Expansión de la CASEN sobre el CENSO (Región 01)

ESCOLARIDAD : Correlación: 0.45

VE-CC-AJ

DataIntelligence

date: 19-07-2021


1 Generación de ingresos expandidos a nivel Urbano

En los siguientes rpubs sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_rural_17.rds”:

1.1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).

1.1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region = 1, y área URBANA = 1.

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 1) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) 

1.1.2 Cálculo de frecuencias

Obtenemos las frecuencias a la pregunta P17 por zona:

tabla_con_clave_f <- tabla_con_clave[,c("clave","ESCOLARIDAD","COMUNA") ]

Renombramos y filtramos por la categoria Trabajo por un sueldo == 1:

names(tabla_con_clave_f)[2] <- "ESCOLARIDAD"
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$ESCOLARIDAD == 14)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$ESCOLARIDAD
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

head(d,5)
##         zona unlist.c. unlist.d. Freq anio
## 1 1101092001        14      1101   32 2017
## 2 1101092004        14      1101    5 2017
## 3 1101092005        14      1101    1 2017
## 4 1101092006        14      1101   12 2017
## 5 1101092007        14      1101    1 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 

1.1.3 Tabla de frecuencias:

head(comuna_corr,5)
##         zona Freq anio código
## 1 1101092001   32 2017  01101
## 2 1101092004    5 2017  01101
## 3 1101092005    1 2017  01101
## 4 1101092006   12 2017  01101
## 5 1101092007    1 2017  01101


1.2 Variable CASEN

1.2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código personas comuna promedio_i año ingresos_expandidos
1 01101 191468 Iquique 272529.7 2017 52180713221
3 01401 15711 Pozo Almonte 243272.4 2017 3822052676
4 01402 1250 Camiña 226831.0 2017 283538750
6 01404 2730 Huara 236599.7 2017 645917134
7 01405 9296 Pica 269198.0 2017 2502464414
10 02103 10186 Sierra Gorda 322997.9 2017 3290056742
11 02104 13317 Taltal 288653.8 2017 3844002134
12 02201 165731 Calama 238080.9 2017 39457387800
14 02203 10996 San Pedro de Atacama 271472.6 2017 2985112297
15 02301 25186 Tocopilla 166115.9 2017 4183793832
17 03101 153937 Copiapó 251396.0 2017 38699138722
19 03103 14019 Tierra Amarilla 287819.4 2017 4034940816
21 03202 13925 Diego de Almagro 326439.0 2017 4545663075
22 03301 51917 Vallenar 217644.6 2017 11299454698
23 03302 5299 Alto del Carmen 196109.9 2017 1039186477
24 03303 7041 Freirina 202463.8 2017 1425547554
25 03304 10149 Huasco 205839.6 2017 2089066548
26 04101 221054 La Serena 200287.4 2017 44274327972
27 04102 227730 Coquimbo 206027.8 2017 46918711304
28 04103 11044 Andacollo 217096.4 2017 2397612293
29 04104 4241 La Higuera 231674.2 2017 982530309
30 04105 4497 Paiguano 174868.5 2017 786383423
31 04106 27771 Vicuña 169077.1 2017 4695441470
32 04201 30848 Illapel 165639.6 2017 5109649759
33 04202 9093 Canela 171370.3 2017 1558270441
34 04203 21382 Los Vilos 173238.5 2017 3704185607
35 04204 29347 Salamanca 193602.0 2017 5681637894
36 04301 111272 Ovalle 230819.8 2017 25683781418
37 04302 13322 Combarbalá 172709.2 2017 2300832587
38 04303 30751 Monte Patria 189761.6 2017 5835357638
39 04304 10956 Punitaqui 165862.0 2017 1817183694
40 04305 4278 Río Hurtado 182027.2 2017 778712384
41 05101 296655 Valparaíso 251998.5 2017 74756602991
42 05102 26867 Casablanca 252317.7 2017 6779018483
45 05105 18546 Puchuncaví 231606.0 2017 4295363979
46 05107 31923 Quintero 285125.8 2017 9102071069
49 05301 66708 Los Andes 280548.0 2017 18714795984
50 05302 14832 Calle Larga 234044.6 2017 3471349123
51 05303 10207 Rinconada 246136.9 2017 2512319225
52 05304 18855 San Esteban 211907.3 2017 3995512770
53 05401 35390 La Ligua 172675.9 2017 6111000517
54 05402 19388 Cabildo 212985.0 2017 4129354103
56 05404 9826 Petorca 270139.8 2017 2654393853
57 05405 7339 Zapallar 235661.4 2017 1729518700
58 05501 90517 Quillota 212067.6 2017 19195726144
59 05502 50554 Calera 226906.2 2017 11471016698
60 05503 17988 Hijuelas 215402.0 2017 3874650405
61 05504 22098 La Cruz 243333.4 2017 5377180726
62 05506 22120 Nogales 219800.7 2017 4861992055
63 05601 91350 San Antonio 230261.5 2017 21034388728

1.3 Unión Censo-Casen:

y creamos la columna multipob:

comunas_censo_casen = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
head(comunas_censo_casen,5)
##   código       zona Freq personas  comuna promedio_i  año ingresos_expandidos
## 1  01101 1101092010   18   191468 Iquique   272529.7 2017         52180713221
## 2  01101 1101092023    1   191468 Iquique   272529.7 2017         52180713221
## 3  01101 1101092012    2   191468 Iquique   272529.7 2017         52180713221
## 4  01101 1101092018    6   191468 Iquique   272529.7 2017         52180713221
## 5  01101 1101092001   32   191468 Iquique   272529.7 2017         52180713221

1.4 Unión de la proporcion zonal por comuna con la tabla censo-casen:

unimos a nuestra tabla de proporciones zonales por comuna:

Para calcular la variable multipob, debemos multiplicarla por su proporcion zonal respecto a la comunal.

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

1.5 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

tabla_de_prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(tabla_de_prop_pob)[1]  <- "zona"
comunas_censo_casen = merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
head(comunas_censo_casen,5)
##         zona código.x Freq.x personas  comuna promedio_i  año
## 1 1101092001    01101     32   191468 Iquique   272529.7 2017
## 2 1101092004    01101      5   191468 Iquique   272529.7 2017
## 3 1101092005    01101      1   191468 Iquique   272529.7 2017
## 4 1101092006    01101     12   191468 Iquique   272529.7 2017
## 5 1101092007    01101      1   191468 Iquique   272529.7 2017
##   ingresos_expandidos Freq.y            p código.y
## 1         52180713221     57 0.0002976999    01101
## 2         52180713221    247 0.0012900328    01101
## 3         52180713221     76 0.0003969332    01101
## 4         52180713221    603 0.0031493513    01101
## 5         52180713221     84 0.0004387156    01101
comunas_censo_casen$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p
head(comunas_censo_casen,5)
##         zona código.x Freq.x personas  comuna promedio_i  año
## 1 1101092001    01101     32   191468 Iquique   272529.7 2017
## 2 1101092004    01101      5   191468 Iquique   272529.7 2017
## 3 1101092005    01101      1   191468 Iquique   272529.7 2017
## 4 1101092006    01101     12   191468 Iquique   272529.7 2017
## 5 1101092007    01101      1   191468 Iquique   272529.7 2017
##   ingresos_expandidos Freq.y            p código.y  multipob
## 1         52180713221     57 0.0002976999    01101  15534192
## 2         52180713221    247 0.0012900328    01101  67314832
## 3         52180713221     76 0.0003969332    01101  20712256
## 4         52180713221    603 0.0031493513    01101 164335398
## 5         52180713221     84 0.0004387156    01101  22892493

1.6 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

1.6.1 Diagrama de dispersión loess

scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

1.6.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

1.6.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multipob~(Freq.x) , data=comunas_censo_casen)
summary(linearMod) 
## 
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -176538523  -24905981  -15214207   13324675  372887152 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 27670537   11042512   2.506   0.0159 *  
## Freq.x       2789967     200573  13.910   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 71240000 on 45 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.8113, Adjusted R-squared:  0.8071 
## F-statistic: 193.5 on 1 and 45 DF,  p-value: < 2.2e-16

1.6.4 Gráfica de la recta de regresión lineal

ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

1.7 Modelos alternativos

### 8.1 Modelo cuadrático

linearMod <- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"

modelos1 <- cbind(modelo,dato,sintaxis)


modelos1 <- cbind(modelo,dato,sintaxis)
 
### 8.2 Modelo cúbico
 
linearMod <- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"

modelos2 <- cbind(modelo,dato,sintaxis)
 
### 8.3 Modelo logarítmico
 
linearMod <- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos3 <- cbind(modelo,dato,sintaxis)
 
### 8.5 Modelo con raíz cuadrada 
 
linearMod <- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos5 <- cbind(modelo,dato,sintaxis)
 
### 8.6 Modelo raíz-raíz
 
linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos6 <- cbind(modelo,dato,sintaxis)
 
### 8.7 Modelo log-raíz
 
linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos7 <- cbind(modelo,dato,sintaxis)
 
### 8.8 Modelo raíz-log
 
linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos8 <- cbind(modelo,dato,sintaxis)
 
### 8.9 Modelo log-log
 
linearMod <- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"

modelos9 <- cbind(modelo,dato,sintaxis)
 
modelos_bind <- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)

modelos_bind <<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
h_y_m_comuna_corr_01 <<- comunas_censo_casen

kbl(modelos_bind) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
modelo dato sintaxis
1 cuadrático 0.807118357071291 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
2 cúbico 0.807118357071291 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
5 raíz-raíz 0.722896998029334 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
4 raíz cuadrada 0.720962405901732 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
7 raíz-log 0.625108306709531 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
8 log-log 0.600444657792443 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
6 log-raíz 0.491533983989812 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
3 logarítmico 0.447192501486132 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)

Elegimos el 8 pues tiene el ma alto \(R^2\)

h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 5


switch (metodo,
        case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
## 
## Call:
## lm(formula = sqrt(multipob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7124.8 -1755.0  -486.1  1564.3 10998.2 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2622.0      585.5   4.478 5.11e-05 ***
## sqrt(Freq.x)   1492.7      135.7  11.000 2.41e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2945 on 45 degrees of freedom
##   (9 observations deleted due to missingness)
## Multiple R-squared:  0.7289, Adjusted R-squared:  0.7229 
## F-statistic:   121 on 1 and 45 DF,  p-value: 2.415e-14
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    2621.971
bb <- linearMod$coefficients[2]
bb
## sqrt(Freq.x) 
##     1492.728

1.8 Modelo raíz-raíz (raíz-raíz)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6452).

1.8.1 Diagrama de dispersión sobre raíz-raíz

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(comunas_censo_casen$Freq.x), y=sqrt(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

ggplot(comunas_censo_casen, aes(x = sqrt(Freq.x) , y = sqrt(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")

1.8.2 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

1.8.3 Ecuación del modelo


Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]


1.9 10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr$est_ing  = { aa}^2 + 2  * aa  * bb * sqrt(h_y_m_comuna_corr$Freq.x)+   bb^2 * (h_y_m_comuna_corr$Freq.x)


1.10 11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr$ing_medio_zona <- h_y_m_comuna_corr$est_ing  /( h_y_m_comuna_corr$personas  * h_y_m_comuna_corr$p)

r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x personas comuna promedio_i año ingresos_expandidos Freq.y p código.y multipob est_ing ing_medio_zona
1 1101092001 01101 32 191468 Iquique 272529.7 2017 52180713221 57 0.0002977 01101 15534192 122458911 2148401.96
2 1101092004 01101 5 191468 Iquique 272529.7 2017 52180713221 247 0.0012900 01101 67314832 35519363 143803.09
3 1101092005 01101 1 191468 Iquique 272529.7 2017 52180713221 76 0.0003969 01101 20712256 16930749 222773.02
4 1101092006 01101 12 191468 Iquique 272529.7 2017 52180713221 603 0.0031494 01101 164335398 60729796 100712.76
5 1101092007 01101 1 191468 Iquique 272529.7 2017 52180713221 84 0.0004387 01101 22892493 16930749 201556.54
6 1101092010 01101 18 191468 Iquique 272529.7 2017 52180713221 398 0.0020787 01101 108466814 80193447 201491.07
7 1101092012 01101 2 191468 Iquique 272529.7 2017 52180713221 58 0.0003029 01101 15806722 22401358 386230.32
8 1101092018 01101 6 191468 Iquique 272529.7 2017 52180713221 74 0.0003865 01101 20167196 39418218 532678.63
9 1101092021 01101 3 191468 Iquique 272529.7 2017 52180713221 177 0.0009244 01101 48237754 27117555 153206.52
10 1101092023 01101 1 191468 Iquique 272529.7 2017 52180713221 288 0.0015042 01101 78488549 16930749 58787.32
11 1101092024 01101 1 191468 Iquique 272529.7 2017 52180713221 14 0.0000731 01101 3815416 16930749 1209339.24
12 1101092901 01101 2 191468 Iquique 272529.7 2017 52180713221 30 0.0001567 01101 8175890 22401358 746711.94
13 1101112003 01101 1 191468 Iquique 272529.7 2017 52180713221 33 0.0001724 01101 8993480 16930749 513053.01
14 1101112013 01101 3 191468 Iquique 272529.7 2017 52180713221 104 0.0005432 01101 28343087 27117555 260745.72
15 1101112019 01101 7 191468 Iquique 272529.7 2017 52180713221 34 0.0001776 01101 9266009 43182747 1270080.80
16 1101112025 01101 1 191468 Iquique 272529.7 2017 52180713221 21 0.0001097 01101 5723123 16930749 806226.16
17 1107032005 01107 1 NA NA NA NA NA 38 0.0003506 01107 NA 16930749 NA
18 1107032006 01107 56 NA NA NA NA NA 2399 0.0221361 01107 NA 190233720 NA
19 1401012001 01401 113 15711 Pozo Almonte 243272.4 2017 3822052676 684 0.0435364 01401 166398322 341875905 499818.57
20 1401012018 01401 1 15711 Pozo Almonte 243272.4 2017 3822052676 6 0.0003819 01401 1459634 16930749 2821791.56
21 1401012021 01401 3 15711 Pozo Almonte 243272.4 2017 3822052676 66 0.0042009 01401 16055978 27117555 410872.04
22 1401022005 01401 64 15711 Pozo Almonte 243272.4 2017 3822052676 631 0.0401629 01401 153504884 212104111 336139.64
23 1401022015 01401 15 15711 Pozo Almonte 243272.4 2017 3822052676 371 0.0236140 01401 90254060 70615141 190337.31
24 1401022024 01401 1 15711 Pozo Almonte 243272.4 2017 3822052676 16 0.0010184 01401 3892358 16930749 1058171.83
25 1401032002 01401 2 15711 Pozo Almonte 243272.4 2017 3822052676 53 0.0033734 01401 12893437 22401358 422667.14
26 1401032011 01401 15 15711 Pozo Almonte 243272.4 2017 3822052676 446 0.0283878 01401 108499490 70615141 158329.91
27 1401032012 01401 33 15711 Pozo Almonte 243272.4 2017 3822052676 2025 0.1288906 01401 492626610 125373710 61912.94
28 1401052020 01401 2 15711 Pozo Almonte 243272.4 2017 3822052676 143 0.0091019 01401 34787953 22401358 156652.86
29 1401052901 01401 2 15711 Pozo Almonte 243272.4 2017 3822052676 118 0.0075107 01401 28706143 22401358 189842.02
30 1401062013 01401 51 15711 Pozo Almonte 243272.4 2017 3822052676 694 0.0441729 01401 168831046 176416326 254202.20
31 1401062023 01401 13 15711 Pozo Almonte 243272.4 2017 3822052676 105 0.0066832 01401 25543602 64065269 610145.42
32 1401072008 01401 8 15711 Pozo Almonte 243272.4 2017 3822052676 83 0.0052829 01401 20191609 46840930 564348.55
33 1402012002 01402 10 1250 Camiña 226831.0 2017 283538750 434 0.3472000 01402 98444654 53910711 124218.23
34 1402012006 01402 1 1250 Camiña 226831.0 2017 283538750 198 0.1584000 01402 44912538 16930749 85508.84
35 1402012007 01402 1 1250 Camiña 226831.0 2017 283538750 44 0.0352000 01402 9980564 16930749 384789.76
36 1402012009 01402 1 1250 Camiña 226831.0 2017 283538750 56 0.0448000 01402 12702536 16930749 302334.81
37 1403012008 01403 48 NA NA NA NA NA 676 0.3912037 01403 NA 168062536 NA
38 1403012015 01403 6 NA NA NA NA NA 83 0.0480324 01403 NA 39418218 NA
39 1403022005 01403 1 NA NA NA NA NA 136 0.0787037 01403 NA 16930749 NA
40 1403022011 01403 1 NA NA NA NA NA 29 0.0167824 01403 NA 16930749 NA
41 1403022017 01403 2 NA NA NA NA NA 80 0.0462963 01403 NA 22401358 NA
42 1403022901 01403 1 NA NA NA NA NA 32 0.0185185 01403 NA 16930749 NA
43 1403992999 01403 21 NA NA NA NA NA 415 0.2401620 01403 NA 89539093 NA
44 1404022034 01404 4 2730 Huara 236599.7 2017 645917134 202 0.0739927 01404 47793136 31443239 155659.60
45 1404032901 01404 3 2730 Huara 236599.7 2017 645917134 117 0.0428571 01404 27682163 27117555 231773.97
46 1404042023 01404 7 2730 Huara 236599.7 2017 645917134 287 0.1051282 01404 67904109 43182747 150462.53
47 1404042901 01404 1 2730 Huara 236599.7 2017 645917134 143 0.0523810 01404 33833755 16930749 118396.85
48 1404062901 01404 1 2730 Huara 236599.7 2017 645917134 25 0.0091575 01404 5914992 16930749 677229.97
49 1404072031 01404 1 2730 Huara 236599.7 2017 645917134 49 0.0179487 01404 11593384 16930749 345525.50
50 1405012008 01405 15 9296 Pica 269198.0 2017 2502464414 645 0.0693847 01405 173632697 70615141 109480.84
51 1405012014 01405 2 9296 Pica 269198.0 2017 2502464414 67 0.0072074 01405 18036265 22401358 334348.63
52 1405012901 01405 2 9296 Pica 269198.0 2017 2502464414 115 0.0123709 01405 30957768 22401358 194794.42
53 1405022003 01405 339 9296 Pica 269198.0 2017 2502464414 3757 0.4041523 01405 1011376808 906371643 241248.77
54 1405022012 01405 65 9296 Pica 269198.0 2017 2502464414 668 0.0718589 01405 179824250 214819687 321586.36
55 1405022901 01405 1 9296 Pica 269198.0 2017 2502464414 20 0.0021515 01405 5383960 16930749 846537.47
56 1405032001 01405 2 9296 Pica 269198.0 2017 2502464414 44 0.0047332 01405 11844711 22401358 509121.78
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.2 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.3 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.4 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.5 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.6 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.7 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.8 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.9 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.10 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.11 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.12 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.13 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.14 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.15 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.16 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.17 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.18 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.19 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.20 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.21 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.22 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.23 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.24 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.25 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.26 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.27 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.28 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.29 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.30 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.31 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.32 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.33 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.34 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.35 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.36 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.37 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.38 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.39 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.40 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.41 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.42 NA NA NA NA NA NA NA NA NA NA NA NA NA NA
NA.43 NA NA NA NA NA NA NA NA NA NA NA NA NA NA


Guardamos:

saveRDS(h_y_m_comuna_corr, "Rural/region_01_ESCOLARIDAD_r.rds")