date: 20-07-2021
1 Resumen
Expandiremos los ingresos promedios (multiplicación del ingreso promedio y los habitantes) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de viviendas -del 2017-, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal.
Haremos el análisis sobre la región 10.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción zonal a nivel comunal (multipob)”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
2 Generación de ingresos expandidos a nivel Urbano
En adelante sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_urbano_17.rds”
2.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).
2.1.1 Lectura y filtrado de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<-
tabla_con_clave readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/censos_con_clave/censo_personas_con_clave_17")
<- tabla_con_clave[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Despleguemos los códigos de regiones de nuestra tabla:
<- unique(tabla_con_clave$REGION)
regiones regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la region = 10, y área URBANA = 1.
<- filter(tabla_con_clave, tabla_con_clave$REGION == 10)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1) tabla_con_clave
2.1.2 Cálculo de frecuencias
Obtenemos las frecuencias a la pregunta P17 por zona:
<- tabla_con_clave[,-c(1,2,4:31,33:48),drop=FALSE] tabla_con_clave_f
Renombramos y filtramos por la categoria Trabajo por un sueldo
== 1:
names(tabla_con_clave_f)[2] <- "Trabajo por un sueldo"
<- filter(tabla_con_clave_f, tabla_con_clave_f$`Trabajo por un sueldo` == 1) tabla_con_clave_ff
# Determinamos las frecuencias por zona:
<- tabla_con_clave_ff$clave
b <- tabla_con_clave_ff$`Trabajo por un sueldo`
c <- tabla_con_clave_ff$COMUNA
d = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d names(d)[1] <- "zona"
$anio <- "2017"
d
head(d,5)
## zona unlist.c. unlist.d. Freq anio
## 1 10101011001 1 10101 320 2017
## 2 10101011002 1 10101 1309 2017
## 3 10101021001 1 10101 1828 2017
## 4 10101021002 1 10101 581 2017
## 5 10101021003 1 10101 1050 2017
Agregamos un cero a los códigos comunales de cuatro dígitos:
<- d$unlist.d.
codigos <- seq(1:nrow(d))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
comuna_corr names(comuna_corr)[4] <- "código"
2.1.3 Tabla de frecuencias:
head(comuna_corr,5)
## zona Freq anio código
## 1 10101011001 320 2017 10101
## 2 10101011002 1309 2017 10101
## 3 10101021001 1828 2017 10101
## 4 10101021002 581 2017 10101
## 5 10101021003 1050 2017 10101
nrow(comuna_corr)
## [1] 232
y obtenemos la tabla de frecuencias de respuesta a la categoría = 1 de la pregunta P17 a nivel zonal.
2.2 Variable CASEN
2.2.1 Tabla de ingresos expandidos
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
<- readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/ingresos_expandidos_urbano_17.rds")
h_y_m_2017_censo head(h_y_m_2017_censo,5)
## código personas comuna promedio_i año ingresos_expandidos
## 1 01101 191468 Iquique 375676.9 2017 71930106513
## 2 01107 108375 Alto Hospicio 311571.7 2017 33766585496
## 3 01401 15711 Pozo Almonte 316138.5 2017 4966851883
## 7 01405 9296 Pica 330061.1 2017 3068247619
## 8 02101 361873 Antofagasta 368221.4 2017 133249367039
nrow(h_y_m_2017_censo)
## [1] 312
Unión Censo-Casen:
= merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
comunas_censo_casen head(comunas_censo_casen,5)
## código zona Freq personas comuna promedio_i año
## 1 10101 10101021005 1165 245902 Puerto Montt 304409.6 2017
## 2 10101 10101031001 2012 245902 Puerto Montt 304409.6 2017
## 3 10101 10101011001 320 245902 Puerto Montt 304409.6 2017
## 4 10101 10101011002 1309 245902 Puerto Montt 304409.6 2017
## 5 10101 10101021001 1828 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos
## 1 74854925754
## 2 74854925754
## 3 74854925754
## 4 74854925754
## 5 74854925754
nrow(comunas_censo_casen)
## [1] 232
2.3 Unión de la proporción zonal por comuna con la tabla censo-casen:
Para calcular la variable multipob, debemos calcular:
\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
2.3.1 Ingreso promedio expandido por zona (multi_pob)
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
Para calcular la variable multipob, debemos:
\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]
Unimos:
<- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "zona"
= merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
comunas_censo_casen head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 10101011001 10101 320 245902 Puerto Montt 304409.6 2017
## 2 10101011002 10101 1309 245902 Puerto Montt 304409.6 2017
## 3 10101021001 10101 1828 245902 Puerto Montt 304409.6 2017
## 4 10101021002 10101 581 245902 Puerto Montt 304409.6 2017
## 5 10101021003 10101 1050 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos Freq.y p código.y
## 1 74854925754 584 0.002374930 10101
## 2 74854925754 2941 0.011960049 10101
## 3 74854925754 3953 0.016075510 10101
## 4 74854925754 1107 0.004501793 10101
## 5 74854925754 2294 0.009328920 10101
Creamos:
$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p comunas_censo_casen
head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 10101011001 10101 320 245902 Puerto Montt 304409.6 2017
## 2 10101011002 10101 1309 245902 Puerto Montt 304409.6 2017
## 3 10101021001 10101 1828 245902 Puerto Montt 304409.6 2017
## 4 10101021002 10101 581 245902 Puerto Montt 304409.6 2017
## 5 10101021003 10101 1050 245902 Puerto Montt 304409.6 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 74854925754 584 0.002374930 10101 177775198
## 2 74854925754 2941 0.011960049 10101 895268589
## 3 74854925754 3953 0.016075510 10101 1203331089
## 4 74854925754 1107 0.004501793 10101 336981411
## 5 74854925754 2294 0.009328920 10101 698315588
3 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
3.1 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
3.2 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
3.3 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- lm( multipob~(Freq.x) , data=comunas_censo_casen)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -265904582 -48589195 -2887489 47492761 301319015
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2605055 13385441 0.195 0.846
## Freq.x 665515 9990 66.618 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 97820000 on 219 degrees of freedom
## (11 observations deleted due to missingness)
## Multiple R-squared: 0.953, Adjusted R-squared: 0.9528
## F-statistic: 4438 on 1 and 219 DF, p-value: < 2.2e-16
3.4 Gráfica de la recta de regresión lineal
ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.9528 de la variabilidad de los datos de respuesta en torno a su media, el intercepto no es estadísticamente significativo. Modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor y resolver el problema de la intercepción.
4 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos1
<- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind
<<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind <<- comunas_censo_casen
h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
8 | log-log | 0.98821512239508 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 | raíz-raíz | 0.976110845526915 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
1 | cuadrático | 0.952758214197223 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.952758214197223 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.891013512014221 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.838069838264255 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.837810323723707 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.627058370879433 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 Elección del modelo.
Elegimos el modelo log-log (8) pues tiene el más alto \(R^2 (0.988)\)
<- h_y_m_comuna_corr_01
h_y_m_comuna_corr <- 8
metodo switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)summary(linearMod)
##
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.84706 -0.08772 0.01168 0.09073 0.82473
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.121051 0.051700 253.8 <2e-16 ***
## log(Freq.x) 1.039975 0.007657 135.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1684 on 219 degrees of freedom
## (11 observations deleted due to missingness)
## Multiple R-squared: 0.9883, Adjusted R-squared: 0.9882
## F-statistic: 1.845e+04 on 1 and 219 DF, p-value: < 2.2e-16
5.1 Modelo log-log (log-log)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.989).
5.1.1 Diagrama de dispersión y lm sobre log-log
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(comunas_censo_casen$Freq.x), y=log(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
Desplegamos la curva de regresión con sus intervalos de confianza al 95%:
ggplot(comunas_censo_casen, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")
5.1.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
5.1.3 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
5.1.4 Modelo real:
\[ \hat Y = e^{13.121051+1.039975 \cdot ln{X}} \]
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- linearMod$coefficients[1]
aa <- linearMod$coefficients[2] bb
6 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing <- exp(aa+bb*log(comunas_censo_casen$Freq.x)) comunas_censo_casen
7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zonal
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
$ing_medio_zona <- comunas_censo_casen$est_ing /(comunas_censo_casen$personas * comunas_censo_casen$p)
comunas_censo_casen<- comunas_censo_casen[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10101011001 | 10101 | 320 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 584 | 0.0023749 | 10101 | 177775197.6 | 201230325 | 344572.5 |
10101011002 | 10101 | 1309 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2941 | 0.0119600 | 10101 | 895268589.3 | 870842011 | 296104.1 |
10101021001 | 10101 | 1828 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3953 | 0.0160755 | 10101 | 1203331089.2 | 1232462599 | 311779.1 |
10101021002 | 10101 | 581 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1107 | 0.0045018 | 10101 | 336981410.5 | 374174465 | 338007.6 |
10101021003 | 10101 | 1050 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2294 | 0.0093289 | 10101 | 698315587.8 | 692406932 | 301833.9 |
10101021004 | 10101 | 1457 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3391 | 0.0137900 | 10101 | 1032252902.5 | 973461789 | 287072.2 |
10101021005 | 10101 | 1165 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2564 | 0.0104269 | 10101 | 780506175.8 | 771440382 | 300873.8 |
10101031001 | 10101 | 2012 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4530 | 0.0184220 | 10101 | 1378975419.7 | 1361728611 | 300602.3 |
10101031002 | 10101 | 2166 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4740 | 0.0192760 | 10101 | 1442901432.6 | 1470284761 | 310186.7 |
10101031003 | 10101 | 1663 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4107 | 0.0167018 | 10101 | 1250210165.3 | 1116985350 | 271971.1 |
10101031004 | 10101 | 1172 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2856 | 0.0116144 | 10101 | 869393774.6 | 776261518 | 271800.3 |
10101031005 | 10101 | 2657 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5690 | 0.0231393 | 10101 | 1732090538.3 | 1818367502 | 319572.5 |
10101031006 | 10101 | 1233 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2460 | 0.0100040 | 10101 | 748847578.9 | 818322306 | 332651.3 |
10101031007 | 10101 | 1038 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2292 | 0.0093208 | 10101 | 697706768.7 | 684179266 | 298507.5 |
10101031008 | 10101 | 1616 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3585 | 0.0145790 | 10101 | 1091308362.0 | 1084173681 | 302419.4 |
10101031009 | 10101 | 1995 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4436 | 0.0180397 | 10101 | 1350360918.8 | 1349765040 | 304275.3 |
10101031010 | 10101 | 1531 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3566 | 0.0145017 | 10101 | 1085524579.9 | 1024931015 | 287417.6 |
10101031011 | 10101 | 1232 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2757 | 0.0112118 | 10101 | 839257225.7 | 817632103 | 296565.9 |
10101031012 | 10101 | 837 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1849 | 0.0075193 | 10101 | 562853322.5 | 546967443 | 295818.0 |
10101031013 | 10101 | 1642 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3945 | 0.0160430 | 10101 | 1200895812.6 | 1102320172 | 279422.1 |
10101031014 | 10101 | 1030 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2265 | 0.0092110 | 10101 | 689487709.9 | 678696265 | 299645.1 |
10101031015 | 10101 | 873 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1930 | 0.0078487 | 10101 | 587510498.9 | 571454104 | 296090.2 |
10101031016 | 10101 | 1285 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3071 | 0.0124887 | 10101 | 934841835.3 | 854243324 | 278164.5 |
10101031017 | 10101 | 1457 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3885 | 0.0157990 | 10101 | 1182631237.5 | 973461789 | 250569.3 |
10101041001 | 10101 | 1843 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4342 | 0.0176574 | 10101 | 1321746417.8 | 1242981799 | 286269.4 |
10101041002 | 10101 | 895 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2169 | 0.0088206 | 10101 | 660264389.7 | 586438169 | 270372.6 |
10101041003 | 10101 | 2559 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5202 | 0.0211548 | 10101 | 1583538660.8 | 1748670366 | 336153.5 |
10101051001 | 10101 | 1148 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2463 | 0.0100162 | 10101 | 749760807.7 | 759736742 | 308459.9 |
10101051002 | 10101 | 814 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1913 | 0.0077795 | 10101 | 582335536.0 | 531345106 | 277754.9 |
10101051003 | 10101 | 1329 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3272 | 0.0133061 | 10101 | 996028161.9 | 884683556 | 270380.1 |
10101051004 | 10101 | 1712 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3633 | 0.0147742 | 10101 | 1105920022.1 | 1151232742 | 316882.1 |
10101061001 | 10101 | 3383 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 6787 | 0.0276004 | 10101 | 2066027852.9 | 2337684496 | 344435.6 |
10101061002 | 10101 | 1254 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2729 | 0.0110979 | 10101 | 830733757.3 | 832821722 | 305174.7 |
10101061003 | 10101 | 1559 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3668 | 0.0149165 | 10101 | 1116574357.5 | 1044432072 | 284741.6 |
10101061004 | 10101 | 1184 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2995 | 0.0121796 | 10101 | 911706706.9 | 784528999 | 261946.2 |
10101061005 | 10101 | 1216 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2571 | 0.0104554 | 10101 | 782637042.9 | 806591904 | 313726.9 |
10101061006 | 10101 | 1991 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4130 | 0.0167953 | 10101 | 1257211585.8 | 1346950673 | 326138.2 |
10101061007 | 10101 | 340 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 817 | 0.0033225 | 10101 | 248702630.9 | 214326004 | 262332.9 |
10101061008 | 10101 | 1008 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2109 | 0.0085766 | 10101 | 641999814.6 | 663626826 | 314664.2 |
10101061009 | 10101 | 68 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 168 | 0.0006832 | 10101 | 51140810.3 | 40194215 | 239251.3 |
10101061010 | 10101 | 610 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1543 | 0.0062749 | 10101 | 469703989.6 | 393616656 | 255098.3 |
10101071001 | 10101 | 909 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2352 | 0.0095648 | 10101 | 715971343.8 | 595981175 | 253393.4 |
10101071002 | 10101 | 1583 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3919 | 0.0159372 | 10101 | 1192981163.4 | 1061158422 | 270772.8 |
10101071003 | 10101 | 1915 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4978 | 0.0202438 | 10101 | 1515350913.8 | 1293521148 | 259847.6 |
10101071004 | 10101 | 1419 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3443 | 0.0140015 | 10101 | 1048082200.9 | 947071906 | 275071.7 |
10101071005 | 10101 | 1186 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2751 | 0.0111874 | 10101 | 837430768.2 | 785907239 | 285680.6 |
10101071006 | 10101 | 1741 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4214 | 0.0171369 | 10101 | 1282781990.9 | 1171520147 | 278006.7 |
10101071007 | 10101 | 987 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2345 | 0.0095363 | 10101 | 713840476.7 | 649254618 | 276867.6 |
10101071008 | 10101 | 2104 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 5480 | 0.0222853 | 10101 | 1668164525.4 | 1426541945 | 260317.9 |
10101071009 | 10101 | 1509 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3549 | 0.0144326 | 10101 | 1080349616.9 | 1009618741 | 284479.8 |
10101071010 | 10101 | 1442 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3521 | 0.0143187 | 10101 | 1071826148.6 | 963041403 | 273513.6 |
10101071011 | 10101 | 1301 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3094 | 0.0125822 | 10101 | 941843255.8 | 865307753 | 279672.8 |
10101071012 | 10101 | 1066 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2621 | 0.0106587 | 10101 | 797857522.1 | 703382995 | 268364.4 |
10101071013 | 10101 | 41 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 84 | 0.0003416 | 10101 | 25570405.1 | 23749529 | 282732.5 |
10101071014 | 10101 | 350 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 875 | 0.0035583 | 10101 | 266358386.8 | 220885518 | 252440.6 |
10101131001 | 10101 | 282 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 604 | 0.0024563 | 10101 | 183863389.3 | 176440345 | 292119.8 |
10101151001 | 10101 | 1757 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3973 | 0.0161568 | 10101 | 1209419280.9 | 1182718996 | 297689.2 |
10101151002 | 10101 | 2237 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4655 | 0.0189303 | 10101 | 1417026617.9 | 1520438781 | 326624.9 |
10101151003 | 10101 | 248 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 592 | 0.0024075 | 10101 | 180210474.3 | 154372512 | 260764.4 |
10101151004 | 10101 | 143 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 325 | 0.0013217 | 10101 | 98933115.1 | 87075442 | 267924.4 |
10101151005 | 10101 | 179 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 384 | 0.0015616 | 10101 | 116893280.6 | 109979292 | 286404.4 |
10101161001 | 10101 | 342 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 739 | 0.0030053 | 10101 | 224958683.3 | 215637297 | 291796.1 |
10101161002 | 10101 | 2677 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 6507 | 0.0264618 | 10101 | 1980793169.2 | 1832604164 | 281635.8 |
10101161003 | 10101 | 1242 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2841 | 0.0115534 | 10101 | 864827630.8 | 824535142 | 290227.1 |
10101161004 | 10101 | 491 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1224 | 0.0049776 | 10101 | 372597332.0 | 314092488 | 256611.5 |
10101161005 | 10101 | 70 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 188 | 0.0007645 | 10101 | 57229002.0 | 41424372 | 220342.4 |
10101161006 | 10101 | 190 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 435 | 0.0017690 | 10101 | 132418169.4 | 117016435 | 269003.3 |
10101171001 | 10101 | 735 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1747 | 0.0071045 | 10101 | 531803544.9 | 477823215 | 273510.7 |
10101171002 | 10101 | 1196 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2902 | 0.0118014 | 10101 | 883396615.5 | 792799829 | 273190.8 |
10101171003 | 10101 | 1335 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2873 | 0.0116835 | 10101 | 874568737.5 | 888837649 | 309376.1 |
10101171004 | 10101 | 2230 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 4707 | 0.0191418 | 10101 | 1432855916.3 | 1515491157 | 321965.4 |
10101171005 | 10101 | 1799 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3782 | 0.0153801 | 10101 | 1151277050.2 | 1212135284 | 320501.1 |
10101171006 | 10101 | 1635 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3515 | 0.0142943 | 10101 | 1069999691.0 | 1097433441 | 312214.4 |
10101181001 | 10101 | 1384 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 3155 | 0.0128303 | 10101 | 960412240.5 | 922790400 | 292485.1 |
10101181002 | 10101 | 1039 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 2282 | 0.0092801 | 10101 | 694662672.8 | 684864760 | 300116.0 |
10101181003 | 10101 | 601 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1312 | 0.0053355 | 10101 | 399385375.4 | 387578834 | 295410.7 |
10101181004 | 10101 | 645 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1466 | 0.0059617 | 10101 | 446264451.5 | 417130491 | 284536.5 |
10101991999 | 10101 | 763 | 245902 | Puerto Montt | 304409.6 | 2017 | 74854925754 | 1400 | 0.0056933 | 10101 | 426173418.9 | 496767901 | 354834.2 |
10102051001 | 10102 | 1243 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3082 | 0.0906871 | 10102 | 865666724.5 | 825225569 | 267756.5 |
10102051002 | 10102 | 1603 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3879 | 0.1141386 | 10102 | 1089526678.9 | 1075104799 | 277160.3 |
10102141001 | 10102 | 1473 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 3356 | 0.0987494 | 10102 | 942627361.2 | 984581595 | 293379.5 |
10102141002 | 10102 | 2318 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 5586 | 0.1643666 | 10102 | 1568985828.3 | 1577734409 | 282444.4 |
10102991999 | 10102 | 51 | 33985 | Calbuco | 280878.2 | 2017 | 9545646863 | 93 | 0.0027365 | 10102 | 26121676.0 | 29800970 | 320440.5 |
10104011001 | 10104 | 1160 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 2769 | 0.2258380 | 10104 | 619331846.2 | 767997422 | 277355.5 |
10104011002 | 10104 | 1735 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 4559 | 0.3718294 | 10104 | 1019694433.8 | 1167321637 | 256047.7 |
10104991999 | 10104 | 3 | 12261 | Fresia | 223666.2 | 2017 | 2742371891 | 3 | 0.0002447 | 10104 | 670998.8 | 1565288 | 521762.7 |
10105011001 | 10105 | 1420 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3426 | 0.1859127 | 10105 | 964569538.4 | 947766018 | 276639.2 |
10105011002 | 10105 | 1299 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3126 | 0.1696332 | 10105 | 880106356.4 | 863924400 | 276367.4 |
10105011003 | 10105 | 1345 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3037 | 0.1648036 | 10105 | 855048945.8 | 895762795 | 294949.9 |
10105011004 | 10105 | 1396 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 3287 | 0.1783699 | 10105 | 925434930.8 | 931112753 | 283271.3 |
10105991999 | 10105 | 37 | 18428 | Frutillar | 281543.9 | 2017 | 5188291726 | 76 | 0.0041242 | 10105 | 21397339.4 | 21344731 | 280851.7 |
10106011001 | 10106 | 2144 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 5180 | 0.3034919 | 10106 | 1208080137.5 | 1454757312 | 280841.2 |
10106011002 | 10106 | 1105 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 2748 | 0.1610030 | 10106 | 640888845.2 | 730164561 | 265707.6 |
10106991999 | 10106 | 79 | 17068 | Los Muermos | 233220.1 | 2017 | 3980600731 | 178 | 0.0104289 | 10106 | 41513178.5 | 46976952 | 263915.5 |
10107011001 | 10107 | 1772 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 4286 | 0.2436473 | 10107 | 1077465286.3 | 1193221621 | 278399.8 |
10107011002 | 10107 | 455 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 1159 | 0.0658860 | 10107 | 291363104.7 | 290178665 | 250369.9 |
10107011003 | 10107 | 1362 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 3146 | 0.1788415 | 10107 | 790878625.9 | 907540260 | 288474.3 |
10107021001 | 10107 | 937 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 2292 | 0.1302939 | 10107 | 576190022.4 | 615084734 | 268361.6 |
10107021002 | 10107 | 1283 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 3221 | 0.1831050 | 10107 | 809733011.4 | 852860657 | 264781.3 |
10107991999 | 10107 | 58 | 17591 | Llanquihue | 251391.8 | 2017 | 4422233283 | 118 | 0.0067080 | 10107 | 29664233.3 | 34065999 | 288694.9 |
Guardamos:
saveRDS(comunas_censo_casen, "URBANO/region_10_P17_u.rds")
8 Referencias
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda
9 Anexo:
9.1 Modelos alternativos
9.1.1 Modelo cuadrático
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
9.1.2 Modelo cúbico
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
9.1.3 Modelo logarítmico
\[ \hat Y = \beta_0 + \beta_1 ln X \]
9.1.4 Modelo exponencial
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
9.1.5 Modelo con raíz cuadrada
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
9.1.6 raiz raiz
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
9.1.7 Modelo log-raíz
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
9.1.8 Modelo raíz-log
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
9.1.9 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]