date: 03-08-2021
1 Resumen
Expandiremos los ingresos promedios (multiplicación del ingreso promedio y los habitantes) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de viviendas -del 2017-, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal.
Haremos el análisis sobre la región 02.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción zonal a nivel comunal (multipob)”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
2 Generación de ingresos expandidos a nivel Urbano
En adelante sólo llamaremos al rds ya construído llamado “Ingresos_expandidos_urbano_17.rds”
2.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).
2.1.1 Lectura y filtrado de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<-
tabla_con_clave readRDS("../../../ds_correlaciones_censo_casen/corre_censo_casen_2017/censos_con_clave/censo_personas_con_clave_17")
<- tabla_con_clave[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Despleguemos los códigos de regiones de nuestra tabla:
<- unique(tabla_con_clave$REGION)
regiones regiones
## [1] 15 14 13 12 11 10 9 16 8 7 6 5 4 3 2 1
Hagamos un subset con la region = 2, y área URBANA = 1.
<- filter(tabla_con_clave, tabla_con_clave$REGION == 2)
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1) tabla_con_clave
2.1.2 Cálculo de frecuencias
Obtenemos las frecuencias a la pregunta P17 por zona:
<- tabla_con_clave[,-c(1,2,4:31,33:48),drop=FALSE] tabla_con_clave_f
Renombramos y filtramos por la categoria Trabajo por un sueldo
== 1:
names(tabla_con_clave_f)[2] <- "Trabajo por un sueldo"
<- filter(tabla_con_clave_f, tabla_con_clave_f$`Trabajo por un sueldo` == 1) tabla_con_clave_ff
# Determinamos las frecuencias por zona:
<- tabla_con_clave_ff$clave
b <- tabla_con_clave_ff$`Trabajo por un sueldo`
c <- tabla_con_clave_ff$COMUNA
d = xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
cross_tab <- as.data.frame(cross_tab)
tabla <-tabla[!(tabla$Freq == 0),]
d names(d)[1] <- "zona"
$anio <- "2017"
d
head(d,5)
## zona unlist.c. unlist.d. Freq anio
## 1 2101011001 1 2101 1859 2017
## 2 2101011002 1 2101 1556 2017
## 3 2101011003 1 2101 2294 2017
## 4 2101011004 1 2101 1957 2017
## 5 2101011005 1 2101 899 2017
Agregamos un cero a los códigos comunales de cuatro dígitos:
<- d$unlist.d.
codigos <- seq(1:nrow(d))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
comuna_corr names(comuna_corr)[4] <- "código"
2.1.3 Tabla de frecuencias:
head(comuna_corr,5)
## zona Freq anio código
## 1 2101011001 1859 2017 02101
## 2 2101011002 1556 2017 02101
## 3 2101011003 2294 2017 02101
## 4 2101011004 1957 2017 02101
## 5 2101011005 899 2017 02101
nrow(comuna_corr)
## [1] 155
y obtenemos la tabla de frecuencias de respuesta a la categoría = 1 de la pregunta P17 a nivel zonal.
2.2 Variable CASEN
2.2.1 Tabla de ingresos expandidos
Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí
<- readRDS("ingresos_expandidos_17.rds")
h_y_m_2017_censo head(h_y_m_2017_censo,5)
## código comuna.x promedio_i año comuna.y personas Ingresos_expandidos
## 1 01101 Iquique 354820.7 2017 1101 191468 67936815240
## 2 01107 Alto Hospicio 301933.4 2017 1107 108375 32722034397
## 3 01401 Pozo Almonte 285981.8 2017 1401 15711 4493059532
## 4 01402 Camiña 262850.3 2017 1402 1250 328562901
## 5 01404 Huara 253968.5 2017 1404 2730 693334131
nrow(h_y_m_2017_censo)
## [1] 324
Unión Censo-Casen:
= merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_censo_casen <- comunas_censo_casen[,-c(4)]
comunas_censo_casen head(comunas_censo_casen,5)
## código zona Freq comuna.x promedio_i año comuna.y personas
## 1 02101 2101011001 1859 Antofagasta 347580.2 2017 2101 361873
## 2 02101 2101011002 1556 Antofagasta 347580.2 2017 2101 361873
## 3 02101 2101011003 2294 Antofagasta 347580.2 2017 2101 361873
## 4 02101 2101011004 1957 Antofagasta 347580.2 2017 2101 361873
## 5 02101 2101011005 899 Antofagasta 347580.2 2017 2101 361873
## Ingresos_expandidos
## 1 125779893517
## 2 125779893517
## 3 125779893517
## 4 125779893517
## 5 125779893517
nrow(comunas_censo_casen)
## [1] 155
2.3 Unión de la proporción zonal por comuna con la tabla censo-casen:
Para calcular la variable multipob, debemos calcular:
\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]
Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.
2.3.1 Ingreso promedio expandido por zona (multi_pob)
En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:
Para calcular la variable multipob, debemos:
\[ multipob = promedio\_i \cdot personas \cdot p\_poblacional \]
Unimos:
<- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "zona"
= merge( x = comunas_censo_casen, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
comunas_censo_casen head(comunas_censo_casen,5)
## zona código.x Freq.x comuna.x promedio_i año comuna.y personas
## 1 2101011001 02101 1859 Antofagasta 347580.2 2017 2101 361873
## 2 2101011002 02101 1556 Antofagasta 347580.2 2017 2101 361873
## 3 2101011003 02101 2294 Antofagasta 347580.2 2017 2101 361873
## 4 2101011004 02101 1957 Antofagasta 347580.2 2017 2101 361873
## 5 2101011005 02101 899 Antofagasta 347580.2 2017 2101 361873
## Ingresos_expandidos Freq.y p código.y
## 1 125779893517 4618 0.012761383 02101
## 2 125779893517 3644 0.010069831 02101
## 3 125779893517 5645 0.015599395 02101
## 4 125779893517 4385 0.012117511 02101
## 5 125779893517 2383 0.006585183 02101
Creamos multipob:
$multipob <- comunas_censo_casen$Ingresos_expandidos*comunas_censo_casen$p comunas_censo_casen
head(comunas_censo_casen,5)
## zona código.x Freq.x comuna.x promedio_i año comuna.y personas
## 1 2101011001 02101 1859 Antofagasta 347580.2 2017 2101 361873
## 2 2101011002 02101 1556 Antofagasta 347580.2 2017 2101 361873
## 3 2101011003 02101 2294 Antofagasta 347580.2 2017 2101 361873
## 4 2101011004 02101 1957 Antofagasta 347580.2 2017 2101 361873
## 5 2101011005 02101 899 Antofagasta 347580.2 2017 2101 361873
## Ingresos_expandidos Freq.y p código.y multipob
## 1 125779893517 4618 0.012761383 02101 1605125412
## 2 125779893517 3644 0.010069831 02101 1266582287
## 3 125779893517 5645 0.015599395 02101 1962090288
## 4 125779893517 4385 0.012117511 02101 1524139223
## 5 125779893517 2383 0.006585183 02101 828283642
3 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
3.1 Diagrama de dispersión loess
scatter.smooth(x=comunas_censo_casen$Freq.x, y=comunas_censo_casen$multipob, main="multi_pob ~ Freq.x",
xlab = "Freq.x",
ylab = "multi_pob",
col = 2)
3.2 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
3.3 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- lm( multipob~(Freq.x) , data=comunas_censo_casen)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (Freq.x), data = comunas_censo_casen)
##
## Residuals:
## Min 1Q Median 3Q Max
## -756048405 -93404157 -2460097 83640913 553111802
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -26961285 39079602 -0.69 0.491
## Freq.x 885447 23046 38.42 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 201800000 on 153 degrees of freedom
## Multiple R-squared: 0.9061, Adjusted R-squared: 0.9055
## F-statistic: 1476 on 1 and 153 DF, p-value: < 2.2e-16
3.4 Gráfica de la recta de regresión lineal
ggplot(comunas_censo_casen, aes(x = Freq.x , y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.9009 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
4 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(Freq.x^2) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos1
<- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(Freq.x^3) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind
<<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind <<- comunas_censo_casen
h_y_m_comuna_corr_01
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
8 | log-log | 0.961432074600408 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 | raíz-raíz | 0.932961604082072 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
1 | cuadrático | 0.905471753915045 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.905471753915045 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.86262911077036 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.837784561294004 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.82175440205587 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.640403146056936 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 Elección del modelo.
Elegimos el modelo log-log (8) pues tiene el más alto \(R^2\)
<- h_y_m_comuna_corr_01
h_y_m_comuna_corr <- 8
metodo switch (metodo,
case = linearMod <- lm( multipob~(Freq.x^2) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~(Freq.x^3) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( multipob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( sqrt(multipob)~log(Freq.x) , data=h_y_m_comuna_corr),
case = linearMod <- lm( log(multipob)~log(Freq.x) , data=h_y_m_comuna_corr)
)summary(linearMod)
##
## Call:
## lm(formula = log(multipob) ~ log(Freq.x), data = h_y_m_comuna_corr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.62921 -0.08155 -0.00074 0.09999 0.40591
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.99686 0.12685 102.46 <2e-16 ***
## log(Freq.x) 1.08991 0.01759 61.97 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1603 on 153 degrees of freedom
## Multiple R-squared: 0.9617, Adjusted R-squared: 0.9614
## F-statistic: 3840 on 1 and 153 DF, p-value: < 2.2e-16
5.1 Modelo log-log (log-log)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.963).
5.1.1 Diagrama de dispersión sobre log-log
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(comunas_censo_casen$Freq.x), y=log(comunas_censo_casen$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
ggplot(comunas_censo_casen, aes(x = log(Freq.x) , y = log(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")
5.1.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
5.1.3 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
5.1.4 Modelo real:
\[ \hat Y = e^{13.11756+1.08183 \cdot ln{X}} \]
<- lm( log(multipob)~log(Freq.x) , data=comunas_censo_casen)
linearMod <- linearMod$coefficients[1]
aa <- linearMod$coefficients[2] bb
6 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing <- exp(aa+bb*log(comunas_censo_casen$Freq.x)) comunas_censo_casen
7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
head(comunas_censo_casen,10)
## zona código.x Freq.x comuna.x promedio_i año comuna.y personas
## 1 2101011001 02101 1859 Antofagasta 347580.2 2017 2101 361873
## 2 2101011002 02101 1556 Antofagasta 347580.2 2017 2101 361873
## 3 2101011003 02101 2294 Antofagasta 347580.2 2017 2101 361873
## 4 2101011004 02101 1957 Antofagasta 347580.2 2017 2101 361873
## 5 2101011005 02101 899 Antofagasta 347580.2 2017 2101 361873
## 6 2101011006 02101 817 Antofagasta 347580.2 2017 2101 361873
## 7 2101011008 02101 2484 Antofagasta 347580.2 2017 2101 361873
## 8 2101011009 02101 2485 Antofagasta 347580.2 2017 2101 361873
## 9 2101011010 02101 1858 Antofagasta 347580.2 2017 2101 361873
## 10 2101011011 02101 1034 Antofagasta 347580.2 2017 2101 361873
## Ingresos_expandidos Freq.y p código.y multipob est_ing
## 1 125779893517 4618 0.012761383 02101 1605125412 1613183847
## 2 125779893517 3644 0.010069831 02101 1266582287 1328821810
## 3 125779893517 5645 0.015599395 02101 1962090288 2028653730
## 4 125779893517 4385 0.012117511 02101 1524139223 1706087574
## 5 125779893517 2383 0.006585183 02101 828283642 730795426
## 6 125779893517 1466 0.004051145 02101 509552589 658451119
## 7 125779893517 6487 0.017926179 02101 2254752826 2212448776
## 8 125779893517 6152 0.017000439 02101 2138313455 2213419554
## 9 125779893517 4495 0.012421485 02101 1562373046 1612238079
## 10 125779893517 2445 0.006756514 02101 849833615 851176587
$ing_medio_zona <- comunas_censo_casen$est_ing /(comunas_censo_casen$personas * comunas_censo_casen$p)
comunas_censo_casen
<- comunas_censo_casen[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código.x | Freq.x | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos | Freq.y | p | código.y | multipob | est_ing | ing_medio_zona |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2101011001 | 02101 | 1859 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4618 | 0.0127614 | 02101 | 1605125412 | 1613183847 | 349325.2 |
2101011002 | 02101 | 1556 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3644 | 0.0100698 | 02101 | 1266582287 | 1328821810 | 364660.2 |
2101011003 | 02101 | 2294 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 5645 | 0.0155994 | 02101 | 1962090288 | 2028653730 | 359371.8 |
2101011004 | 02101 | 1957 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4385 | 0.0121175 | 02101 | 1524139223 | 1706087574 | 389073.6 |
2101011005 | 02101 | 899 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2383 | 0.0065852 | 02101 | 828283642 | 730795426 | 306670.3 |
2101011006 | 02101 | 817 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 1466 | 0.0040511 | 02101 | 509552589 | 658451119 | 449148.1 |
2101011008 | 02101 | 2484 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 6487 | 0.0179262 | 02101 | 2254752826 | 2212448776 | 341058.9 |
2101011009 | 02101 | 2485 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 6152 | 0.0170004 | 02101 | 2138313455 | 2213419554 | 359788.6 |
2101011010 | 02101 | 1858 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4495 | 0.0124215 | 02101 | 1562373046 | 1612238079 | 358673.7 |
2101011011 | 02101 | 1034 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2445 | 0.0067565 | 02101 | 849833615 | 851176587 | 348129.5 |
2101011012 | 02101 | 1741 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4275 | 0.0118135 | 02101 | 1485905400 | 1501905323 | 351322.9 |
2101011013 | 02101 | 1202 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2947 | 0.0081437 | 02101 | 1024318880 | 1002956879 | 340331.5 |
2101011014 | 02101 | 2581 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 6247 | 0.0172630 | 02101 | 2171333575 | 2306775955 | 369261.4 |
2101011015 | 02101 | 1205 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2887 | 0.0079779 | 02101 | 1003464068 | 1005685469 | 348349.7 |
2101011016 | 02101 | 661 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 1643 | 0.0045403 | 02101 | 571074286 | 522672174 | 318120.6 |
2101011017 | 02101 | 1983 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4126 | 0.0114018 | 02101 | 1434115949 | 1730806677 | 419487.8 |
2101011018 | 02101 | 1845 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4567 | 0.0126204 | 02101 | 1587398821 | 1599947269 | 350327.8 |
2101011019 | 02101 | 721 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 1843 | 0.0050929 | 02101 | 640590328 | 574587043 | 311767.3 |
2101011020 | 02101 | 1138 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2874 | 0.0079420 | 02101 | 998945525 | 944895102 | 328773.5 |
2101011021 | 02101 | 1182 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2753 | 0.0076076 | 02101 | 956888320 | 984781990 | 357712.3 |
2101011022 | 02101 | 1009 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2805 | 0.0077513 | 02101 | 974962490 | 828771124 | 295462.1 |
2101021001 | 02101 | 1375 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3642 | 0.0100643 | 02101 | 1265887127 | 1161264290 | 318853.5 |
2101021002 | 02101 | 1751 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4658 | 0.0128719 | 02101 | 1619028621 | 1511310052 | 324454.7 |
2101021003 | 02101 | 1027 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2620 | 0.0072401 | 02101 | 910660152 | 844898096 | 322480.2 |
2101021004 | 02101 | 1769 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4532 | 0.0125237 | 02101 | 1575233514 | 1528250721 | 337213.3 |
2101021005 | 02101 | 2370 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 5748 | 0.0158840 | 02101 | 1997891050 | 2102013616 | 365694.8 |
2101031001 | 02101 | 1789 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3779 | 0.0104429 | 02101 | 1313505616 | 1547091867 | 409391.9 |
2101031002 | 02101 | 1119 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2511 | 0.0069389 | 02101 | 872773909 | 927713733 | 369459.9 |
2101031003 | 02101 | 952 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2087 | 0.0057672 | 02101 | 725399899 | 777874955 | 372724.0 |
2101031004 | 02101 | 1578 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3200 | 0.0088429 | 02101 | 1112256674 | 1349311963 | 421660.0 |
2101031005 | 02101 | 1580 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3138 | 0.0086716 | 02101 | 1090706701 | 1351175984 | 430585.1 |
2101031006 | 02101 | 1514 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3335 | 0.0092159 | 02101 | 1159180002 | 1289776816 | 386739.7 |
2101041001 | 02101 | 1890 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4379 | 0.0121009 | 02101 | 1522053742 | 1642525231 | 375091.4 |
2101041002 | 02101 | 1687 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4125 | 0.0113990 | 02101 | 1433768368 | 1451204341 | 351807.1 |
2101041003 | 02101 | 1014 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2518 | 0.0069582 | 02101 | 875206970 | 833248264 | 330916.7 |
2101041004 | 02101 | 1104 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2923 | 0.0080774 | 02101 | 1015976955 | 914167988 | 312749.9 |
2101041005 | 02101 | 1787 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4618 | 0.0127614 | 02101 | 1605125412 | 1545206896 | 334605.2 |
2101051001 | 02101 | 1775 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4321 | 0.0119407 | 02101 | 1501894090 | 1533901064 | 354987.5 |
2101051002 | 02101 | 2001 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 5027 | 0.0138916 | 02101 | 1747285718 | 1747937004 | 347709.8 |
2101051003 | 02101 | 2066 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 5139 | 0.0142011 | 02101 | 1786214702 | 1809911105 | 352191.3 |
2101061001 | 02101 | 2163 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3741 | 0.0103379 | 02101 | 1300297568 | 1902720556 | 508612.8 |
2101061002 | 02101 | 1347 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2750 | 0.0075994 | 02101 | 955845579 | 1135514317 | 412914.3 |
2101061003 | 02101 | 1796 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3370 | 0.0093127 | 02101 | 1171345309 | 1553690754 | 461035.8 |
2101071001 | 02101 | 2069 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4201 | 0.0116090 | 02101 | 1460184464 | 1812775726 | 431510.5 |
2101071002 | 02101 | 1217 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2844 | 0.0078591 | 02101 | 988518119 | 1016605925 | 357456.4 |
2101071003 | 02101 | 3057 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 7624 | 0.0210682 | 02101 | 2649951525 | 2774098621 | 363863.9 |
2101071004 | 02101 | 1520 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3724 | 0.0102909 | 02101 | 1294388704 | 1295348773 | 347838.0 |
2101071005 | 02101 | 1365 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3220 | 0.0088981 | 02101 | 1119208278 | 1152062408 | 357783.4 |
2101081001 | 02101 | 1389 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2981 | 0.0082377 | 02101 | 1036136608 | 1174157027 | 393880.3 |
2101081002 | 02101 | 2020 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4598 | 0.0127061 | 02101 | 1598173808 | 1766034050 | 384087.4 |
2101081003 | 02101 | 1737 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3327 | 0.0091938 | 02101 | 1156399360 | 1498144789 | 450299.0 |
2101081004 | 02101 | 1264 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2616 | 0.0072291 | 02101 | 909269831 | 1059470172 | 404996.2 |
2101091001 | 02101 | 1191 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2670 | 0.0073783 | 02101 | 928039162 | 992957296 | 371894.1 |
2101091002 | 02101 | 1511 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3682 | 0.0101748 | 02101 | 1279790335 | 1286991581 | 349536.0 |
2101091003 | 02101 | 1379 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3061 | 0.0084588 | 02101 | 1063943024 | 1164946730 | 380577.2 |
2101091004 | 02101 | 1778 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4034 | 0.0111476 | 02101 | 1402138569 | 1536726880 | 380943.7 |
2101091005 | 02101 | 1347 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3472 | 0.0095945 | 02101 | 1206798491 | 1135514317 | 327049.1 |
2101091006 | 02101 | 2259 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4565 | 0.0126149 | 02101 | 1586703661 | 1994942563 | 437008.2 |
2101091007 | 02101 | 835 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 1884 | 0.0052062 | 02101 | 654841117 | 674277867 | 357897.0 |
2101091008 | 02101 | 1154 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2451 | 0.0067731 | 02101 | 851919096 | 959383660 | 391425.4 |
2101091009 | 02101 | 886 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2064 | 0.0057037 | 02101 | 717405554 | 719285132 | 348490.9 |
2101091010 | 02101 | 1037 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2643 | 0.0073037 | 02101 | 918654496 | 853868541 | 323067.9 |
2101101001 | 02101 | 1694 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3814 | 0.0105396 | 02101 | 1325670923 | 1457768559 | 382215.1 |
2101101002 | 02101 | 713 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 1578 | 0.0043606 | 02101 | 548481572 | 567641859 | 359722.3 |
2101101003 | 02101 | 1187 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2526 | 0.0069803 | 02101 | 877987612 | 989323138 | 391656.0 |
2101141001 | 02101 | 3004 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 7735 | 0.0213749 | 02101 | 2688532928 | 2721720187 | 351870.7 |
2101141002 | 02101 | 2433 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 6365 | 0.0175890 | 02101 | 2212348040 | 2162985958 | 339825.0 |
2101141003 | 02101 | 1167 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3005 | 0.0083040 | 02101 | 1044478533 | 971168932 | 323184.3 |
2101141004 | 02101 | 1784 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4535 | 0.0125320 | 02101 | 1576276255 | 1542379796 | 340105.8 |
2101141005 | 02101 | 1574 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4116 | 0.0113742 | 02101 | 1430640146 | 1345584560 | 326915.6 |
2101141006 | 02101 | 2730 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 7236 | 0.0199960 | 02101 | 2515090403 | 2452288605 | 338901.1 |
2101141007 | 02101 | 1083 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2982 | 0.0082405 | 02101 | 1036484188 | 895231775 | 300211.9 |
2101141008 | 02101 | 1159 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2989 | 0.0082598 | 02101 | 1038917249 | 963915052 | 322487.5 |
2101141009 | 02101 | 2569 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 6367 | 0.0175946 | 02101 | 2213043200 | 2295089081 | 360466.3 |
2101151001 | 02101 | 1228 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2879 | 0.0079558 | 02101 | 1000683426 | 1026624854 | 356590.8 |
2101151002 | 02101 | 1377 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3675 | 0.0101555 | 02101 | 1277357274 | 1163105390 | 316491.3 |
2101151003 | 02101 | 1428 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3768 | 0.0104125 | 02101 | 1309682233 | 1210133814 | 321160.8 |
2101151004 | 02101 | 3450 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 8961 | 0.0247628 | 02101 | 3114666266 | 3164957990 | 353192.5 |
2101161001 | 02101 | 1306 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2974 | 0.0082184 | 02101 | 1033703546 | 1097896012 | 369164.8 |
2101161002 | 02101 | 1376 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3413 | 0.0094315 | 02101 | 1186291258 | 1162184810 | 340517.1 |
2101161003 | 02101 | 711 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 1805 | 0.0049879 | 02101 | 627382280 | 565906654 | 313521.7 |
2101161004 | 02101 | 1032 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2437 | 0.0067344 | 02101 | 847052973 | 849382342 | 348536.0 |
2101161005 | 02101 | 1588 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 3265 | 0.0090225 | 02101 | 1134849387 | 1358634185 | 416120.7 |
2101171001 | 02101 | 960 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 2503 | 0.0069168 | 02101 | 869993267 | 785002124 | 313624.5 |
2101171002 | 02101 | 1731 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4463 | 0.0123331 | 02101 | 1551250479 | 1492505449 | 334417.5 |
2101171003 | 02101 | 1824 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4570 | 0.0126287 | 02101 | 1588441562 | 1580109349 | 345757.0 |
2101171004 | 02101 | 2226 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 5586 | 0.0154364 | 02101 | 1941583056 | 1963200721 | 351450.2 |
2101181001 | 02101 | 2362 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 5341 | 0.0147593 | 02101 | 1856425904 | 2094281439 | 392114.1 |
2101181002 | 02101 | 2305 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 5876 | 0.0162377 | 02101 | 2042381317 | 2039258256 | 347048.7 |
2101181003 | 02101 | 1795 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4235 | 0.0117030 | 02101 | 1472002191 | 1552747914 | 366646.5 |
2101181004 | 02101 | 1657 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4475 | 0.0123662 | 02101 | 1555421442 | 1423099824 | 318011.1 |
2101991999 | 02101 | 2502 | Antofagasta | 347580.2 | 2017 | 2101 | 361873 | 125779893517 | 4121 | 0.0113880 | 02101 | 1432378048 | 2229928150 | 541113.4 |
2102011001 | 02102 | 2784 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 | 5020 | 0.3727631 | 02102 | 1856249020 | 2505203387 | 499044.5 |
2102011002 | 02102 | 3818 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 | 7764 | 0.5765204 | 02102 | 2870899879 | 3534616722 | 455257.2 |
2102991999 | 02102 | 129 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 | 170 | 0.0126234 | 02102 | 62861023 | 88067670 | 518045.1 |
2104011001 | 02104 | 962 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 | 2174 | 0.1632500 | 02104 | 792507946 | 786784752 | 361906.5 |
2104021001 | 02104 | 1107 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 | 2812 | 0.2111587 | 02104 | 1025083875 | 916875820 | 326058.3 |
2104031001 | 02104 | 2402 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 | 5947 | 0.4465721 | 02104 | 2167913870 | 2132965723 | 358662.5 |
2104991999 | 02104 | 106 | Taltal | 364539.1 | 2017 | 2104 | 13317 | 4854566842 | 190 | 0.0142675 | 02104 | 69262424 | 71099214 | 374206.4 |
2201011001 | 02201 | 1292 | Calama | 409671.3 | 2017 | 2201 | 165731 | 67895226712 | 3387 | 0.0204367 | 02201 | 1387556540 | 1085074872 | 320364.6 |
Guardamos:
saveRDS(comunas_censo_casen, "URBANO/region_02_P17_u.rds")
8 Referencias
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda
9 Anexo:
9.1 Modelos alternativos
9.1.1 Modelo cuadrático
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
9.1.2 Modelo cúbico
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
9.1.3 Modelo logarítmico
\[ \hat Y = \beta_0 + \beta_1 ln X \]
9.1.4 Modelo exponencial
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
9.1.5 Modelo con raíz cuadrada
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
9.1.6 raiz raiz
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
9.1.7 Modelo log-raíz
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
9.1.8 Modelo raíz-log
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
9.1.9 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]