require(dplyr)
require(knitr)
require(ggplot2)
require(plotly)
Read data
wb <- read.csv("PanelDataProject.csv")
Whole world temp plot
w <- wb %>%
filter(Year %in% 1990 : 2012)
ggplot( w ,aes(x=Year, y=meantemp, color=region)) + geom_point()

IN different Plots
ggplot( w ,aes(x=Year, y=meantemp, group = Country)) +
geom_line(size = 0.1) +
theme_minimal() +
facet_grid( .~ region )

Bangladesh data
bd <- w %>%
filter(Country == "Bangladesh")
Dotplot BD
ggplot( bd ,aes(x=Year, y=meantemp)) +
geom_point() +
geom_smooth(method = "lm", se = F)
## `geom_smooth()` using formula 'y ~ x'

Lineplot / timeseries BD
ggplot( bd ,aes(x=Year, y=meantemp)) +
geom_line(size=2) +
geom_smooth(method = "lm", se = F) +
theme_minimal()
## `geom_smooth()` using formula 'y ~ x'

Asian Countries
asia <- wb %>%
filter(region == "ASIA")
ggplot( asia ,aes(x=Year, y=meantemp, color=Country,)) +
geom_line(size=0.2) +
geom_smooth(method = "lm", se = F) +
theme_minimal()
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 35 rows containing non-finite values (stat_smooth).
## Warning: Removed 35 row(s) containing missing values (geom_path).

Asian Warm Countries
asiaselected <- wb %>%
filter(region == "ASIA", Country %in% c("Bangladesh",
"India",
"Indonesia",
"Singapore",
"Sri Lanka",
"Maynmar",
"Philippines",
"Thailand"
), Year %in% 1990 : 2012 )
ggplot( asiaselected ,aes(x=Year, y=meantemp, color=Country)) +
geom_line() +
labs(title = "Asian Warm Countries Temparature over Years") +
geom_smooth(method = "lm", se = F) +
theme_minimal() +
theme(legend.position="bottom")

List of Countries
wb[wb$country == ""]
w <- wb %>%
select(country, region) %>%
group_by(country, region) %>%
summarise(n()) %>%
arrange(region, country) %>%
select(country, region)
## `summarise()` has grouped output by 'country'. You can override using the `.groups` argument.
kable(w, col.names = c("Country", "Continent"))
| Algeria |
AFRICA |
| Angola |
AFRICA |
| Botswana |
AFRICA |
| Burundi |
AFRICA |
| Cameroon |
AFRICA |
| Chad |
AFRICA |
| Congo |
AFRICA |
| Cote d’Ivoire |
AFRICA |
| Egypt |
AFRICA |
| Ethiopia |
AFRICA |
| Gambia, The |
AFRICA |
| Ghana |
AFRICA |
| Guinea |
AFRICA |
| Kenya |
AFRICA |
| Liberia |
AFRICA |
| Libya |
AFRICA |
| Madagascar |
AFRICA |
| Mali |
AFRICA |
| Mauritius |
AFRICA |
| Morocco |
AFRICA |
| Mozambique |
AFRICA |
| Namibia |
AFRICA |
| Niger |
AFRICA |
| Nigeria |
AFRICA |
| Rwanda |
AFRICA |
| Senegal |
AFRICA |
| Sierra Leone |
AFRICA |
| Somalia |
AFRICA |
| South Africa |
AFRICA |
| Sudan |
AFRICA |
| Tanzania |
AFRICA |
| Tunisia |
AFRICA |
| Uganda |
AFRICA |
| Zambia |
AFRICA |
| Zimbabwe |
AFRICA |
| Afghanistan |
ASIA |
| Bahrain |
ASIA |
| Bangladesh |
ASIA |
| Bhutan |
ASIA |
| Burma |
ASIA |
| Cambodia |
ASIA |
| China |
ASIA |
| India |
ASIA |
| Indonesia |
ASIA |
| Iran |
ASIA |
| Iraq |
ASIA |
| Israel |
ASIA |
| Japan |
ASIA |
| Jordan |
ASIA |
| Kuwait |
ASIA |
| Lebanon |
ASIA |
| Macau |
ASIA |
| Malaysia |
ASIA |
| Mongolia |
ASIA |
| Nepal |
ASIA |
| North Korea |
ASIA |
| Oman |
ASIA |
| Pakistan |
ASIA |
| Philippines |
ASIA |
| Qatar |
ASIA |
| Saudi Arabia |
ASIA |
| Singapore |
ASIA |
| South Korea |
ASIA |
| Sri Lanka |
ASIA |
| Syria |
ASIA |
| Thailand |
ASIA |
| Turkey |
ASIA |
| United Arab Emirates |
ASIA |
| Vietnam |
ASIA |
| Yemen |
ASIA |
| Albania |
EUROPE |
| Armenia |
EUROPE |
| Austria |
EUROPE |
| Azerbaijan |
EUROPE |
| Belarus |
EUROPE |
| Belgium |
EUROPE |
| Bosnia & Herzegovina |
EUROPE |
| Bulgaria |
EUROPE |
| Croatia |
EUROPE |
| Czech Republic |
EUROPE |
| Denmark |
EUROPE |
| Estonia |
EUROPE |
| Faroe Islands |
EUROPE |
| Finland |
EUROPE |
| France |
EUROPE |
| Georgia |
EUROPE |
| Germany |
EUROPE |
| Greece |
EUROPE |
| Hungary |
EUROPE |
| Iceland |
EUROPE |
| Ireland |
EUROPE |
| Italy |
EUROPE |
| Kazakhstan |
EUROPE |
| Kyrgyzstan |
EUROPE |
| Latvia |
EUROPE |
| Liechtenstein |
EUROPE |
| Lithuania |
EUROPE |
| Luxembourg |
EUROPE |
| Macedonia |
EUROPE |
| Malta |
EUROPE |
| Moldova |
EUROPE |
| Monaco |
EUROPE |
| Netherlands |
EUROPE |
| Norway |
EUROPE |
| Poland |
EUROPE |
| Portugal |
EUROPE |
| Romania |
EUROPE |
| Russia |
EUROPE |
| Serbia |
EUROPE |
| Slovakia |
EUROPE |
| Slovenia |
EUROPE |
| Spain |
EUROPE |
| Sweden |
EUROPE |
| Switzerland |
EUROPE |
| Ukraine |
EUROPE |
| United Kingdom |
EUROPE |
| Uzbekistan |
EUROPE |
| Canada |
NORTH AMERICA |
| Greenland |
NORTH AMERICA |
| United States |
NORTH AMERICA |
| American Samoa |
OCEANIA |
| Australia |
OCEANIA |
| Fiji |
OCEANIA |
| French Polynesia |
OCEANIA |
| Guam |
OCEANIA |
| New Zealand |
OCEANIA |
| Palau |
OCEANIA |
| Papua New Guinea |
OCEANIA |
| Solomon Islands |
OCEANIA |
| Tonga |
OCEANIA |
| Argentina |
SOUTH AMERICA |
| Bahamas |
SOUTH AMERICA |
| Barbados |
SOUTH AMERICA |
| Belize |
SOUTH AMERICA |
| Bolivia |
SOUTH AMERICA |
| Brazil |
SOUTH AMERICA |
| Chile |
SOUTH AMERICA |
| Colombia |
SOUTH AMERICA |
| Costa Rica |
SOUTH AMERICA |
| Cuba |
SOUTH AMERICA |
| Dominican Republic |
SOUTH AMERICA |
| Ecuador |
SOUTH AMERICA |
| El Salvador |
SOUTH AMERICA |
| Guatemala |
SOUTH AMERICA |
| Haiti |
SOUTH AMERICA |
| Honduras |
SOUTH AMERICA |
| Jamaica |
SOUTH AMERICA |
| Mexico |
SOUTH AMERICA |
| Nicaragua |
SOUTH AMERICA |
| Panama |
SOUTH AMERICA |
| Paraguay |
SOUTH AMERICA |
| Peru |
SOUTH AMERICA |
| Puerto Rico |
SOUTH AMERICA |
| Trinidad and Tobago |
SOUTH AMERICA |
| Uruguay |
SOUTH AMERICA |
| Venezuela |
SOUTH AMERICA |
Selected Variables
sv <- wb%>%
select(country,
Year,
region,
meantemp,
Agricultural.land..sq..km. ,
CO2.emissions..metric.tons.per.capita. ,
CO2.emissions..kt. ,
Forest.area..sq..km.,
GDP..constant.2010.US.. ,
Land.area..sq..km. ,
Methane.emissions..kt.of.CO2.equivalent. ,
Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent. ,
Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent.,
Total.greenhouse.gas.emissions..kt.of.CO2.equivalent. ,
Urban.population....of.total. ) %>%
filter(Year %in% 1990:2012 )
write.csv(sv, "Selectedvariables.csv")
Selected Countries
sc <- sv %>%
filter(country %in% c(
"Algeria",
# "Botswana",
"Cameroon",
"Congo",
"Egypt",
"Ghana",
"Kenya",
"Nigeria",
# "South Africa",
# "Zimbabwe",
"Bangladesh",
"Bhutan",
"Burma",
"China",
"India",
"Indonesia",
"Japan",
"Malaysia",
"Nepal",
"Phillipines",
# "Singapore",
"Sri Lanka",
"Thailand",
"Vietnam",
"Austria",
# "Azerbaijan",
# "Belgium",
# "Czech Republic",
"Denmark",
"France",
# "Germany",
"Italy",
# "Luxembourg",
"Netherlands",
"Spain",
"Sweden",
"Switzerland",
"United Kingdom",
"Canada",
# "Greenland",
"United States",
"Australia",
"New Zealand",
"Papua New Guinea",
"Fiji",
"Argentina",
"Bolivia",
"Brazil",
"Chile",
"Colombia",
"Costa Rica",
# "Haiti",
"Mexico",
"Paraguay",
# "Puerto Rico",
"Uruguay",
"Venezuela"
))
write.csv(sc, "Selectedvariables.csv")
IN different Plots
ggplot( sc ,aes(x=Year, y=meantemp, group = country)) +
geom_line(size = 0.1) +
theme_minimal() +
facet_grid( .~ region )

asia <- sc %>%
filter(region == "ASIA" , meantemp > 20)
africa <- sc %>%
filter(region == "AFRICA")
europe <- sc %>%
filter(region == "EUROPE", meantemp > -10)
ggplot( asia ,aes(x=Year, y=meantemp, color=country)) +
geom_line() +
labs(title = "Asian Temparature over Years") +
geom_smooth(method = "lm", se = F) +
theme_minimal() +
theme(legend.position="bottom")
## `geom_smooth()` using formula 'y ~ x'

ggplot( africa ,aes(x=Year, y=meantemp, color=country)) +
geom_line() +
labs(title = "African Countries Temparature over Years") +
geom_smooth(method = "lm", se = F) +
theme_minimal() +
theme(legend.position="bottom")
## `geom_smooth()` using formula 'y ~ x'

ggplot( europe ,aes(x=Year, y=meantemp, color=country)) +
geom_line() +
labs(title = "Europian Countries Temparature over Years") +
geom_smooth(method = "lm", se = F) +
theme_minimal() +
theme(legend.position="bottom")
## `geom_smooth()` using formula 'y ~ x'

northamerica <- sc %>%
filter(region == "NORTH AMERICA")
ggplot( northamerica ,aes(x=Year, y=meantemp, color=country)) +
geom_line() +
labs(title = "North American Temparature over Years") +
geom_smooth(method = "lm", se = F) +
theme_minimal() +
theme(legend.position="bottom")
## `geom_smooth()` using formula 'y ~ x'

southamerica <- sc %>%
filter(region == "SOUTH AMERICA")
ggplot( southamerica ,aes(x=Year, y=meantemp, color=country)) +
geom_line() +
labs(title = "South American Temparature over Years") +
geom_smooth(method = "lm", se = F) +
theme_minimal() +
theme(legend.position="bottom")
## `geom_smooth()` using formula 'y ~ x'

Least Squares Dummy Variable Fixed Effect Model
dat <- read.csv("Selectedvariables.csv")
require(dplyr)
require()
asia <- dat %>%
filter(region == "ASIA")
names(asia)
## [1] "X"
## [2] "country"
## [3] "Year"
## [4] "region"
## [5] "meantemp"
## [6] "Agricultural.land..sq..km."
## [7] "CO2.emissions..metric.tons.per.capita."
## [8] "CO2.emissions..kt."
## [9] "Forest.area..sq..km."
## [10] "GDP..constant.2010.US.."
## [11] "Land.area..sq..km."
## [12] "Methane.emissions..kt.of.CO2.equivalent."
## [13] "Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent."
## [14] "Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent."
## [15] "Total.greenhouse.gas.emissions..kt.of.CO2.equivalent."
## [16] "Urban.population....of.total."
lsdv <- lm( meantemp ~
Agricultural.land..sq..km. +
CO2.emissions..kt. +
Forest.area..sq..km. +
GDP..constant.2010.US.. +
#Land.area..sq..km. +
#Methane.emissions..kt.of.CO2.equivalent. +
#Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent. +
# Removed due to multicliinearity
Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent. +
Total.greenhouse.gas.emissions..kt.of.CO2.equivalent. +
Urban.population....of.total. +
country,
data = asia )
require(broom)
require(knitr)
out <- tidy(lsdv)
out$term[6] <- "Other sg6, hfc, pfc"
out$term[7] <- "Total Greenhouse gas emmission"
Asia
kable(out)
| (Intercept) |
24.7143583 |
0.1483413 |
166.6047460 |
0.0000000 |
| Agricultural.land..sq..km. |
-0.0000011 |
0.0000010 |
-1.0350050 |
0.3016395 |
| CO2.emissions..kt. |
-0.0000010 |
0.0000004 |
-2.5054464 |
0.0128489 |
| Forest.area..sq..km. |
0.0000014 |
0.0000007 |
2.0761153 |
0.0388775 |
| GDP..constant.2010.US.. |
0.0000000 |
0.0000000 |
-0.3724937 |
0.7098323 |
| Other sg6, hfc, pfc |
-0.0000011 |
0.0000004 |
-2.4960995 |
0.0131840 |
| Total Greenhouse gas emmission |
0.0000008 |
0.0000003 |
2.4514371 |
0.0148951 |
| Urban.population….of.total. |
0.0269897 |
0.0047553 |
5.6757533 |
0.0000000 |
| countryBhutan |
-13.0948741 |
0.1237151 |
-105.8470557 |
0.0000000 |
| countryBurma |
-1.5786176 |
0.2457833 |
-6.4228028 |
0.0000000 |
| countryChina |
-15.6664150 |
5.5649472 |
-2.8151956 |
0.0052523 |
| countryIndia |
-0.3564716 |
1.8797925 |
-0.1896335 |
0.8497460 |
| countryIndonesia |
-0.5674967 |
0.8652084 |
-0.6559076 |
0.5124703 |
| countryJapan |
-14.0219217 |
0.6297860 |
-22.2645810 |
0.0000000 |
| countryMalaysia |
-0.1202816 |
0.2532131 |
-0.4750214 |
0.6351752 |
| countryNepal |
-9.6091573 |
0.1046111 |
-91.8560225 |
0.0000000 |
| countrySri Lanka |
2.3895085 |
0.1091157 |
21.8988472 |
0.0000000 |
| countryThailand |
0.9220283 |
0.1875329 |
4.9166219 |
0.0000016 |
| countryVietnam |
-1.3221613 |
0.1100774 |
-12.0111922 |
0.0000000 |
plot(asia[, -c(1:4)])

Europe
europe <- dat %>%
filter(region == "EUROPE")
names(europe)
## [1] "X"
## [2] "country"
## [3] "Year"
## [4] "region"
## [5] "meantemp"
## [6] "Agricultural.land..sq..km."
## [7] "CO2.emissions..metric.tons.per.capita."
## [8] "CO2.emissions..kt."
## [9] "Forest.area..sq..km."
## [10] "GDP..constant.2010.US.."
## [11] "Land.area..sq..km."
## [12] "Methane.emissions..kt.of.CO2.equivalent."
## [13] "Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent."
## [14] "Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent."
## [15] "Total.greenhouse.gas.emissions..kt.of.CO2.equivalent."
## [16] "Urban.population....of.total."
lsdv <- lm( meantemp ~
Agricultural.land..sq..km. +
CO2.emissions..kt. +
Forest.area..sq..km. +
GDP..constant.2010.US.. +
#Land.area..sq..km. +
#Methane.emissions..kt.of.CO2.equivalent. +
#Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent. +
# Removed due to multicliinearity
Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent. +
Total.greenhouse.gas.emissions..kt.of.CO2.equivalent. +
Urban.population....of.total. +
country,
data = europe )
require(broom)
require(knitr)
out <- tidy(lsdv)
out$term[6] <- "Other sg6, hfc, pfc"
out$term[7] <- "Total Greenhouse gas emmission"
Europe
kable(out)
| (Intercept) |
7.9208343 |
1.8129826 |
4.3689522 |
0.0000205 |
| Agricultural.land..sq..km. |
0.0000006 |
0.0000159 |
0.0406336 |
0.9676304 |
| CO2.emissions..kt. |
-0.0000191 |
0.0000070 |
-2.7261404 |
0.0070042 |
| Forest.area..sq..km. |
0.0000060 |
0.0000183 |
0.3288206 |
0.7426516 |
| GDP..constant.2010.US.. |
0.0000000 |
0.0000000 |
2.9377532 |
0.0037130 |
| Other sg6, hfc, pfc |
-0.0000690 |
0.0000228 |
-3.0214238 |
0.0028606 |
| Total Greenhouse gas emmission |
0.0000142 |
0.0000059 |
2.4109702 |
0.0168575 |
| Urban.population….of.total. |
-0.0204455 |
0.0240203 |
-0.8511760 |
0.3957375 |
| countryDenmark |
-23.6019416 |
0.8060315 |
-29.2816624 |
0.0000000 |
| countryFrance |
2.4438547 |
5.7128487 |
0.4277821 |
0.6692917 |
| countryItaly |
4.6264101 |
2.5736468 |
1.7976088 |
0.0738186 |
| countryNetherlands |
3.7735804 |
1.0899064 |
3.4622976 |
0.0006609 |
| countrySpain |
5.8462371 |
5.6955067 |
1.0264648 |
0.3059708 |
| countrySweden |
-5.0583021 |
4.4474605 |
-1.1373462 |
0.2568184 |
| countrySwitzerland |
0.8389772 |
0.6768291 |
1.2395703 |
0.2166553 |
| countryUnited Kingdom |
0.4132159 |
2.8639836 |
0.1442801 |
0.8854314 |
plot(europe[, -c(1:4)])

Africa
africa <- dat %>%
filter(region == "AFRICA")
names(europe)
## [1] "X"
## [2] "country"
## [3] "Year"
## [4] "region"
## [5] "meantemp"
## [6] "Agricultural.land..sq..km."
## [7] "CO2.emissions..metric.tons.per.capita."
## [8] "CO2.emissions..kt."
## [9] "Forest.area..sq..km."
## [10] "GDP..constant.2010.US.."
## [11] "Land.area..sq..km."
## [12] "Methane.emissions..kt.of.CO2.equivalent."
## [13] "Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent."
## [14] "Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent."
## [15] "Total.greenhouse.gas.emissions..kt.of.CO2.equivalent."
## [16] "Urban.population....of.total."
lsdv <- lm( meantemp ~
Agricultural.land..sq..km. +
CO2.emissions..kt. +
Forest.area..sq..km. +
GDP..constant.2010.US.. +
#Land.area..sq..km. +
#Methane.emissions..kt.of.CO2.equivalent. +
#Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent. +
# Removed due to multicliinearity
Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent. +
Total.greenhouse.gas.emissions..kt.of.CO2.equivalent. +
Urban.population....of.total. +
country,
data = africa )
require(broom)
require(knitr)
out <- tidy(lsdv)
out$term[6] <- "Other sg6, hfc, pfc"
out$term[7] <- "Total Greenhouse gas emmission"
Africa
kable(out)
| (Intercept) |
22.1701565 |
1.1054202 |
20.0558628 |
0.0000000 |
| Agricultural.land..sq..km. |
-0.0000044 |
0.0000030 |
-1.4805619 |
0.1408635 |
| CO2.emissions..kt. |
0.0000021 |
0.0000031 |
0.6721722 |
0.5025292 |
| Forest.area..sq..km. |
0.0000017 |
0.0000035 |
0.4764779 |
0.6344414 |
| GDP..constant.2010.US.. |
0.0000000 |
0.0000000 |
0.3442886 |
0.7311213 |
| Other sg6, hfc, pfc |
-0.0000008 |
0.0000029 |
-0.2830001 |
0.7775749 |
| Total Greenhouse gas emmission |
0.0000027 |
0.0000029 |
0.9295207 |
0.3541432 |
| Urban.population….of.total. |
0.0483792 |
0.0090386 |
5.3525268 |
0.0000003 |
| countryCameroon |
0.3078050 |
1.0144552 |
0.3034190 |
0.7619995 |
| countryCongo |
-0.0370429 |
1.0164680 |
-0.0364428 |
0.9709788 |
| countryEgypt |
-1.5298607 |
1.1036468 |
-1.3861869 |
0.1677889 |
| countryGhana |
3.3027204 |
0.7222997 |
4.5725071 |
0.0000102 |
| countryKenya |
2.4788033 |
0.4005675 |
6.1882280 |
0.0000000 |
| countryNigeria |
5.3700959 |
1.1168383 |
4.8083020 |
0.0000037 |
plot(africa[, -c(1:4)])

South America
southamerica <- dat %>%
filter(region == "SOUTH AMERICA")
names(southamerica)
## [1] "X"
## [2] "country"
## [3] "Year"
## [4] "region"
## [5] "meantemp"
## [6] "Agricultural.land..sq..km."
## [7] "CO2.emissions..metric.tons.per.capita."
## [8] "CO2.emissions..kt."
## [9] "Forest.area..sq..km."
## [10] "GDP..constant.2010.US.."
## [11] "Land.area..sq..km."
## [12] "Methane.emissions..kt.of.CO2.equivalent."
## [13] "Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent."
## [14] "Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent."
## [15] "Total.greenhouse.gas.emissions..kt.of.CO2.equivalent."
## [16] "Urban.population....of.total."
lsdv <- lm( meantemp ~
Agricultural.land..sq..km. +
CO2.emissions..kt. +
Forest.area..sq..km. +
GDP..constant.2010.US.. +
#Land.area..sq..km. +
#Methane.emissions..kt.of.CO2.equivalent. +
#Nitrous.oxide.emissions..thousand.metric.tons.of.CO2.equivalent. +
# Removed due to multicliinearity
Other.greenhouse.gas.emissions..HFC..PFC.and.SF6..thousand.metric.tons.of.CO2.equivalent. +
Total.greenhouse.gas.emissions..kt.of.CO2.equivalent. +
Urban.population....of.total. +
country,
data = southamerica )
require(broom)
require(knitr)
out <- tidy(lsdv)
out$term[6] <- "Other sg6, hfc, pfc"
out$term[7] <- "Total Greenhouse gas emmission"
South America
kable(out)
| (Intercept) |
14.4856992 |
1.4035342 |
10.3208737 |
0.0000000 |
| Agricultural.land..sq..km. |
-0.0000003 |
0.0000008 |
-0.3960393 |
0.6924725 |
| CO2.emissions..kt. |
0.0000020 |
0.0000017 |
1.2029631 |
0.2303260 |
| Forest.area..sq..km. |
0.0000001 |
0.0000010 |
0.0527474 |
0.9579826 |
| GDP..constant.2010.US.. |
0.0000000 |
0.0000000 |
-1.1466896 |
0.2527964 |
| Other sg6, hfc, pfc |
-0.0000013 |
0.0000014 |
-0.9686108 |
0.3338379 |
| Total Greenhouse gas emmission |
0.0000014 |
0.0000013 |
1.0784067 |
0.2820720 |
| Urban.population….of.total. |
0.0069490 |
0.0062878 |
1.1051508 |
0.2703410 |
| countryBolivia |
6.4813238 |
0.6220244 |
10.4197256 |
0.0000000 |
| countryBrazil |
9.9350924 |
6.0035690 |
1.6548644 |
0.0994247 |
| countryChile |
-5.2583489 |
1.0001588 |
-5.2575141 |
0.0000004 |
| countryColombia |
10.3160438 |
0.5761799 |
17.9042075 |
0.0000000 |
| countryCosta Rica |
11.4167526 |
1.2314841 |
9.2707266 |
0.0000000 |
| countryMexico |
5.3849921 |
0.4781983 |
11.2610026 |
0.0000000 |
| countryParaguay |
9.0782544 |
0.9910279 |
9.1604426 |
0.0000000 |
| countryUruguay |
2.8090079 |
1.1140701 |
2.5213925 |
0.0124212 |
| countryVenezuela |
10.2594934 |
0.7801806 |
13.1501522 |
0.0000000 |
plot(southamerica[, -c(1:4)])
