date: 20-07-2021
1 Resumen
Expandiremos los ingresos promedios (multiplicación del ingreso promedio y los habitantes) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de viviendas -del 2017-, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal.
Haremos el análisis sobre la región 05.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción zonal a nivel comunal (multipob)”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
2 Generación de ingresos expandidos a nivel Urbano
En adelante sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_urbano_17.rds”
2.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).
2.1.1 Lectura y filtrado de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<-
tabla_con_clave readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/censos_con_clave/censo_personas_con_clave_17")
<- tabla_con_clave[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Despleguemos los códigos de regiones de nuestra tabla:
<- unique(tabla_con_clave$REGION)
regiones regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la region = 5, y área URBANA = 1.
<- filter(tabla_con_clave, tabla_con_clave$REGION == 5)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1) tabla_con_clave
2.1.2 Cálculo de frecuencias
Obtenemos las frecuencias a la pregunta P17 por zona:
<- tabla_con_clave[,-c(1,2,4:31,33:48),drop=FALSE] tabla_con_clave_f
Renombramos y filtramos por la categoria Trabajo por un sueldo
== 1:
names(tabla_con_clave_f)[2] <- "Trabajo por un sueldo"
<- filter(tabla_con_clave_f, tabla_con_clave_f$`Trabajo por un sueldo` == 1) tabla_con_clave_ff
# Determinamos las frecuencias por zona:
<- tabla_con_clave_ff$clave
b <- tabla_con_clave_ff$`Trabajo por un sueldo`
c <- tabla_con_clave_ff$COMUNA
d = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d names(d)[1] <- "zona"
$anio <- "2017"
d
head(d,5)
## zona unlist.c. unlist.d. Freq anio
## 1 5101011001 1 5101 1280 2017
## 2 5101011002 1 5101 1399 2017
## 3 5101011003 1 5101 937 2017
## 4 5101011004 1 5101 1019 2017
## 5 5101011005 1 5101 1022 2017
Agregamos un cero a los códigos comunales de cuatro dígitos:
<- d$unlist.d.
codigos <- seq(1:nrow(d))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
comuna_corr names(comuna_corr)[4] <- "código"
2.1.3 Tabla de frecuencias:
head(comuna_corr,5)
## zona Freq anio código
## 1 5101011001 1280 2017 05101
## 2 5101011002 1399 2017 05101
## 3 5101011003 937 2017 05101
## 4 5101011004 1019 2017 05101
## 5 5101011005 1022 2017 05101
nrow(comuna_corr)
## [1] 710
y obtenemos la tabla de frecuencias de respuesta a la categoría = 1 de la pregunta P17 a nivel zonal.
2.2 Variable CASEN
2.2.1 Tabla de ingresos expandidos
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
<- readRDS("../../../ds_correlaciones_censo_casen/corre_ing_exp-censo_casen/ingresos_expandidos_urbano_17.rds")
h_y_m_2017_censo head(h_y_m_2017_censo,5)
## código personas comuna promedio_i año ingresos_expandidos
## 1 01101 191468 Iquique 375676.9 2017 71930106513
## 2 01107 108375 Alto Hospicio 311571.7 2017 33766585496
## 3 01401 15711 Pozo Almonte 316138.5 2017 4966851883
## 7 01405 9296 Pica 330061.1 2017 3068247619
## 8 02101 361873 Antofagasta 368221.4 2017 133249367039
nrow(h_y_m_2017_censo)
## [1] 312
Unión Censo-Casen:
= merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
comunas_censo_casen head(comunas_censo_casen,5)
## código zona Freq personas comuna promedio_i año
## 1 05101 5101011004 1019 296655 Valparaíso 306572.5 2017
## 2 05101 5101011005 1022 296655 Valparaíso 306572.5 2017
## 3 05101 5101011006 1120 296655 Valparaíso 306572.5 2017
## 4 05101 5101011007 1275 296655 Valparaíso 306572.5 2017
## 5 05101 5101021001 136 296655 Valparaíso 306572.5 2017
## ingresos_expandidos
## 1 90946261553
## 2 90946261553
## 3 90946261553
## 4 90946261553
## 5 90946261553
nrow(comunas_censo_casen)
## [1] 710
2.3 Unión de la proporción zonal por comuna con la tabla censo-casen:
Para calcular la variable multipob, debemos calcular:
\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
2.3.1 Ingreso promedio expandido por zona (multi_pob)
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
Para calcular la variable multipob, debemos:
\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]
Unimos:
<- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "zona"
= merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
comunas_censo_casen head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 5101011001 05101 1280 296655 Valparaíso 306572.5 2017
## 2 5101011002 05101 1399 296655 Valparaíso 306572.5 2017
## 3 5101011003 05101 937 296655 Valparaíso 306572.5 2017
## 4 5101011004 05101 1019 296655 Valparaíso 306572.5 2017
## 5 5101011005 05101 1022 296655 Valparaíso 306572.5 2017
## ingresos_expandidos Freq.y p código.y
## 1 90946261553 3280 0.011056615 05101
## 2 90946261553 3761 0.012678027 05101
## 3 90946261553 2365 0.007972224 05101
## 4 90946261553 2690 0.009067772 05101
## 5 90946261553 2518 0.008487974 05101
Creamos:
$multipob <- comunas_censo_casen$ingresos_expandidos*comunas_censo_casen$p comunas_censo_casen
head(comunas_censo_casen,5)
## zona código.x Freq.x personas comuna promedio_i año
## 1 5101011001 05101 1280 296655 Valparaíso 306572.5 2017
## 2 5101011002 05101 1399 296655 Valparaíso 306572.5 2017
## 3 5101011003 05101 937 296655 Valparaíso 306572.5 2017
## 4 5101011004 05101 1019 296655 Valparaíso 306572.5 2017
## 5 5101011005 05101 1022 296655 Valparaíso 306572.5 2017
## ingresos_expandidos Freq.y p código.y multipob
## 1 90946261553 3280 0.011056615 05101 1005557762
## 2 90946261553 3761 0.012678027 05101 1153019129
## 3 90946261553 2365 0.007972224 05101 725043935
## 4 90946261553 2690 0.009067772 05101 824679994
## 5 90946261553 2518 0.008487974 05101 771949526
3 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
3.1 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
3.2 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
3.3 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- lm( multipob~(Freq.x) , data=comunas_censo_casen)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -541737137 -44435837 2686078 63011532 299808741
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -10609214 7829259 -1.355 0.176
## Freq.x 787627 6938 113.517 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 111500000 on 705 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.9481, Adjusted R-squared: 0.9481
## F-statistic: 1.289e+04 on 1 and 705 DF, p-value: < 2.2e-16
3.4 Gráfica de la recta de regresión lineal
ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.9481 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
4 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos1
<- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind
<<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind <<- comunas_censo_casen
h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
8 | log-log | 0.983552202588152 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 | raíz-raíz | 0.968170579523889 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
1 | cuadrático | 0.948053894919601 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.948053894919601 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.897549953465911 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.842871695392251 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.823810758844357 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.639618061557213 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 Elección del modelo.
Elegimos el modelo log-log (8) pues tiene el más alto \(R^2\)
<- h_y_m_comuna_corr_01
h_y_m_comuna_corr <- 8
metodo switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)summary(linearMod)
##
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.56585 -0.08191 0.01045 0.09670 0.57219
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.344140 0.033018 404.1 <2e-16 ***
## log(Freq.x) 1.029538 0.005011 205.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1508 on 705 degrees of freedom
## (3 observations deleted due to missingness)
## Multiple R-squared: 0.9836, Adjusted R-squared: 0.9836
## F-statistic: 4.222e+04 on 1 and 705 DF, p-value: < 2.2e-16
5.1 Modelo log-log (log-log)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.984).
5.1.1 Diagrama de dispersión sobre log-log
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(comunas_censo_casen$Freq.x), y=log(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
ggplot(comunas_censo_casen, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")
5.1.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
5.1.3 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- linearMod$coefficients[1]
aa <- linearMod$coefficients[2] bb
5.1.4 Modelo real:
\[ \hat Y = e^{13.344140+1.029538 \cdot ln{X}} \]
6 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing <- exp(aa+bb*log(comunas_censo_casen$Freq.x)) comunas_censo_casen
7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
$ing_medio_zona <- comunas_censo_casen$est_ing /(comunas_censo_casen$personas * comunas_censo_casen$p)
comunas_censo_casen
<- comunas_censo_casen[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | personas | comuna | promedio_i | año | ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5101011001 | 05101 | 1280 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 3280 | 0.0110566 | 05101 | 1005557762 | 986906680 | 300886.2 |
5101011002 | 05101 | 1399 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 3761 | 0.0126780 | 05101 | 1153019129 | 1081494257 | 287555.0 |
5101011003 | 05101 | 937 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2365 | 0.0079722 | 05101 | 725043935 | 715820653 | 302672.6 |
5101011004 | 05101 | 1019 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2690 | 0.0090678 | 05101 | 824679994 | 780395960 | 290110.0 |
5101011005 | 05101 | 1022 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2518 | 0.0084880 | 05101 | 771949526 | 782761461 | 310866.3 |
5101011006 | 05101 | 1120 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2848 | 0.0096004 | 05101 | 873118447 | 860144055 | 302016.9 |
5101011007 | 05101 | 1275 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 3131 | 0.0105543 | 05101 | 959878461 | 982937934 | 313937.4 |
5101021001 | 05101 | 136 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 273 | 0.0009203 | 05101 | 83694289 | 98139765 | 359486.3 |
5101021002 | 05101 | 788 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1881 | 0.0063407 | 05101 | 576662851 | 598920558 | 318405.4 |
5101021003 | 05101 | 689 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1696 | 0.0057171 | 05101 | 519946940 | 521602866 | 307548.9 |
5101021004 | 05101 | 624 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1415 | 0.0047699 | 05101 | 433800071 | 471014409 | 332872.4 |
5101031001 | 05101 | 596 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1402 | 0.0047260 | 05101 | 429814629 | 449269494 | 320449.0 |
5101031002 | 05101 | 709 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1780 | 0.0060002 | 05101 | 545699029 | 537197581 | 301796.4 |
5101031003 | 05101 | 445 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1071 | 0.0036103 | 05101 | 328339135 | 332562098 | 310515.5 |
5101031004 | 05101 | 321 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 739 | 0.0024911 | 05101 | 226557069 | 237589751 | 321501.7 |
5101031005 | 05101 | 179 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 457 | 0.0015405 | 05101 | 140103627 | 130221712 | 284949.0 |
5101031006 | 05101 | 415 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1051 | 0.0035428 | 05101 | 322207685 | 309503449 | 294484.7 |
5101031007 | 05101 | 875 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2154 | 0.0072610 | 05101 | 660357140 | 667105444 | 309705.4 |
5101031008 | 05101 | 936 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2337 | 0.0078778 | 05101 | 716459905 | 715034151 | 305962.4 |
5101031009 | 05101 | 458 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1059 | 0.0035698 | 05101 | 324660265 | 342568638 | 323483.1 |
5101031010 | 05101 | 660 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1678 | 0.0056564 | 05101 | 514428636 | 499014377 | 297386.4 |
5101031011 | 05101 | 1040 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2610 | 0.0087981 | 05101 | 800154195 | 796958756 | 305348.2 |
5101031012 | 05101 | 249 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 659 | 0.0022214 | 05101 | 202031270 | 182921114 | 277573.8 |
5101041001 | 05101 | 99 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 177 | 0.0005967 | 05101 | 54263330 | 70773054 | 399847.8 |
5101051001 | 05101 | 856 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1872 | 0.0063104 | 05101 | 573903698 | 652196668 | 348395.7 |
5101051002 | 05101 | 690 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1714 | 0.0057778 | 05101 | 525465245 | 522382288 | 304773.8 |
5101051003 | 05101 | 896 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2345 | 0.0079048 | 05101 | 718912485 | 683594687 | 291511.6 |
5101051004 | 05101 | 1135 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 3014 | 0.0101600 | 05101 | 924009480 | 872006445 | 289318.7 |
5101051005 | 05101 | 690 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1688 | 0.0056901 | 05101 | 517494360 | 522382288 | 309468.2 |
5101051006 | 05101 | 1347 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 3387 | 0.0114173 | 05101 | 1038361018 | 1040131383 | 307095.2 |
5101051007 | 05101 | 799 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2233 | 0.0075273 | 05101 | 684576367 | 607529842 | 272068.9 |
5101061001 | 05101 | 550 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1196 | 0.0040316 | 05101 | 366660696 | 413611856 | 345829.3 |
5101061002 | 05101 | 455 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 878 | 0.0029597 | 05101 | 269170645 | 340258683 | 387538.4 |
5101061003 | 05101 | 783 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1642 | 0.0055350 | 05101 | 503392026 | 595008417 | 362368.1 |
5101061004 | 05101 | 383 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 862 | 0.0029057 | 05101 | 264265485 | 284961902 | 330582.3 |
5101061005 | 05101 | 701 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1546 | 0.0052114 | 05101 | 473961067 | 530958115 | 343439.9 |
5101071001 | 05101 | 660 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1265 | 0.0042642 | 05101 | 387814198 | 499014377 | 394477.8 |
5101081001 | 05101 | 386 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 687 | 0.0023158 | 05101 | 210615300 | 287260175 | 418137.1 |
5101081002 | 05101 | 318 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 634 | 0.0021372 | 05101 | 194366958 | 235304015 | 371142.0 |
5101081003 | 05101 | 267 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 619 | 0.0020866 | 05101 | 189768370 | 196549117 | 317526.8 |
5101081004 | 05101 | 265 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 620 | 0.0020900 | 05101 | 190074943 | 195033520 | 314570.2 |
5101081005 | 05101 | 438 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 979 | 0.0033001 | 05101 | 300134466 | 327177521 | 334195.6 |
5101081006 | 05101 | 596 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1435 | 0.0048373 | 05101 | 439931521 | 449269494 | 313079.8 |
5101081007 | 05101 | 767 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1791 | 0.0060373 | 05101 | 549071327 | 582494547 | 325234.3 |
5101081008 | 05101 | 511 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1274 | 0.0042946 | 05101 | 390573350 | 383449082 | 300980.4 |
5101081009 | 05101 | 644 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1519 | 0.0051204 | 05101 | 465683610 | 486564226 | 320318.8 |
5101081010 | 05101 | 543 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1320 | 0.0044496 | 05101 | 404675685 | 408193237 | 309237.3 |
5101081011 | 05101 | 484 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1143 | 0.0038530 | 05101 | 350412354 | 362606676 | 317241.2 |
5101091001 | 05101 | 801 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1689 | 0.0056935 | 05101 | 517800933 | 609095544 | 360625.0 |
5101091002 | 05101 | 644 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1322 | 0.0044564 | 05101 | 405288830 | 486564226 | 368051.6 |
5101091003 | 05101 | 577 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1275 | 0.0042979 | 05101 | 390879923 | 434531110 | 340808.7 |
5101091004 | 05101 | 1268 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 4201 | 0.0141612 | 05101 | 1287911024 | 977382462 | 232654.7 |
5101101001 | 05101 | 479 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1044 | 0.0035192 | 05101 | 320061678 | 358750684 | 343630.9 |
5101101002 | 05101 | 479 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 988 | 0.0033305 | 05101 | 302893619 | 358750684 | 363108.0 |
5101101003 | 05101 | 351 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 849 | 0.0028619 | 05101 | 260280043 | 260480916 | 306809.1 |
5101101004 | 05101 | 294 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 717 | 0.0024169 | 05101 | 219812474 | 217041563 | 302707.9 |
5101101005 | 05101 | 402 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 936 | 0.0031552 | 05101 | 286951849 | 299526449 | 320006.9 |
5101101006 | 05101 | 621 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1453 | 0.0048979 | 05101 | 445449826 | 468683194 | 322562.4 |
5101101007 | 05101 | 272 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 604 | 0.0020360 | 05101 | 185169783 | 200339573 | 331688.0 |
5101101008 | 05101 | 959 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2358 | 0.0079486 | 05101 | 722897928 | 733129933 | 310911.8 |
5101101009 | 05101 | 1460 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 3502 | 0.0118050 | 05101 | 1073616854 | 1130073900 | 322693.9 |
5101111001 | 05101 | 1024 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2120 | 0.0071463 | 05101 | 649933675 | 784338576 | 369971.0 |
5101121001 | 05101 | 585 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1435 | 0.0048373 | 05101 | 439931521 | 440735025 | 307132.4 |
5101121002 | 05101 | 974 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1941 | 0.0065430 | 05101 | 595057200 | 744938459 | 383791.1 |
5101121003 | 05101 | 739 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1528 | 0.0051508 | 05101 | 468442762 | 560613920 | 366893.9 |
5101131001 | 05101 | 385 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1170 | 0.0039440 | 05101 | 358689811 | 286494025 | 244866.7 |
5101131002 | 05101 | 249 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 572 | 0.0019282 | 05101 | 175359463 | 182921114 | 319792.2 |
5101131003 | 05101 | 255 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 638 | 0.0021506 | 05101 | 195593248 | 187460649 | 293825.5 |
5101131004 | 05101 | 350 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 880 | 0.0029664 | 05101 | 269783790 | 259716917 | 295132.9 |
5101131005 | 05101 | 259 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 664 | 0.0022383 | 05101 | 203564132 | 190488764 | 286880.7 |
5101141001 | 05101 | 657 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1502 | 0.0050631 | 05101 | 460471878 | 496679288 | 330678.6 |
5101141002 | 05101 | 471 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1122 | 0.0037822 | 05101 | 343974332 | 352583573 | 314245.6 |
5101141003 | 05101 | 425 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1031 | 0.0034754 | 05101 | 316076236 | 317184364 | 307647.3 |
5101141004 | 05101 | 249 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 638 | 0.0021506 | 05101 | 195593248 | 182921114 | 286710.2 |
5101141005 | 05101 | 300 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 704 | 0.0023731 | 05101 | 215827032 | 221603183 | 314777.2 |
5101141006 | 05101 | 470 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1265 | 0.0042642 | 05101 | 387814198 | 351812900 | 278113.0 |
5101151001 | 05101 | 236 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 532 | 0.0017933 | 05101 | 163096564 | 173096641 | 325369.6 |
5101151002 | 05101 | 202 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 455 | 0.0015338 | 05101 | 139490482 | 147479759 | 324131.3 |
5101151003 | 05101 | 272 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 640 | 0.0021574 | 05101 | 196206393 | 200339573 | 313030.6 |
5101151004 | 05101 | 219 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 543 | 0.0018304 | 05101 | 166468861 | 160273501 | 295163.0 |
5101151005 | 05101 | 198 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 503 | 0.0016956 | 05101 | 154205962 | 144473991 | 287224.6 |
5101151006 | 05101 | 310 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 774 | 0.0026091 | 05101 | 237287106 | 229211848 | 296139.3 |
5101151007 | 05101 | 628 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1448 | 0.0048811 | 05101 | 443916963 | 474123209 | 327433.2 |
5101161001 | 05101 | 281 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 625 | 0.0021068 | 05101 | 191607805 | 207167558 | 331468.1 |
5101161002 | 05101 | 273 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 697 | 0.0023495 | 05101 | 213681024 | 201097913 | 288519.2 |
5101161003 | 05101 | 196 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 496 | 0.0016720 | 05101 | 152059954 | 142971777 | 288249.6 |
5101161004 | 05101 | 348 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 892 | 0.0030069 | 05101 | 273462660 | 258189113 | 289449.7 |
5101161005 | 05101 | 221 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 518 | 0.0017461 | 05101 | 158804549 | 161780623 | 312317.8 |
5101161006 | 05101 | 417 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1016 | 0.0034249 | 05101 | 311477648 | 311039199 | 306140.9 |
5101161007 | 05101 | 410 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 950 | 0.0032024 | 05101 | 291243864 | 305665033 | 321752.7 |
5101161008 | 05101 | 478 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1194 | 0.0040249 | 05101 | 366047551 | 357979627 | 299815.4 |
5101161009 | 05101 | 341 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 856 | 0.0028855 | 05101 | 262426050 | 252843850 | 295378.3 |
5101161010 | 05101 | 487 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1235 | 0.0041631 | 05101 | 378617023 | 364920838 | 295482.5 |
5101161011 | 05101 | 734 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1840 | 0.0062025 | 05101 | 564093379 | 556709215 | 302559.4 |
5101161012 | 05101 | 1022 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 2467 | 0.0083161 | 05101 | 756314329 | 782761461 | 317292.9 |
5101171001 | 05101 | 378 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 932 | 0.0031417 | 05101 | 285725559 | 281132630 | 301644.5 |
5101171002 | 05101 | 466 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1142 | 0.0038496 | 05101 | 350105782 | 348730696 | 305368.4 |
5101171003 | 05101 | 617 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1447 | 0.0048777 | 05101 | 443610391 | 465575426 | 321752.2 |
5101171004 | 05101 | 467 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1122 | 0.0037822 | 05101 | 343974332 | 349501174 | 311498.4 |
5101171005 | 05101 | 578 | 296655 | Valparaíso | 306572.5 | 2017 | 90946261553 | 1452 | 0.0048946 | 05101 | 445143253 | 435306461 | 299797.8 |
Guardamos:
saveRDS(comunas_censo_casen, "URBANO/region_05_P17_u.rds")
8 Referencias
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda
9 Anexo:
9.1 Modelos alternativos
9.1.1 Modelo cuadrático
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
9.1.2 Modelo cúbico
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
9.1.3 Modelo logarítmico
\[ \hat Y = \beta_0 + \beta_1 ln X \]
9.1.4 Modelo exponencial
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
9.1.5 Modelo con raíz cuadrada
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
9.1.6 raiz raiz
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
9.1.7 Modelo log-raíz
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
9.1.8 Modelo raíz-log
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
9.1.9 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]