Expansión de la CASEN sobre el CENSO (Región 11)

P17 ¿Trabajó por un pago o especie?: Correlación: 0.8717

VE-CC-AJ

DataIntelligence

date: 20-07-2021

1 Resumen

Expandiremos los ingresos promedios (multiplicación del ingreso promedio y los habitantes) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de viviendas -del 2017-, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal.

Haremos el análisis sobre la región 11.

Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción zonal a nivel comunal (multipob)”

Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.

2 Generación de ingresos expandidos a nivel Urbano

En adelante sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_urbano_17.rds”


2.1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).

2.1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- 
readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/censos_con_clave/censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015


Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region = 11, y área URBANA = 1.

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 11) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1) 

2.1.2 Cálculo de frecuencias

Obtenemos las frecuencias a la pregunta P17 por zona:

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4:31,33:48),drop=FALSE]

Renombramos y filtramos por la categoria Trabajo por un sueldo == 1:

names(tabla_con_clave_f)[2] <- "Trabajo por un sueldo"
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Trabajo por un sueldo` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Trabajo por un sueldo`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

head(d,5)
##          zona unlist.c. unlist.d. Freq anio
## 1 11101011001         1     11101  179 2017
## 2 11101011002         1     11101  793 2017
## 3 11101011003         1     11101  259 2017
## 4 11101011004         1     11101  360 2017
## 5 11101011005         1     11101  495 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 

2.1.3 Tabla de frecuencias:

head(comuna_corr,5)
##          zona Freq anio código
## 1 11101011001  179 2017  11101
## 2 11101011002  793 2017  11101
## 3 11101011003  259 2017  11101
## 4 11101011004  360 2017  11101
## 5 11101011005  495 2017  11101
nrow(comuna_corr)
## [1] 42

y obtenemos la tabla de frecuencias de respuesta a la categoría = 1 de la pregunta P17 a nivel zonal.


2.2 Variable CASEN

2.2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/ingresos_expandidos_urbano_17.rds")
head(h_y_m_2017_censo,5)
##   código personas        comuna promedio_i  año ingresos_expandidos
## 1  01101   191468       Iquique   375676.9 2017         71930106513
## 2  01107   108375 Alto Hospicio   311571.7 2017         33766585496
## 3  01401    15711  Pozo Almonte   316138.5 2017          4966851883
## 7  01405     9296          Pica   330061.1 2017          3068247619
## 8  02101   361873   Antofagasta   368221.4 2017        133249367039
nrow(h_y_m_2017_censo)
## [1] 312

Unión Censo-Casen:

comunas_censo_casen = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
head(comunas_censo_casen,5)
##   código        zona Freq personas    comuna promedio_i  año
## 1  11101 11101011001  179    57818 Coyhaique   327100.3 2017
## 2  11101 11101011002  793    57818 Coyhaique   327100.3 2017
## 3  11101 11101011005  495    57818 Coyhaique   327100.3 2017
## 4  11101 11101011006  829    57818 Coyhaique   327100.3 2017
## 5  11101 11101011003  259    57818 Coyhaique   327100.3 2017
##   ingresos_expandidos
## 1         18912283227
## 2         18912283227
## 3         18912283227
## 4         18912283227
## 5         18912283227
nrow(comunas_censo_casen)
## [1] 42

2.3 Unión de la proporción zonal por comuna con la tabla censo-casen:

Para calcular la variable multipob, debemos calcular:

\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

2.3.1 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

Para calcular la variable multipob, debemos:

\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]

Unimos:

tabla_de_prop_pob <- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
names(tabla_de_prop_pob)[1]  <- "zona"
comunas_censo_casen = merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
head(comunas_censo_casen,5)
##          zona código.x Freq.x personas    comuna promedio_i  año
## 1 11101011001    11101    179    57818 Coyhaique   327100.3 2017
## 2 11101011002    11101    793    57818 Coyhaique   327100.3 2017
## 3 11101011003    11101    259    57818 Coyhaique   327100.3 2017
## 4 11101011004    11101    360    57818 Coyhaique   327100.3 2017
## 5 11101011005    11101    495    57818 Coyhaique   327100.3 2017
##   ingresos_expandidos Freq.y           p código.y
## 1         18912283227    324 0.005603791    11101
## 2         18912283227   1672 0.028918330    11101
## 3         18912283227    499 0.008630530    11101
## 4         18912283227    667 0.011536200    11101
## 5         18912283227    977 0.016897852    11101

Creamos:

comunas_censo_casen$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p
head(comunas_censo_casen,5)
##          zona código.x Freq.x personas    comuna promedio_i  año
## 1 11101011001    11101    179    57818 Coyhaique   327100.3 2017
## 2 11101011002    11101    793    57818 Coyhaique   327100.3 2017
## 3 11101011003    11101    259    57818 Coyhaique   327100.3 2017
## 4 11101011004    11101    360    57818 Coyhaique   327100.3 2017
## 5 11101011005    11101    495    57818 Coyhaique   327100.3 2017
##   ingresos_expandidos Freq.y           p código.y  multipob
## 1         18912283227    324 0.005603791    11101 105980486
## 2         18912283227   1672 0.028918330    11101 546911646
## 3         18912283227    499 0.008630530    11101 163223033
## 4         18912283227    667 0.011536200    11101 218175878
## 5         18912283227    977 0.016897852    11101 319576961

3 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

3.1 Diagrama de dispersión loess

scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

3.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

3.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multipob~(Freq.x) , data=comunas_censo_casen)
summary(linearMod) 
## 
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -231710295  -21065463    3505513   37990484  114965863 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -15885308   17297406  -0.918    0.364    
## Freq.x         714854      16155  44.249   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 55890000 on 38 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.981,  Adjusted R-squared:  0.9805 
## F-statistic:  1958 on 1 and 38 DF,  p-value: < 2.2e-16

3.4 Gráfica de la recta de regresión lineal

ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.9805 de la variabilidad de los datos de respuesta en torno a su media, el intercepto no es estadísticamente significativo. Modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

4 Modelos alternativos

### 8.1 Modelo cuadrático

linearMod <- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

modelos1 <- cbind(modelo,dato,sintaxis)


modelos1 <- cbind(modelo,dato,sintaxis)
 
### 8.2 Modelo cúbico
 
linearMod <- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

modelos2 <- cbind(modelo,dato,sintaxis)
 
### 8.3 Modelo logarítmico
 
linearMod <- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos3 <- cbind(modelo,dato,sintaxis)
 
### 8.5 Modelo con raíz cuadrada 
 
linearMod <- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos5 <- cbind(modelo,dato,sintaxis)
 
### 8.6 Modelo raíz-raíz
 
linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos6 <- cbind(modelo,dato,sintaxis)
 
### 8.7 Modelo log-raíz
 
linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos7 <- cbind(modelo,dato,sintaxis)
 
### 8.8 Modelo raíz-log
 
linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos8 <- cbind(modelo,dato,sintaxis)
 
### 8.9 Modelo log-log
 
linearMod <- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos9 <- cbind(modelo,dato,sintaxis)
 
modelos_bind <- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)

modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
h_y_m_comuna_corr_01 <<- comunas_censo_casen

kbl(modelos_bind) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
modelo dato sintaxis
8 log-log 0.990876375002403 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
5 raíz-raíz 0.988964048800657 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
1 cuadrático 0.980460859983214 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
2 cúbico 0.980460859983214 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
4 raíz cuadrada 0.929438973211761 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
6 log-raíz 0.906123666057708 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
7 raíz-log 0.871591073884256 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
3 logarítmico 0.709333522595649 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)


5 Elección del modelo.

Elegimos el modelo log-log (8) pues tiene el más alto \(R^2 (0.991)\)

h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8
switch (metodo,
        case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.29595 -0.03726  0.01726  0.06128  0.48127 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.09285    0.10484  124.88   <2e-16 ***
## log(Freq.x)  1.04935    0.01612   65.09   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1373 on 38 degrees of freedom
##   (2 observations deleted due to missingness)
## Multiple R-squared:  0.9911, Adjusted R-squared:  0.9909 
## F-statistic:  4237 on 1 and 38 DF,  p-value: < 2.2e-16

5.1 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.991).

5.1.1 Diagrama de dispersión y lm sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(comunas_censo_casen$Freq.x), y=log(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

Desplegamos la curva de regresión con sus intervalos de confianza al 95%:

ggplot(comunas_censo_casen, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")

5.1.2 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

5.1.3 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

5.1.4 Modelo real:

\[ \hat Y = e^{13.09285+1.04935 \cdot ln{X}} \]


linearMod <- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
aa <- linearMod$coefficients[1]
bb <- linearMod$coefficients[2]

6 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

comunas_censo_casen$est_ing <- exp(aa+bb*log(comunas_censo_casen$Freq.x))


7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zonal


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


comunas_censo_casen$ing_medio_zona <- comunas_censo_casen$est_ing /(comunas_censo_casen$personas  * comunas_censo_casen$p)
r3_100 <- comunas_censo_casen[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x personas comuna promedio_i año ingresos_expandidos Freq.y p código.y multipob est_ing ing_medio_zona
1 11101011001 11101 179 57818 Coyhaique 327100.3 2017 18912283227 324 0.0056038 11101 105980486 112246260 346439.1
2 11101011002 11101 793 57818 Coyhaique 327100.3 2017 18912283227 1672 0.0289183 11101 546911646 535167452 320076.2
3 11101011003 11101 259 57818 Coyhaique 327100.3 2017 18912283227 499 0.0086305 11101 163223033 165400139 331463.2
4 11101011004 11101 360 57818 Coyhaique 327100.3 2017 18912283227 667 0.0115362 11101 218175878 233665766 350323.5
5 11101011005 11101 495 57818 Coyhaique 327100.3 2017 18912283227 977 0.0168979 11101 319576961 326379104 334062.5
6 11101011006 11101 829 57818 Coyhaique 327100.3 2017 18912283227 1595 0.0275866 11101 521724926 560689567 351529.5
7 11101011007 11101 1076 57818 Coyhaique 327100.3 2017 18912283227 2251 0.0389325 11101 736302701 737172165 327486.5
8 11101111001 11101 5 57818 Coyhaique 327100.3 2017 18912283227 13 0.0002248 11101 4252303 2627921 202147.8
9 11101121001 11101 442 57818 Coyhaique 327100.3 2017 18912283227 903 0.0156180 11101 295371541 289809408 320940.7
10 11101121002 11101 1552 57818 Coyhaique 327100.3 2017 18912283227 3281 0.0567470 11101 1073215975 1082675133 329983.3
11 11101121003 11101 1181 57818 Coyhaique 327100.3 2017 18912283227 2413 0.0417344 11101 789292944 812834170 336856.3
12 11101121004 11101 1805 57818 Coyhaique 327100.3 2017 18912283227 3717 0.0642879 11101 1215831692 1268586170 341293.0
13 11101121005 11101 1090 57818 Coyhaique 327100.3 2017 18912283227 2462 0.0425819 11101 805320857 747240133 303509.4
14 11101121006 11101 1195 57818 Coyhaique 327100.3 2017 18912283227 2381 0.0411809 11101 778825735 822948217 345631.3
15 11101121007 11101 1462 57818 Coyhaique 327100.3 2017 18912283227 3498 0.0605002 11101 1144196733 1016889099 290705.9
16 11101121008 11101 1470 57818 Coyhaique 327100.3 2017 18912283227 3334 0.0576637 11101 1090552290 1022728833 306757.3
17 11101131001 11101 823 57818 Coyhaique 327100.3 2017 18912283227 1906 0.0329655 11101 623453109 556432016 291937.0
18 11101131002 11101 1449 57818 Coyhaique 327100.3 2017 18912283227 3237 0.0559860 11101 1058823564 1007402897 311215.0
19 11101131003 11101 1586 57818 Coyhaique 327100.3 2017 18912283227 3439 0.0594797 11101 1124897818 1107577278 322063.8
20 11101131004 11101 1441 57818 Coyhaique 327100.3 2017 18912283227 3238 0.0560033 11101 1059150664 1001567320 309316.7
21 11101131005 11101 1128 57818 Coyhaique 327100.3 2017 18912283227 2580 0.0446228 11101 843918688 774599432 300232.3
22 11101131006 11101 678 57818 Coyhaique 327100.3 2017 18912283227 1524 0.0263586 11101 498500807 454034221 297922.7
23 11101131007 11101 1811 57818 Coyhaique 327100.3 2017 18912283227 3756 0.0649625 11101 1228588602 1273011523 338927.5
24 11101991999 11101 162 57818 Coyhaique 327100.3 2017 18912283227 301 0.0052060 11101 98457180 101087009 335837.2
25 11201011001 11201 931 23959 Aysén 307831.4 2017 7375332218 2035 0.0849368 11201 626436874 633292549 311200.3
26 11201011002 11201 1442 23959 Aysén 307831.4 2017 7375332218 3187 0.1330189 11201 981058633 1002296680 314495.3
27 11201011003 11201 1636 23959 Aysén 307831.4 2017 7375332218 3870 0.1615259 11201 1191307470 1144245811 295670.8
28 11201021001 11201 618 23959 Aysén 307831.4 2017 7375332218 1561 0.0651530 11201 480524796 411966272 263911.8
29 11201041001 11201 1108 23959 Aysén 307831.4 2017 7375332218 2623 0.1094787 11201 807441730 760194032 289818.5
30 11201041002 11201 1163 23959 Aysén 307831.4 2017 7375332218 2692 0.1123586 11201 828682096 799839096 297117.0
31 11201041003 11201 1261 23959 Aysén 307831.4 2017 7375332218 3034 0.1266330 11201 933960430 870706443 286983.0
32 11201071001 11201 520 23959 Aysén 307831.4 2017 7375332218 1239 0.0517133 11201 381403089 343697508 277399.1
33 11201991999 11201 47 23959 Aysén 307831.4 2017 7375332218 67 0.0027964 11201 20624703 27590483 411798.2
34 11202011001 11202 1248 6517 Cisnes 251971.0 2017 1642095149 2558 0.3925119 11202 644541874 861289553 336704.3
35 11202021001 11202 656 6517 Cisnes 251971.0 2017 1642095149 1431 0.2195796 11202 360570532 438587068 306489.9
36 11202991999 11202 67 6517 Cisnes 251971.0 2017 1642095149 125 0.0191806 11202 31496378 40025268 320202.1
37 11203011001 11203 589 NA NA NA NA NA 1329 0.7211069 11203 NA 391704439 NA
38 11203991999 11203 263 NA NA NA NA NA 376 0.2040152 11203 NA 168081647 NA
39 11301011001 11301 1362 3490 Cochrane 350724.8 2017 1224029692 2789 0.7991404 11301 978171579 944028195 338482.7
40 11301991999 11301 42 3490 Cochrane 350724.8 2017 1224029692 52 0.0148997 11301 18237692 24518861 471516.6
41 11401011001 11401 1426 4865 Chile Chico 333445.3 2017 1622211456 3129 0.6431655 11401 1043350389 990629926 316596.3
42 11401991999 11401 19 4865 Chile Chico 333445.3 2017 1622211456 33 0.0067831 11401 11003695 10666095 323215.0
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.44 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.45 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.46 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.47 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.48 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.49 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.50 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.51 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.52 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.53 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.54 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.55 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.56 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.57 NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(comunas_censo_casen, "URBANO/region_11_P17_u.rds")

9 Anexo:

9.1 Modelos alternativos

9.1.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

9.1.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

9.1.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

9.1.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

9.1.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

9.1.6 raiz raiz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

9.1.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

9.1.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

9.1.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]