Report Importance & Qualitative Marks
Engineering And Analytics Team
Report Importance & Qualitative Marks
Engineering And Analytics Team
Report Importance & Qualitative Marks
Engineering And Analytics Team
| Infrastructure | IT | Senior Data Scientist | Data Scientist | Data Analyst |
|---|---|---|---|---|
| Tucker | Benedict | Hunter | Margaret | Eric |
| Jamie | Jenson | Francis | Blake | Geoffrey |
| Marshman | Elliot | Roy | Alan | |
| Ross | Nancy | |||
| Scarlette | ||||
| Chris |
| Name | Subteam | Marks |
|---|---|---|
| Roy | Data Scientist | 70.7 |
| Nancy | IT | 70.7 |
| Geoffrey | Data Analyst | 70.1 |
| Francis | Senior Data Scientist | 69.5 |
| Chris | Infrastructure | 68.5 |
Engineering And Analytics Team
Marks are on scale of 100 Points
Engineering And Analytics Team
Tucker
Key Activities
Report Importance & Qualitative Marks
Mr. Tucker’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task7 | Subtask41 | 76 |
| Task6 | Subtask28 | 75 |
| Task4 | Subtask26 | 74 |
| Task9 | Subtask31 | 74 |
| Task10 | Subtask32 | 72 |
| Task8 | Subtask30 | 71 |
| Task3 | Subtask37 | 71 |
| Task6 | Subtask40 | 70 |
| Task8 | Subtask42 | 70 |
| Task2 | Subtask24 | 68 |
| Task1 | Subtask35 | 68 |
| Task4 | Subtask38 | 67 |
| Task1 | Subtask23 | 66 |
| Task12 | Subtask22 | 65 |
| Task3 | Subtask25 | 65 |
| Task12 | Subtask34 | 63 |
| Task11 | Subtask33 | 62 |
| Task7 | Subtask29 | 60 |
| Task5 | Subtask27 | 58 |
| Task2 | Subtask36 | 56 |
| Task5 | Subtask39 | 49 |
Benedict
Key Activities
Report Importance & Qualitative Marks
Mr. Benedict’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task3 | Subtask9 | 74 |
| Task9 | Subtask3 | 73 |
| Task1 | Subtask19 | 73 |
| Task7 | Subtask13 | 73 |
| Task10 | Subtask4 | 72 |
| Task7 | Subtask1 | 71 |
| Task8 | Subtask2 | 70 |
| Task12 | Subtask6 | 69 |
| Task1 | Subtask7 | 69 |
| Task5 | Subtask49 | 68 |
| Task8 | Subtask14 | 68 |
| Task5 | Subtask11 | 68 |
| Task6 | Subtask12 | 68 |
| Task2 | Subtask8 | 67 |
| Task10 | Subtask16 | 66 |
| Task6 | Subtask50 | 66 |
| Task4 | Subtask10 | 66 |
| Task9 | Subtask15 | 66 |
| Task11 | Subtask17 | 62 |
| Task2 | Subtask20 | 61 |
| Task11 | Subtask5 | 60 |
| Task12 | Subtask18 | 60 |
Jenson
Key Activities
Report Importance & Qualitative Marks
Mr. Jenson’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task3 | Subtask41 | 71 |
| Task9 | Subtask35 | 69 |
| Task7 | Subtask45 | 68 |
| Task12 | Subtask38 | 68 |
| Task8 | Subtask34 | 67 |
| Task1 | Subtask39 | 67 |
| Task9 | Subtask47 | 66 |
| Task7 | Subtask33 | 66 |
| Task10 | Subtask36 | 66 |
| Task4 | Subtask42 | 66 |
| Task10 | Subtask48 | 66 |
| Task2 | Subtask40 | 64 |
| Task8 | Subtask46 | 64 |
| Task6 | Subtask44 | 64 |
| Task11 | Subtask37 | 64 |
| Task5 | Subtask43 | 63 |
Jamie
Key Activities
Report Importance & Qualitative Marks
Mr. Jamie’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task4 | Subtask22 | 76 |
| Task8 | Subtask26 | 76 |
| Task6 | Subtask36 | 76 |
| Task9 | Subtask39 | 76 |
| Task11 | Subtask29 | 75 |
| Task7 | Subtask25 | 74 |
| Task7 | Subtask37 | 74 |
| Task10 | Subtask28 | 71 |
| Task5 | Subtask35 | 68 |
| Task3 | Subtask21 | 67 |
| Task8 | Subtask38 | 67 |
| Task6 | Subtask24 | 66 |
| Task12 | Subtask30 | 66 |
| Task1 | Subtask31 | 66 |
| Task2 | Subtask32 | 66 |
| Task3 | Subtask33 | 66 |
| Task5 | Subtask23 | 65 |
| Task9 | Subtask27 | 65 |
| Task11 | Subtask41 | 63 |
| Task12 | Subtask42 | 62 |
| Task4 | Subtask34 | 60 |
| Task10 | Subtask40 | 56 |
Chris
Key Activities
Report Importance & Qualitative Marks
Mr. Chris’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task4 | Subtask22 | 76 |
| Task8 | Subtask26 | 76 |
| Task6 | Subtask36 | 76 |
| Task9 | Subtask39 | 76 |
| Task11 | Subtask29 | 75 |
| Task7 | Subtask25 | 74 |
| Task7 | Subtask37 | 74 |
| Task10 | Subtask28 | 71 |
| Task5 | Subtask35 | 68 |
| Task3 | Subtask21 | 67 |
| Task8 | Subtask38 | 67 |
| Task6 | Subtask24 | 66 |
| Task12 | Subtask30 | 66 |
| Task1 | Subtask31 | 66 |
| Task2 | Subtask32 | 66 |
| Task3 | Subtask33 | 66 |
| Task5 | Subtask23 | 65 |
| Task9 | Subtask27 | 65 |
| Task11 | Subtask41 | 63 |
| Task12 | Subtask42 | 62 |
| Task4 | Subtask34 | 60 |
| Task10 | Subtask40 | 56 |
Elliot
Key Activities
Report Importance & Qualitative Marks
Mr. Elliot’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task4 | Subtask18 | 70 |
| Task6 | Subtask20 | 70 |
| Task9 | Subtask23 | 70 |
| Task10 | Subtask24 | 70 |
| Task8 | Subtask22 | 70 |
| Task7 | Subtask21 | 69 |
| Task1 | Subtask27 | 69 |
| Task3 | Subtask29 | 69 |
| Task5 | Subtask19 | 68 |
| Task11 | Subtask25 | 68 |
| Task2 | Subtask28 | 67 |
| Task4 | Subtask30 | 66 |
| Task5 | Subtask31 | 66 |
| Task12 | Subtask26 | 65 |
| Task6 | Subtask32 | 64 |
Nancy
Key Activities
Report Importance & Qualitative Marks
Ms. Nancy’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task3 | Subtask49 | 74 |
| Task11 | Subtask49 | 72 |
| Task12 | Subtask50 | 72 |
| Task2 | Subtask48 | 70 |
| Task1 | Subtask47 | 67 |
Ross
Key Activities
Report Importance & Qualitative Marks
Mr. Ross’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task3 | Subtask39 | 72 |
| Task1 | Subtask37 | 66 |
| Task12 | Subtask36 | 65 |
| Task2 | Subtask38 | 65 |
| Task4 | Subtask40 | 59 |
| Task5 | Subtask41 | 49 |
Scarlette
Key Activities
Report Importance & Qualitative Marks
Ms. Scarlette’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task10 | Subtask20 | 73 |
| Task5 | Subtask15 | 72 |
| Task7 | Subtask5 | 68 |
| Task8 | Subtask6 | 68 |
| Task12 | Subtask10 | 68 |
| Task7 | Subtask17 | 68 |
| Task6 | Subtask16 | 68 |
| Task8 | Subtask18 | 68 |
| Task11 | Subtask9 | 67 |
| Task9 | Subtask7 | 66 |
| Task3 | Subtask13 | 66 |
| Task2 | Subtask12 | 65 |
| Task1 | Subtask11 | 65 |
| Task9 | Subtask19 | 62 |
| Task11 | Subtask21 | 62 |
| Task4 | Subtask14 | 60 |
| Task10 | Subtask8 | 59 |
Marshman
Key Activities
Report Importance & Qualitative Marks
Mr. Marshman’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task9 | Subtask9 | 72 |
| Task1 | Subtask1 | 68 |
| Task8 | Subtask8 | 68 |
| Task5 | Subtask5 | 65 |
| Task2 | Subtask2 | 65 |
| Task6 | Subtask6 | 65 |
| Task3 | Subtask3 | 63 |
| Task11 | Subtask11 | 63 |
| Task12 | Subtask12 | 62 |
| Task7 | Subtask7 | 60 |
| Task4 | Subtask4 | 56 |
| Task10 | Subtask10 | 56 |
Hunter
Key Activities
Report Importance & Qualitative Marks
Mr. Hunter’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task2 | Subtask10 | 73 |
| Task11 | Subtask19 | 72 |
| Task2 | Subtask22 | 72 |
| Task3 | Subtask35 | 72 |
| Task4 | Subtask12 | 72 |
| Task5 | Subtask13 | 72 |
| Task6 | Subtask14 | 72 |
| Task7 | Subtask15 | 72 |
| Task8 | Subtask16 | 72 |
| Task9 | Subtask17 | 72 |
| Task10 | Subtask18 | 72 |
| Task12 | Subtask20 | 72 |
| Task1 | Subtask21 | 72 |
| Task3 | Subtask23 | 72 |
| Task4 | Subtask24 | 72 |
| Task5 | Subtask25 | 72 |
| Task9 | Subtask29 | 72 |
| Task10 | Subtask30 | 72 |
| Task11 | Subtask31 | 72 |
| Task12 | Subtask32 | 72 |
| Task1 | Subtask33 | 72 |
| Task4 | Subtask36 | 72 |
| Task5 | Subtask37 | 72 |
| Task6 | Subtask38 | 72 |
| Task8 | Subtask28 | 70 |
| Task7 | Subtask27 | 68 |
| Task1 | Subtask9 | 66 |
| Task2 | Subtask34 | 64 |
| Task3 | Subtask11 | 62 |
| Task6 | Subtask26 | 59 |
Margaret
Key Activities
Report Importance & Qualitative Marks
Ms. Margaret’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task12 | Subtask2 | 75 |
| Task1 | Subtask41 | 72 |
| Task10 | Subtask38 | 72 |
| Task11 | Subtask39 | 72 |
| Task2 | Subtask42 | 72 |
| Task3 | Subtask43 | 72 |
| Task5 | Subtask45 | 72 |
| Task7 | Subtask47 | 72 |
| Task8 | Subtask48 | 72 |
| Task9 | Subtask49 | 72 |
| Task10 | Subtask50 | 72 |
| Task11 | Subtask1 | 72 |
| Task7 | Subtask35 | 71 |
| Task9 | Subtask37 | 71 |
| Task6 | Subtask34 | 71 |
| Task4 | Subtask44 | 70 |
| Task8 | Subtask36 | 68 |
| Task6 | Subtask46 | 68 |
| Task12 | Subtask40 | 62 |
Eric
Key Activities
Report Importance & Qualitative Marks
Mr. Eric’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task5 | Subtask3 | 73 |
| Task3 | Subtask1 | 73 |
| Task8 | Subtask44 | 72 |
| Task6 | Subtask4 | 72 |
| Task10 | Subtask46 | 72 |
| Task11 | Subtask47 | 72 |
| Task12 | Subtask48 | 72 |
| Task2 | Subtask50 | 72 |
| Task4 | Subtask2 | 72 |
| Task6 | Subtask42 | 71 |
| Task9 | Subtask45 | 71 |
| Task1 | Subtask49 | 70 |
| Task7 | Subtask43 | 62 |
Alan
Key Activities
Report Importance & Qualitative Marks
Mr. Alan’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task7 | Subtask39 | 72 |
| Task1 | Subtask45 | 72 |
| Task2 | Subtask46 | 72 |
| Task11 | Subtask43 | 71 |
| Task3 | Subtask47 | 71 |
| Task8 | Subtask40 | 70 |
| Task10 | Subtask42 | 70 |
| Task4 | Subtask48 | 70 |
| Task12 | Subtask44 | 68 |
| Task9 | Subtask41 | 60 |
Francis
Key Activities
Report Importance & Qualitative Marks
Mr. Francis’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task3 | Subtask45 | 72 |
| Task4 | Subtask46 | 72 |
| Task5 | Subtask47 | 72 |
| Task6 | Subtask48 | 72 |
| Task7 | Subtask49 | 72 |
| Task6 | Subtask10 | 72 |
| Task8 | Subtask12 | 72 |
| Task11 | Subtask15 | 72 |
| Task12 | Subtask16 | 72 |
| Task1 | Subtask17 | 72 |
| Task9 | Subtask25 | 72 |
| Task10 | Subtask26 | 72 |
| Task1 | Subtask29 | 72 |
| Task3 | Subtask31 | 72 |
| Task4 | Subtask8 | 71 |
| Task5 | Subtask9 | 71 |
| Task11 | Subtask27 | 71 |
| Task2 | Subtask6 | 70 |
| Task9 | Subtask1 | 70 |
| Task10 | Subtask2 | 70 |
| Task9 | Subtask13 | 70 |
| Task2 | Subtask30 | 69 |
| Task4 | Subtask32 | 69 |
| Task11 | Subtask3 | 68 |
| Task12 | Subtask4 | 68 |
| Task1 | Subtask5 | 68 |
| Task10 | Subtask14 | 68 |
| Task2 | Subtask18 | 68 |
| Task3 | Subtask19 | 68 |
| Task4 | Subtask20 | 68 |
| Task5 | Subtask21 | 68 |
| Task6 | Subtask22 | 68 |
| Task7 | Subtask23 | 68 |
| Task8 | Subtask24 | 68 |
| Task12 | Subtask28 | 68 |
| Task8 | Subtask50 | 68 |
| Task5 | Subtask33 | 66 |
| Task3 | Subtask7 | 66 |
| Task1 | Subtask43 | 64 |
| Task2 | Subtask44 | 64 |
| Task7 | Subtask11 | 62 |
Geoffrey
Key Activities
Report Importance & Qualitative Marks
Mr. Geoffrey’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task5 | Subtask17 | 72 |
| Task12 | Subtask24 | 72 |
| Task6 | Subtask18 | 71 |
| Task4 | Subtask16 | 70 |
| Task11 | Subtask23 | 70 |
| Task9 | Subtask21 | 70 |
| Task7 | Subtask19 | 70 |
| Task2 | Subtask14 | 70 |
| Task1 | Subtask13 | 69 |
| Task3 | Subtask15 | 69 |
| Task8 | Subtask20 | 69 |
| Task1 | Subtask25 | 69 |
| Task10 | Subtask22 | 69 |
Roy
Key Activities
Report Importance & Qualitative Marks
Mr. Roy’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task11 | Subtask35 | 74 |
| Task2 | Subtask26 | 72 |
| Task5 | Subtask29 | 72 |
| Task8 | Subtask32 | 72 |
| Task9 | Subtask33 | 72 |
| Task10 | Subtask34 | 72 |
| Task3 | Subtask27 | 71 |
| Task6 | Subtask30 | 70 |
| Task7 | Subtask31 | 69 |
| Task4 | Subtask28 | 62 |
Blake
Key Activities
Report Importance & Qualitative Marks
Mr. Blake’s Reports
| Key Activity | Extended Responsibility | Qualitative Marks |
|---|---|---|
| Task3 | Subtask49 | 72 |
| Task9 | Subtask43 | 72 |
| Task6 | Subtask2 | 72 |
| Task7 | Subtask3 | 72 |
| Task12 | Subtask8 | 72 |
| Task10 | Subtask44 | 71 |
| Task1 | Subtask47 | 71 |
| Task11 | Subtask7 | 70 |
| Task2 | Subtask48 | 70 |
| Task5 | Subtask1 | 70 |
| Task9 | Subtask5 | 70 |
| Task8 | Subtask4 | 68 |
| Task10 | Subtask6 | 66 |
| Task11 | Subtask45 | 62 |
| Task12 | Subtask46 | 62 |
| Task4 | Subtask50 | 60 |
| Team | # Key Activity | # Extended Responsibility |
|---|---|---|
| Engineering | 12 | 50 |
| Analytics | 12 | 50 |
| Total | 12 | 50 |
| Week | # Key Activity | # Extended Responsibility |
|---|---|---|
| Week - 1 | 12 | 45 |
| Week - 2 | 12 | 49 |
| Week - 3 | 12 | 40 |
| Week - 4 | 5 | 6 |
| Sl. | Name of Report | Status | Remarks | Responsible |
|---|---|---|---|---|
| 1 | Task 420 | Submitted Late | Due to late data receiving | Tucker, Chris |
| 2 | SQL Report | Submitted Late | Due to late data receiving | Tucker, Chris |
Unique number of Key Activity & Extended Responsibility are considered
Code
## ----setup, include=FALSE--------------------------
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
## --------------------------------------------------
library(readxl)
require(dplyr)
require(shiny)
require(ggplot2)
require(plotly)
require(knitr)
library(kableExtra)
require(janitor)
require(tidyr)
require(DT)
####################################################
####################################################
####################################################
# Steps
# Read Current Month Data
# Read Not Submitted Excel Files for Table
# Read Previous Rank Table Excel File
# Write csv File
##### Current Month With All Reports
dat <- read_excel("February Data 2 All Activity.xlsx", col_names = TRUE)
###### Read data of previous Month ######
PreviousMonth <- read.csv("CalculatedNovember.csv", header = T)
datprevmonth <- PreviousMonth
# View(dat)
###### Not Submitted Reports Excel File ######
datmissing <- read_xlsx("Not Submitted Reports.xlsx")
###### Previous Month Marks for ranks ######
datprevrank <- read_excel("prevrank.xlsx")
####################################################
####################################################
####################################################
## ---- eval=TRUE, results='hide'--------------------
# Check Data
head(dat)
# Check variables
glimpse(dat)
# CHeck Names for duplicates, Edit if necessary
unique(dat$Name)
# Check Key Activity
unique(dat$`Key Activity`)
# Check Importance
table(dat$Importance)
# Check Deadline
table(dat$Deadline)
# Check Marks Range for outliers #### Marks is given by Leads ####
range(dat$Marks)
# Check Weeks for any duplicates
table(dat$Week)
# Check MOnths
table(dat$Month)
# Check Team
table(dat$Team)
#Check SUbteam
table(dat$Subteam)
# Check Name and Team
dat %>% group_by(Name, Team, Subteam) %>% summarise(n()) %>% arrange(Team, Name)
# Calculate Quantitative Mark
PriMark <- NULL
for(i in 1:length(dat$Name)){
if(dat$Importance[i] == "High"){
PriMark[i] <- 5
}
if(dat$Importance[i] == "Medium"){
PriMark[i] <- 3
}
if(dat$Importance[i] == "Moderate"){
PriMark[i] <- 2
}
}
dat$PriMark <- PriMark
# PriMark is marks based on priority
table(dat$PriMark)
table(dat$Importance)
DeadMark <- NULL
for(i in 1:length(dat$Name)){
if(dat$Deadline[i] == "Ceiling"){
DeadMark[i] <- 1
}
if(dat$Deadline[i] == "Target"){
DeadMark[i] <- 0.90
}
if(dat$Deadline[i] == "Floor"){
DeadMark[i] <- 0
}
}
dat$DeadMark <- DeadMark
# DeadMark is marks based on Deadline Time
table(dat$DeadMark)
table(dat$Deadline)
dat <- dat %>% group_by(Name) %>% mutate(Target = PriMark / sum(PriMark))
# Check if target is 100% for each at each month
dat %>% group_by(Name, Month) %>% summarise(sum(Target), n())
# This Target is Marks based on Frequency and numbers based on priotity
# Target is Target Marks For each individual in each individual task
# QuanTitative Marks
# dat$QuanMark <- dat$DeadMark * dat$Target * 0.50
dat$QualMark <- dat$Marks * dat$Target
dat$FinalMark <- dat$QualMark
# Check Rankings Based in Final MArks
dat %>%
group_by(Name) %>%
summarise(sorttc = sum(QualMark)) %>%
arrange(desc(sorttc))
# View(dat)
dat$tgt <- dat$Target / sum(dat$Target)
dat$ach <- dat$QualMark / sum(dat$Target)
# tgt and ach by Team for Individual team slide
dat <- dat %>%
group_by(Team) %>%
mutate(tgtteam = tgt / sum(tgt),
achteam = ach / sum(tgt))
sum(dat$tgtteam)
sum(dat$achteam)
## ---- eval=FALSE-----------------------------------
## ## **Welcome**
## ### Welcome to Engineering and Analytics Team Activity Dashboard
## #### July, 2020
## --------------------------------------------------
pbakey <- dat %>%
group_by(`Key Activity`) %>%
summarise(TGT = round(100*sum(tgt),1), Ach = round(100*sum(ach),2) ) %>%
mutate(ACH = ifelse(Ach>TGT, TGT, Ach)) %>%
arrange(desc(TGT)) %>%
mutate(`ACH%` = round(100*ACH/TGT,1)) %>%
select(`Key Activity`, TGT, ACH, `ACH%`)
pbakey <- pbakey[1:10,] # TOp 10 activities of p&ba
# Add others row in pbakey
ot <- 100 - sum(pbakey$TGT)
ot <- as.double(ot)
oth <- data.frame("Others", as.double(ot), 0,0)
pbakey[11,] <- oth
#Previous Month
pbaprev <- datprevmonth %>%
group_by(Key.Activity) %>%
summarise(TGT = round(100*sum(tgt),1), Ach = round(100*sum(ach),2) ) %>%
mutate(ACH = ifelse(Ach>TGT, TGT, Ach)) %>%
arrange(desc(TGT)) %>%
mutate(`ACH%` = round(100*ACH/TGT,1)) %>%
select(Key.Activity, TGT, ACH, `ACH%`)
pbaprev <- pbaprev[1:7,] # TOp 5 key activities of p&ba of previous month
# Add others row in pbaprev
ot <- 100 - sum(pbaprev$TGT)
ot <- as.double(ot)
oth <- data.frame("Others", as.double(ot), 0,0)
pbaprev[8,] <- oth
## --------------------------------------------------
colors <- c('rgba(249, 146, 108, 1)',
'rgba(114, 195, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)'
)
# Add Title
pltttl <- 100* round( sum(dat$ach), 3)
pltttl12 <- paste("Team Achievement", pltttl,"%")
plot_ly(data = pbakey, labels = ~`Key Activity`, values = ~TGT, type = 'pie',
sort=T, direction="anticlockwise", marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent', hoverinfo = 'label+percent', textfont = list(size = 13), textposition = 'outside',
showlegend = F, height = 350, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 85, t = 55, pad = 1 ),
title=pltttl12,
font=list( size = 12))
## ---- eval=FALSE-----------------------------------
## #### Previous Month Key Activities
##
## colors <- c('rgba(249, 146, 108, 1)',
## 'rgba(114, 195, 218, 1)',
## 'rgba(108, 224, 189, 1)',
## 'rgba(239, 118, 118, 1)',
## 'rgba( 18, 167, 226, 1)',
## 'rgba(244, 113, 222, 1)',
## 'rgba(114, 218, 136, 1)',
## 'rgba(255, 148, 184, 1)',
## 'rgba(218, 114, 159, 1)',
## 'rgba(114, 161, 218, 1)'
## )
##
## # Add Title
## pltttl2 <- 100* round( sum(datprevmonth$ach), 3)
##
## pltttl22 <- paste("Team Achievement", pltttl2,"%")
##
## plot_ly(data = pbaprev, labels = ~Key.Activity, values = ~TGT, type = 'pie',
## sort=T, direction="anticlockwise", marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
## #title= pltttl22,
## #title='<b>Key Activities</b>' ,
## textinfo='label+percent', hoverinfo = 'label+percent', textfont = list(size = 13), textposition = 'outside',
## showlegend = F, height = 350, width = 950
## ) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 85, t = 55, pad = 1 ),
## title=pltttl22,
## font=list( size = 12))
## --------------------------------------------------
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
#filter(Team == "Engineering") %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
#filter(Team == "Engineering") %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
#filter(Team == "Engineering") %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`, na.rm = T),
Formmean = mean(`Formatting (20%)`, na.rm = T))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = "Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## --------------------------------------------------
#### Engineering & Analytics Team Top 10 Key Activities Table
#kable(pbakey)
## --------------------------------------------------
#### Engineering & Analytics Team Top 10 Extended Responsibility Table
# kable(pbaext)
## --------------------------------------------------
pkey <- dat %>%
filter(Team == "Engineering") %>%
group_by(`Key Activity`) %>%
summarise(TGT = round(100*sum(tgtteam),1), Ach = round(100*sum(achteam),2) ) %>%
mutate(ACH = ifelse(Ach>TGT, TGT, Ach)) %>%
arrange(desc(TGT)) %>%
mutate(`ACH%` = round(100*ACH/TGT,1)) %>%
select(`Key Activity`, TGT, ACH, `ACH%`)
pkey <- pkey[1:10,] ###### Select Top 2 Key Activities ########
# Add others row in pkey
ot <- 100 - sum(pkey$TGT)
ot <- as.double(ot)
oth <- data.frame("Others", as.double(ot), 0,0)
pkey[11,] <- oth
pext <- dat %>%
filter(Team == "Engineering") %>%
group_by(`Extended Responsibility`) %>%
summarise(TGT = round(100*sum(tgt),2), Ach = round(100*sum(ach),2) ) %>%
mutate(ACH = ifelse(Ach>TGT, TGT, Ach)) %>%
arrange(desc(ACH)) %>%
mutate(`ACH%` = round(100*ACH/TGT,1)) %>%
select(`Extended Responsibility`, TGT, ACH, `ACH%`)
pext <- pext[1:10,] # Select Top 10 Extended Responsibilities
#Previous Month
pkeyprev <- datprevmonth %>%
filter(Team == "Engineering") %>%
group_by(Key.Activity) %>%
summarise(TGT = round(100*sum(tgtteam),1), Ach = round(100*sum(achteam),2) ) %>%
mutate(ACH = ifelse(Ach>TGT, TGT, Ach)) %>%
arrange(desc(TGT)) %>%
mutate(`ACH%` = round(100*ACH/TGT,1)) %>%
select(Key.Activity, TGT, ACH, `ACH%`)
pkeyprev <- pkeyprev[1:7,] # TOp 2 key activities of p&ba of previous month
# Add others row in pbaprev
ot <- 100 - sum(pkeyprev$TGT)
ot <- as.double(ot)
oth <- data.frame("Others", as.double(ot), 0,0)
pkeyprev[8,] <- oth
## --------------------------------------------------
colors <- c('rgba(249, 146, 108, 1)',
'rgba(114, 195, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)'
)
# Add Title
pltttl <- 100* round( sum(dat$achteam[dat$Team=="Engineering"]), 3)
pltttl12 <- paste("Team Achievement", pltttl,"%")
plot_ly(data = pkey, labels = ~`Key Activity`, values = ~TGT, type = 'pie',
sort=T, direction="anticlockwise", marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent', hoverinfo = 'label+percent', textfont = list(size = 13), textposition = 'outside',
showlegend = F, height = 350, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 85, t = 55, pad = 1 ),
title=pltttl12,
font=list( size = 12))
## ---- eval=FALSE-----------------------------------
##
##
## #### Engineering Team Previous Month Key Activities
##
## colors <- c('rgba(249, 146, 108, 1)',
## 'rgba(114, 195, 218, 1)',
## 'rgba(108, 224, 189, 1)',
## 'rgba(239, 118, 118, 1)',
## 'rgba( 18, 167, 226, 1)',
## 'rgba(244, 113, 222, 1)',
## 'rgba(114, 218, 136, 1)',
## 'rgba(255, 148, 184, 1)',
## 'rgba(218, 114, 159, 1)',
## 'rgba(114, 161, 218, 1)'
## )
##
## # Add Title
## pltttl2 <- 100* round( sum(datprevmonth$achteam[datprevmonth$Team=="Engineering"]), 3)
##
## pltttl22 <- paste("Team Achievement", pltttl2,"%")
##
## plot_ly(data = pkeyprev, labels = ~Key.Activity, values = ~TGT, type = 'pie',
## sort=T, direction="anticlockwise", marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
## #title= pltttl22,
## #title='<b>Key Activities</b>' ,
## textinfo='label+percent', hoverinfo = 'label+percent', textfont = list(size = 13), textposition = 'outside',
## showlegend = F, height = 350, width = 950
## ) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 85, t = 55, pad = 1 ),
## title=pltttl22,
## font=list( size = 12))
## --------------------------------------------------
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Team == "Engineering") %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Team == "Engineering") %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Team == "Engineering") %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`, na.rm = T),
Formmean = mean(`Formatting (20%)`, na.rm = T))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = "Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig3, shareY = T, nrows = 1, titleX = TRUE )
## --------------------------------------------------
#### Engineering Team Top 10 Key Activities Table
#kable(pkey)
## --------------------------------------------------
#### Engineering Team Top 10 Extended Responsibility Table
#kable(pext)
## --------------------------------------------------
bakey <- dat %>%
filter(Team == "Analytics") %>%
group_by(`Key Activity`) %>%
summarise(TGT = round(100*sum(tgtteam),1), Ach = round(100*sum(achteam),2) ) %>%
mutate(ACH = ifelse(Ach>TGT, TGT, Ach)) %>%
arrange(desc(ACH)) %>%
mutate(`ACH%` = round(100*ACH/TGT,1)) %>%
select(`Key Activity`, TGT, ACH, `ACH%`)
bakey <- bakey[1:10,]
# Add others row in bakey
ot <- 100 - sum(bakey$TGT)
ot <- as.double(ot)
oth <- data.frame("Others", as.double(ot), 0,0)
bakey[11,] <- oth
baext <- dat %>%
filter(Team == "Analytics") %>%
group_by(`Extended Responsibility`) %>%
summarise(TGT = round(100*sum(tgt),2), Ach = round(100*sum(ach),2) ) %>%
mutate(ACH = ifelse(Ach>TGT, TGT, Ach)) %>%
arrange(desc(ACH)) %>%
mutate(`ACH%` = round(100*ACH/TGT,1)) %>%
select(`Extended Responsibility`, TGT, ACH, `ACH%`)
baext <- baext[1:10,]
#Previous Month
bakeyprev <- datprevmonth %>%
filter(Team == "Analytics") %>%
group_by(Key.Activity) %>%
summarise(TGT = round(100*sum(tgtteam),1), Ach = round(100*sum(achteam),2) ) %>%
mutate(ACH = ifelse(Ach>TGT, TGT, Ach)) %>%
arrange(desc(TGT)) %>%
mutate(`ACH%` = round(100*ACH/TGT,1)) %>%
select(Key.Activity, TGT, ACH, `ACH%`)
bakeyprev <- bakeyprev[1:7,] # TOp 2 key activities of p&ba of previous month
# Add others row in bakeyprev
ot <- 100 - sum(bakeyprev$TGT)
ot <- as.double(ot)
oth <- data.frame("Others", as.double(ot), 0,0)
bakeyprev[8,] <- oth
## --------------------------------------------------
colors <- c('rgba(249, 146, 108, 1)',
'rgba(114, 195, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)'
)
# Add Title
pltttl <- 100* round( sum(dat$achteam[dat$Team=="Analytics"]), 3)
pltttl12 <- paste("Team Achievement", pltttl,"%")
plot_ly(data = bakey, labels = ~`Key Activity`, values = ~TGT, type = 'pie',
sort=T, direction="anticlockwise", marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent', hoverinfo = 'label+percent', textfont = list(size = 13), textposition = 'outside',
showlegend = F, height = 350, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 85, t = 55, pad = 1 ),
title=pltttl12,
font=list( size = 12))
## ---- eval=FALSE-----------------------------------
##
## #### Analytics Team Previous Month Key Activities
##
## colors <- c('rgba(249, 146, 108, 1)',
## 'rgba(114, 195, 218, 1)',
## 'rgba(108, 224, 189, 1)',
## 'rgba(239, 118, 118, 1)',
## 'rgba( 18, 167, 226, 1)',
## 'rgba(244, 113, 222, 1)',
## 'rgba(114, 218, 136, 1)',
## 'rgba(255, 148, 184, 1)',
## 'rgba(218, 114, 159, 1)',
## 'rgba(114, 161, 218, 1)'
## )
## # Add Title
## pltttl2 <- 100* round( sum(datprevmonth$achteam[datprevmonth$Team=="Analytics"]), 3)
##
## pltttl22 <- paste("Team Achievement", pltttl2,"%")
##
## plot_ly(data = bakeyprev, labels = ~Key.Activity, values = ~TGT, type = 'pie',
## sort=T, direction="anticlockwise", marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
## #title= pltttl22,
## #title='<b>Key Activities</b>' ,
## textinfo='label+percent', hoverinfo = 'label+percent', textfont = list(size = 13), textposition = 'outside',
## showlegend = F, height = 350, width = 950
## ) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 85, t = 55, pad = 1 ),
## title=pltttl22,
## font=list( size = 12))
## --------------------------------------------------
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Team == "Analytics") %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Team == "Analytics") %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Team == "Analytics") %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = "Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig3, shareY = T, nrows = 1, titleX = TRUE )
## --------------------------------------------------
#### Analytics Team Top 10 Key Activities Table
#kable(bakey)
## --------------------------------------------------
#### Analytics Team Top 10 Extended Responsibility Table
#kable(baext)
## ---- fig.height=4, fig.width=6--------------------
# Filter only TOfazzol Sir marks, and take average of Manager him
rankcom <- dat %>%
filter(`Manager` == "Theodor") %>%
group_by(Subteam) %>%
summarise( Ach = 100*mean(Marks)) %>%
arrange(desc(Ach)) %>%
mutate(R=seq(1:length(Ach))) %>%
select(R, Subteam, Ach)
rankcom$Ach <- round(rankcom$Ach,1)
plot_ly(rankcom, x = ~Ach, y = ~reorder(Subteam,Ach),
color = ~Subteam,
type = 'bar',
text = ~Ach,
textposition = 'auto',
textfont = list(color = '#000000', size = 12),
orientation = 'h',
hoverinfo='y+text') %>%
#marker = list(color = 'rgba(99,21,133, 0.8)',
# line = list(color = 'rgba(99,21,133,1)', width = 1)) ) %>%
layout( showlegend = FALSE,
xaxis = list(title = "", ticks="",zeroline = FALSE,
showline = FALSE, showticklabels = FALSE,
showgrid = FALSE),
yaxis = list(title = "",
tickfont=list(size=15)),
autosize = F, width = 800, height = 400
#xaxis = list(tickfont = list(size = 8))
)
## --------------------------------------------------
teammembers <- readxl::read_xlsx("Team Members.xlsx")
require(knitr)
opts <- options(knitr.kable.NA = "")
teammembers %>% kable() %>% kable_styling(bootstrap_options = "striped",
font_size = 13,
fixed_thead = list(enabled = T/F, background = "skyblue"))
## --------------------------------------------------
# Keep only one member in all 5 teams
# This way it will always be automatic
rankcom <- dat %>%
filter(`Manager` != "Theodor")
rankcom <- bind_rows(rankcom, dat %>% filter(Name == "Francis"))
rankcom <- rankcom %>%
group_by(Name, Subteam) %>%
summarise(sum(FinalMark))
rankcom <- rankcom %>%
group_by(Subteam) %>% slice_max(order_by = `sum(FinalMark)`, n = 1)
names(rankcom) <- c("Name", "Subteam", "Marks")
rankcom$Marks <- 100*rankcom$Marks
rankcom$Marks <- round(rankcom$Marks, 1)
rankcom <- rankcom %>% arrange(desc(Marks))
rankcom %>% kable() %>% kable_styling(bootstrap_options = "striped",
font_size = 13,
fixed_thead = list(enabled = T/F, background = "skyblue"))
## ---- fig.height=4, fig.width=6, fig.align='right'----
rankcom <- rankcom %>% mutate(nam = paste(Name, "(", Subteam, ")"))
plot_ly(rankcom, x = ~Marks, y = ~reorder(Name, Marks),
color = ~Subteam,
text = ~Marks,
textposition = 'auto',
textfont = list(color = '#000000', size = 12),
type = 'bar', width = 1, orientation = 'h',
hoverinfo='y+text') %>%
#marker = list(color = 'rgba(29,41,133, 0.8)',
#line = list(color = 'rgba(29,41,133,1)', width = 1)) ) %>%
layout( showlegend = FALSE,
xaxis = list(title = "", ticks="",zeroline = FALSE,
showline = FALSE, showticklabels = FALSE,
showgrid = FALSE),
yaxis = list(title = "",
tickfont=list(size=15)),
autosize = F, width = 800, height = 400,
margin =list(l = 0, r = 0, b = 0, t = 0, pad = 1 )
#xaxis = list(tickfont = list(size = 8))
)
## ---- fig.height=7.3-------------------------------
rankcom <- dat %>%
group_by(Name) %>%
summarise( Ach = 100*sum(FinalMark)) %>%
arrange(desc(Ach)) %>%
mutate(R=seq(1:length(Ach))) %>%
select(R, Name, Ach)
rankcom$Ach <- round(rankcom$Ach,1)
plot_ly(rankcom, x = ~Ach, y = ~reorder(Name,Ach),
type = 'bar', width = 1, orientation = 'h', text = ~Ach, textposition = 'auto', hoverinfo='y+text'
) %>%
layout( xaxis = list(title = "", ticks="",zeroline = FALSE,
showline = FALSE, showticklabels = FALSE,
showgrid = FALSE),
yaxis = list(title = "",
tickfont=list(size=15)),
autosize = F, width = 700, height = 700
#xaxis = list(tickfont = list(size = 8))
)
## ---- eval=FALSE-----------------------------------
##
## ### Current & Previous Month Rankings
##
## rankcom <- dat %>%
## group_by(Name) %>%
## summarise( Ach = 100*sum(FinalMark)) %>%
## arrange(desc(Ach)) %>%
## mutate(R=seq(1:length(Ach))) %>%
## select(R, Name, Ach)
##
## rankcom$Ach <- round(rankcom$Ach,2)
##
## mergerank <- merge(rankcom, datprevrank, by = "Name")
## names(mergerank)[4] <- "Previous Ach"
##
## mergerankkable <- mergerank %>%
## arrange( desc(`Previous Ach` )) %>%
## mutate(Previous = 1:length(unique(dat$Name)))%>%
## mutate(Current = R)%>%
## select(Name, Current, Previous, Ach, `Previous Ach`) %>%
## arrange(desc(Ach))
##
## require(knitr)
## mergerankkable %>% kable() %>% kable_styling(bootstrap_options = "striped", font_size = 17)
##
##
##
## --------------------------------------------------
rankplan <- dat %>% filter(Team == "Engineering") %>%
group_by(Name) %>%
summarise( Ach = 100*sum(FinalMark)) %>%
arrange(desc(Ach)) %>%
mutate(R=seq(1:length(Ach))) %>%
select(R, Name, Ach)
rankplan$Ach <- round(rankplan$Ach,1)
plot_ly(rankplan, x = ~Ach, y = ~reorder(Name,Ach), width = 2,
type = 'bar', orientation = 'h', text = ~Ach,
hoverinfo='y+text', textposition = 'auto', marker = list(color = 'rgba(199,21,133, 0.8)',
line = list(color = 'rgba(199,21,133,1)', width = 1))) %>%
layout( xaxis = list(title = "", ticks="",zeroline = FALSE,
showline = FALSE, showticklabels = FALSE,
showgrid = FALSE),
yaxis = list(title = "",
tickfont=list(size=15))
#xaxis = list(tickfont = list(size = 8))
)
## --------------------------------------------------
rankan <- dat %>% filter(Team == "Analytics") %>%
group_by(Name) %>%
summarise( Ach = 100*sum(FinalMark)) %>%
arrange(desc(Ach)) %>%
mutate(R=seq(1:length(Ach))) %>%
select(R, Name, Ach)
rankan$Ach <- round(rankan$Ach,1)
plot_ly(rankan, x = ~Ach, y = ~reorder(Name,Ach),
type = 'bar', width = 0.8, orientation = 'h', text = ~Ach,
textposition = 'auto',
hoverinfo='y+text',
marker = list(color = 'rgba( 25,25,112, 0.8)',
line = list(color = 'rgba( 25,25,112,1)', width = 1))) %>%
layout( xaxis = list(title = "", ticks="",zeroline = FALSE,
showline = FALSE, showticklabels = FALSE,
showgrid = FALSE),
yaxis = list(title = "",
tickfont=list(size=15))
#xaxis = list(tickfont = list(size = 8))
)
## ---- fig.height = 10.5, fig.width = 8, eval=FALSE----
##
## ### Consistency Ranking September to November
##
## require(readxl)
## require(plotly)
## require(dplyr)
##
## datconsis <- readxl::read_xlsx("Jul-Nov.xlsx")
##
##
## datconsis <- data.frame(datconsis)
##
## datconsis$Average <- round(rowMeans(datconsis[, -1], na.rm = T),2)
##
## datconsis <- datconsis %>% arrange(Average)
##
## #dat
##
## datconsis$rank <- seq(1:length(datconsis$Name))
##
## #dat
##
## #class(dat)
##
## November <- datconsis$November
## October <- datconsis$October
## September <- datconsis$September
## #August <- datconsis$August
## #July <- datconsis$July
## Average <- datconsis$Average
##
## fig <- plot_ly(datconsis) %>% add_trace(x = ~September, y = ~Name, type = 'bar',
## text = September, textposition = 'auto',
## name = 'September',
## hoverinfo = 'Name+September',
## marker = list(color = 'rgb((255,127,80))',
## line = list(color = 'rgb(8,98,107)', width = 1.5))) %>%
## layout(yaxis = list(categoryorder = "array", categoryarray = rank)) %>%
##
##
## add_trace(x = ~October, y = ~Name, type = 'bar',
## text = October, textposition = 'auto',
## name = 'October',
## hoverinfo = 'Name+October',
## marker = list(color = 'rgb(158, 221, 124)',
## line = list(color = 'rgb(8,98,107)', width = 1.5))) %>%
## layout(yaxis = list(categoryorder = "array", categoryarray = rank)) %>%
##
##
##
##
## add_trace(x = ~November, y = ~Name, type = 'bar',
## text = November, textposition = 'auto',
## name = 'November',
## hoverinfo = 'Name+November',
## marker = list(color = 'rgb(158, 221, 124)',
## line = list(color = 'rgb(8,98,107)', width = 1.5))) %>%
## layout(yaxis = list(categoryorder = "array", categoryarray = rank)) %>%
##
##
##
##
## add_trace(x = ~Average, y = ~Name, type = 'bar',
## text = Average, textposition = 'auto',
## name = 'Average',
## hoverinfo = 'Name+Average',
## marker = list(color = 'rgb(198,202,225)',
## line = list(color = 'rgb(8,48,107)', width = 1.5))) %>%
## layout(yaxis = list(categoryorder = "array", categoryarray = rank),
## xaxis= list(showticklabels = FALSE, title=" "))
##
##
## fig %>%
## layout(yaxis = list(categoryorder = "array", categoryarray = rank, showticklabels = TRUE, title="", tickfont=list(size=15)),
## xaxis= list(title=""))
##
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Tucker") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Tucker") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 55, t = 40, pad = 1 ))
## ---- fig.width=5----------------------------------
Nam <- "Tucker"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
#ne <- as.character(length(dind2$`Extended Responsibility`))
#as <- sum(dind2$Ach)
#as2 <- mean(dind2$`Ach%`)
#ot <- data.frame("Total", ne, 100, as, as2)
#dind2[length(dind2$Name) + 1, ] <- ot
#x <- dind2 %>% kable(digits = 1) %>% kable_styling(bootstrap_options = "striped")
#row_spec(x, dim(dind2)[1], bold = TRUE)
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Benedict") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Benedict") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 65, t = 40, pad = 1 ))
## ---- fig.width=5----------------------------------
Nam <- "Benedict"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
#ne <- as.character(length(dind2$`Extended Responsibility`))
#as <- sum(dind2$Ach)
#as2 <- mean(dind2$`Ach%`)
#ot <- data.frame("Total", ne, 100, as, as2)
#dind2[length(dind2$Name) + 1, ] <- ot
#x <- dind2 %>% kable(digits = 1) %>% kable_styling(bootstrap_options = "striped")
#row_spec(x, dim(dind2)[1], bold = TRUE)
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Jenson") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Jenson") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent', hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Jenson"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`, na.rm = T),
Impmean = mean(`Improvement Initiatives (30%)`, na.rm = T),
Formmean = mean(`Formatting (20%)`, na.rm = T))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Jamie") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Jamie") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Chris"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Chris") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Chris") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Chris"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Elliot") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Elliot") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 30, pad = 1 ))
## --------------------------------------------------
Nam <- "Elliot"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Nancy") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Nancy") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Nancy"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Ross") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Ross") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Ross"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Scarlette") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Scarlette") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 55, t = 40, pad = 1 ))
## ---- fig.width=5----------------------------------
Nam <- "Scarlette"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "10em") %>% column_spec( 2, width = "15em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
#ne <- as.character(length(dind2$`Extended Responsibility`))
#as <- sum(dind2$Ach)
#as2 <- mean(dind2$`Ach%`)
#ot <- data.frame("Total", ne, 100, as, as2)
#dind2[length(dind2$Name) + 1, ] <- ot
#x <- dind2 %>% kable(digits = 1) %>% kable_styling(bootstrap_options = "striped")
#row_spec(x, dim(dind2)[1], bold = TRUE)
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Marshman") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Marshman") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Marshman"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Hunter") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Hunter") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 65, t = 30, pad = 1 ))
## --------------------------------------------------
Nam <- "Hunter"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Margaret") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Margaret") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 75, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Margaret"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Eric") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Eric") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 80, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Eric"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Alan") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Alan") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Alan"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Francis") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Francis") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 70, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Francis"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Geoffrey") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Geoffrey") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 90, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Geoffrey"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Roy") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Roy") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Roy"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
dind <- dat %>%
filter(Name=="Blake") %>%
select(Name, `Key Activity`, Target, FinalMark ) %>%
group_by(Name, `Key Activity`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
dind2 <- dat %>%
ungroup() %>%
filter(Name=="Blake") %>%
select(Name, `Extended Responsibility` , Target, FinalMark ) %>%
group_by(Name, `Extended Responsibility`) %>%
summarise(Tgt = 100*sum(Target), Ach = 100*sum(FinalMark)) %>%
mutate(`Ach%` = 100*Ach/Tgt)
## --------------------------------------------------
colors <- c('rgba(114, 195, 218, 1)',
'rgba(114, 218, 136, 1)',
'rgba(255, 148, 184, 1)',
'rgba(218, 114, 159, 1)',
'rgba(114, 161, 218, 1)',
'rgba(108, 224, 189, 1)',
'rgba(239, 118, 118, 1)',
'rgba(249, 146, 108, 1)',
'rgba( 18, 167, 226, 1)',
'rgba(244, 113, 222, 1)')
plot_ly(data = dind, labels = ~`Key Activity`, values = ~Tgt, type = 'pie',
sort=T, direction="anticlockwise",marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1.2)),
#title='<b>Key Activities</b>' ,
textinfo='label+percent',hoverinfo = 'label+percent', textfont = list(size = 15), textposition = 'outside',
showlegend = F, height = 320, width = 950
) %>% layout(autosize = F, margin =list(l = 0, r = 0, b = 50, t = 40, pad = 1 ))
## --------------------------------------------------
Nam <- "Blake"
ar1 <- c("High", "Medium", "Moderate")
dpi1 <- dat %>%
filter(Name == Nam) %>%
group_by(Importance) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi1
if(length(unique(dpi1$Importance))!=3){
x <- data.frame(ar1[ar1 %in% dpi1$Importance==FALSE], 0,0, "0")
colnames(x) <- names(dpi1)
dpi1 <- dpi1 %>% rbind(x)
}
########################################
ar2 <- c("Ceiling", "Target", "Floor")
dpi2 <- dat %>%
filter(Name == Nam) %>%
group_by(Deadline) %>%
summarise(Imp = n()) %>%
mutate(`Impn` = round(100*Imp /sum(Imp),1)) %>%
mutate(`Imp%` = paste(`Impn`, "%"))
#dpi2
if(length(unique(dpi2$Deadline))!=3){
x <- data.frame(ar2[ar2 %in% dpi2$Deadline==FALSE], 0,0, "0")
colnames(x) <- names(dpi2)
dpi2 <- dpi2 %>% rbind(x)
}
dpi2 <- dpi2[order(match(ar2, dpi2$Deadline)),]
######################################
dpi3 <- dat %>%
ungroup() %>%
filter(Name == Nam) %>%
select(`Factual Accuracy (50%)`, `Improvement Initiatives (30%)`, `Formatting (20%)`) %>%
summarise(Factmean = mean(`Factual Accuracy (50%)`),
Impmean = mean(`Improvement Initiatives (30%)`),
Formmean = mean(`Formatting (20%)`))
dpi3 <- data.frame(c(names(dpi3)), c(dpi3$Factmean, dpi3$Impmean, dpi3$Formmean))
names(dpi3) <- c("Category", "Marks")
dpi3$Category <- c("Factual", "Improvement", "Formatting")
dpi3$Marks <- round( dpi3$Marks * 100 , 1)
dpi3$Marks2 <- paste(dpi3$Marks, "%")
#dpi3
################################
fig1 <- plot_ly(
data = dpi1,
x = ~Importance,
y = ~`Impn`,
text = ~`Imp%`,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(248, 180, 135, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(yaxis = list(title = ""),
xaxis = list(title = " Report Importance",
categoryorder="array",
categoryarray = c("High", "Medium", "Moderate"))
)
#fig1
fig2 <- plot_ly(
data = dpi2,
x = ~Deadline,
y = ~`Impn`,
text = ~`Imp%`,
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(25, 159, 174, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode="overlay",
yaxis = list(title = ""),
xaxis = list(
categoryorder="array",
categoryarray = as.character("Ceiling", "Target", "Floor"),
title = "Deadline")
)
#fig2
fig3 <- plot_ly(
data = dpi3,
x = ~Category,
y = ~Marks,
text = ~Marks2,
textfont = list(size = 14),
textposition = 'auto',
showlegend = FALSE,
marker = list(color = 'rgba(34, 201, 126, 1)',
line = list(color = 'rgb(8,48,107)', width = 1.5)),
hoverinfo = "x+text",
type = "bar", width = 850, orientation = 'v'
)%>% layout(barmode = "overlay",
yaxis = list(title = ""),
xaxis = list(title = "Qualitative Marks",
categoryorder="array",
categoryarray = c("Factual", "Formatting", "Improvement"))
)
#fig3
subplot(fig1, fig2, fig3, shareY = T, nrows = 1, titleX = TRUE )
## ---- echo=FALSE-----------------------------------
dind3 <- dat %>%
filter(Name == Nam) %>%
select(Name, `Key Activity`, `Extended Responsibility`, Marks) %>% arrange(desc(Marks))
dind3 <- dind3[, -c(1,2)]
dind3$Marks <- round(100*dind3$Marks, 0)
names(dind3)[3] <- "Qualitative Marks"
x <- dind3 %>% kable(digits = 1, align = "llc") %>% kable_styling(bootstrap_options = "striped")
x %>% column_spec( 1, width = "12em") %>% column_spec( 2, width = "18em") %>% column_spec( c(3), width = "6em")
## --------------------------------------------------
tm <- c("Engineering", "Analytics")
tk <- c(length(unique(dat$`Key Activity`[dat$Team=="Engineering"])),
length(unique(dat$`Key Activity`[dat$Team=="Analytics"])))
te <- c(length(unique(dat$`Extended Responsibility`[dat$Team=="Engineering"])),
length(unique(dat$`Extended Responsibility`[dat$Team=="Analytics"])))
tr <- data.frame(tm, tk, te)
tt <- data.frame(tm = "Total", tk = length(unique(dat$`Key Activity`)), te=length(unique(dat$`Extended Responsibility`)))
t <- rbind(tr, tt)
x <- t %>% kable(col.names = c("Team", "# Key Activity", "# Extended Responsibility")) %>% kable_styling(bootstrap_options = "striped", font_size = 17)
row_spec(x, 3, bold = TRUE, font_size = 19)
## --------------------------------------------------
comsum <- dat %>%
#ungroup() %>%
#filter(Team == "Analytics") %>%
select(Month, Week, `Key Activity`, `Extended Responsibility`) %>%
group_by(Week) %>%
summarise( ############ Unique Nisi ###############
`# Key Activity` = length(unique(`Key Activity`)),
`# Extended Responsibility` = length(unique(`Extended Responsibility`))
)
comsum %>% kable() %>% kable_styling(bootstrap_options = "striped", font_size = 17)
## ---- echo=F---------------------------------------
# Missing Reports
require(knitr)
datmissing %>% kable() %>% kable_styling(bootstrap_options = "striped", font_size = 14) %>% column_spec( 1, width = "2em") %>% column_spec( 2, width = "15em") %>% column_spec( 3, width = "10em") %>% column_spec( 4, width = "14em")
## ---- eval=FALSE-----------------------------------
##
##
## ### Engineering Team Reports Summary
##
## plsum <- dat %>%
## #ungroup() %>%
## filter(Team == "Engineering") %>%
## select(Month, Week, `Key Activity`, `Extended Responsibility`) %>%
## group_by(Week ) %>%
## summarise( ############ Unique Nisi ###############
## `# Key Activity` = length(unique(`Key Activity`)),
## `# Extended Responsibility` = length(unique(`Extended Responsibility`))
## ) %>%
## adorn_totals("row")
##
## plsum %>% kable() %>% kable_styling((bootstrap_options = "striped", font_size = 17)
##
## ---- eval=FALSE-----------------------------------
##
## ### Analytics Team Reports Summary
## ansum <- dat %>%
## #ungroup() %>%
## filter(Team == "Analytics") %>%
## select(Month, Week, `Key Activity`, `Extended Responsibility`) %>%
## group_by(Week ) %>%
## summarise( ############ Unique Nisi ###############
## `# Key Activity` = length(unique(`Key Activity`)),
## `# Extended Responsibility` = length(unique(`Extended Responsibility`))
## ) %>%
## adorn_totals("row")
##
## ansum %>% kable() %>% kable_styling((bootstrap_options = "striped", font_size = 18)
##
## --------------------------------------------------
require(DT)
markstable <- dat[, c(1:10) ]
# Change Name
names(markstable)[6] <- "Manager Mr/Ms"
names(markstable)[10] <- "Qualitative Marks"
# Multiply by 100
markstable[, 7:10] <- 100*markstable[, 7:10]
markstable[, 7:10] <- round(markstable[7:10], 1)
markstable %>% DT::datatable(class = 'cell-border stripe', width = "1600px",
extensions = c('KeyTable', 'FixedHeader', 'Scroller', "FixedColumns"),
options = list(
paging = T,
autoWidth = FALSE,
#dom = 't',
scrollX=TRUE,
scrollY = 500,
columnDefs = list(list(width = '350px',
targets = list(1,2,3))),
pageLength = 50,
fixedHeader = TRUE,
#deferRender = TRUE,
#scroller = TRUE,
keys = TRUE
#fixedColumns = list(leftColumns = 4)
)
) %>% DT::formatStyle(columns = 7:10,
fontSize = '120%')
## ---- eval=FALSE, message=FALSE, warning=false-----
##
##
##
##