 | 07103 | 38732105 | 19510807 | 96588.15 |
7103032053 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 40 | 0.0042337 | 07103 | 7669724 | 19510807 | 487770.18 |
7103042027 | 07103 | 2 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 110 | 0.0116427 | 07103 | 21091740 | 48697286 | 442702.60 |
7103042031 | 07103 | 5 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 184 | 0.0194750 | 07103 | 35280729 | 253002637 | 1375014.33 |
7103042037 | 07103 | 2 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 27 | 0.0028577 | 07103 | 5177064 | 48697286 | 1803603.18 |
7103042043 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 17 | 0.0017993 | 07103 | 3259633 | 19510807 | 1147694.54 |
7103052051 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 20 | 0.0021169 | 07103 | 3834862 | 19510807 | 975540.36 |
7103052058 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 40 | 0.0042337 | 07103 | 7669724 | 19510807 | 487770.18 |
7103062022 | 07103 | 3 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 448 | 0.0474174 | 07103 | 85900906 | 97341417 | 217279.95 |
7103072901 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 108 | 0.0114310 | 07103 | 20708254 | 19510807 | 180655.62 |
7103082011 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 125 | 0.0132303 | 07103 | 23967887 | 19510807 | 156086.46 |
7103082017 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 85 | 0.0089966 | 07103 | 16298163 | 19510807 | 229538.91 |
7103082059 | 07103 | 2 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 43 | 0.0045512 | 07103 | 8244953 | 48697286 | 1132495.02 |
7103102026 | 07103 | 9 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 967 | 0.1023497 | 07103 | 185415571 | 797816908 | 825043.34 |
7103102039 | 07103 | 2 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 330 | 0.0349280 | 07103 | 63275221 | 48697286 | 147567.53 |
7103112018 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 80 | 0.0084674 | 07103 | 15339447 | 19510807 | 243885.09 |
7103112023 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 32 | 0.0033870 | 07103 | 6135779 | 19510807 | 609712.72 |
7103112901 | 07103 | 1 | 9448 | Curepto | 191743.1 | 2017 | 1811588746 | 18 | 0.0019052 | 07103 | 3451376 | 19510807 | 1083933.73 |
7104012033 | 07104 | 1 | 4142 | Empedrado | 172428.7 | 2017 | 714199777 | 18 | 0.0043457 | 07104 | 3103717 | 19510807 | 1083933.73 |
7104012901 | 07104 | 3 | 4142 | Empedrado | 172428.7 | 2017 | 714199777 | 24 | 0.0057943 | 07104 | 4138289 | 97341417 | 4055892.38 |
7104022007 | 07104 | 2 | 4142 | Empedrado | 172428.7 | 2017 | 714199777 | 162 | 0.0391115 | 07104 | 27933453 | 48697286 | 300600.53 |
7104022012 | 07104 | 1 | 4142 | Empedrado | 172428.7 | 2017 | 714199777 | 241 | 0.0581845 | 07104 | 41555323 | 19510807 | 80957.71 |
7104032008 | 07104 | 1 | 4142 | Empedrado | 172428.7 | 2017 | 714199777 | 94 | 0.0226944 | 07104 | 16208300 | 19510807 | 207561.78 |
7105012020 | 07105 | 2 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 173 | 0.0034794 | 07105 | 33770885 | 48697286 | 281487.20 |
7105022020 | 07105 | 8 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 492 | 0.0098952 | 07105 | 96042053 | 632426862 | 1285420.45 |
7105022024 | 07105 | 3 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 232 | 0.0046660 | 07105 | 45288123 | 97341417 | 419575.07 |
7105022901 | 07105 | 1 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 26 | 0.0005229 | 07105 | 5075393 | 19510807 | 750415.66 |
7105032014 | 07105 | 5 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 222 | 0.0044649 | 07105 | 43336048 | 253002637 | 1139651.52 |
7105032021 | 07105 | 3 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 58 | 0.0011665 | 07105 | 11322031 | 97341417 | 1678300.30 |
7105032024 | 07105 | 1 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 109 | 0.0021922 | 07105 | 21277609 | 19510807 | 178998.23 |
7105042001 | 07105 | 4 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 167 | 0.0033587 | 07105 | 32599640 | 165443201 | 990677.85 |
7105042004 | 07105 | 2 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 83 | 0.0016693 | 07105 | 16202216 | 48697286 | 586714.29 |
7105042005 | 07105 | 51 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 2479 | 0.0498582 | 07105 | 483919207 | 25314459084 | 10211560.74 |
7105042017 | 07105 | 14 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 388 | 0.0078035 | 07105 | 75740481 | 1916631928 | 4939773.01 |
7105042018 | 07105 | 3 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 212 | 0.0042638 | 07105 | 41383974 | 97341417 | 459157.63 |
7105042027 | 07105 | 18 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 471 | 0.0094729 | 07105 | 91942697 | 3161921689 | 6713209.53 |
7105052005 | 07105 | 1 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 88 | 0.0017699 | 07105 | 17178253 | 19510807 | 221713.72 |
7105052027 | 07105 | 27 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 858 | 0.0172563 | 07105 | 167487971 | 7102096325 | 8277501.54 |
7105052901 | 07105 | 1 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 37 | 0.0007442 | 07105 | 7222675 | 19510807 | 527319.11 |
7105062002 | 07105 | 7 | 49721 | Maule | 195207.4 | 2017 | 9705908393 | 436 | 0.0087689 | 07105 | 85110437 | 486494468 | 1115813.00 |
Guardamos:
saveRDS(h_y_m_comuna_corr, "Rural/region_07_ESCOLARIDAD_r.rds")
1.11 Referencias
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda