1 Resumen
Expandiremos los ingresos promedios (multiplicando el ingreso promedio y los habitantes) obtenidos de la CASEN 2017 sobre la categoría de respuesta: “Trabajó por un pago o especie” del campo P17 del CENSO de viviendas -del 2017-, que fue la categoría de respuesta que más alto correlacionó con los ingresos expandidos, ambos a nivel comunal.
Haremos el análisis sobre la región 01 yen el ambiente urbano.
Ensayaremos diferentes modelos dentro del análisis de regresión cuya variable independiente será: “frecuencia de población que posee la variable Censal respecto a la zona” y la dependiente: “ingreso expandido por zona por proporción zonal a nivel comunal (multipob)”
Lo anterior para elegir el que posea el mayor coeficiente de determinación y así contruir una tabla de valores predichos.
2 Generación de ingresos expandidos a nivel Urbano para la región 1:
2.1 Variable CENSO
Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Trabajó por un pago o especie” del campo P17 del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 2 Correlaciones aquí).
2.1.1 Lectura y filtrado de la tabla censal de personas
Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:
<-
tabla_con_clave readRDS("../../../ds_correlaciones_censo_casen/corre_censo_casen_2017/censos_con_clave/censo_personas_con_clave_17")
<- tabla_con_clave[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
REGION | PROVINCIA | COMUNA | DC | AREA | ZC_LOC | ID_ZONA_LOC | NVIV | NHOGAR | PERSONAN | P07 | P08 | P09 | P10 | P10COMUNA | P10PAIS | P11 | P11COMUNA | P11PAIS | P12 | P12COMUNA | P12PAIS | P12A_LLEGADA | P12A_TRAMO | P13 | P14 | P15 | P15A | P16 | P16A | P16A_OTRO | P17 | P18 | P19 | P20 | P21M | P21A | P10PAIS_GRUPO | P11PAIS_GRUPO | P12PAIS_GRUPO | ESCOLARIDAD | P16A_GRUPO | REGION_15R | PROVINCIA_15R | COMUNA_15R | P10COMUNA_15R | P11COMUNA_15R | P12COMUNA_15R | clave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 1 | 1 | 1 | 1 | 1 | 73 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 6 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 1 | 1 | 1 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 2 | 2 | 2 | 78 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 1 | 1 | 3 | 1965 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 3 | 5 | 2 | 52 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 2 | 1 | 4 | 1995 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 3 | 1 | 4 | 11 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 1 | 1 | 1 | 39 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 2 | 2 | 2 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 2 | 2 | 11 | 2004 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 3 | 5 | 1 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 9 | 1 | 4 | 5 | 1 | 12 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 6 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 10 | 1 | 1 | 1 | 2 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 9 | 1992 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 1 | 1 | 1 | 50 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 2 | 4 | 2 | 43 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 3 | 2002 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 13 | 1 | 3 | 5 | 1 | 15 | 3 | 15201 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 1 | 7 | 2 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 15201 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 1 | 1 | 1 | 75 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 2 | 16 | 2 | 58 | 4 | 98 | 68 | 6 | 98 | 998 | 5 | 98 | 998 | 9999 | 1 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 4 | 4 | 99 | 9999 | 68 | 68 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 16 | 1 | 3 | 2 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 5 | 4 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 1 | 1 | 2 | 43 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 3 | 3 | 9 | 2008 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 2 | 4 | 1 | 55 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 3 | 5 | 2 | 13 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 4 | 5 | 1 | 8 | 2 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 5 | 15 | 2 | 29 | 2 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 5 | 5 | 11 | 2014 | 998 | 604 | 604 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 6 | 15 | 1 | 4 | 2 | 98 | 998 | 1 | 98 | 998 | 5 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 7 | 15 | 2 | 2 | 2 | 98 | 998 | 1 | 98 | 998 | 3 | 98 | 998 | 2015 | 1 | 1 | 0 | 1 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 17 | 1 | 8 | 15 | 1 | 16 | 2 | 98 | 998 | 6 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 18 | 1 | 1 | 1 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 12 | 1976 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 19 | 1 | 1 | 1 | 1 | 68 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 1 | 1 | 1 | 74 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 20 | 1 | 2 | 2 | 2 | 65 | 1 | 98 | 998 | 3 | 997 | 998 | 3 | 98 | 998 | 9999 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 9 | 1982 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 997 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 1 | 1 | 2 | 76 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 8 | 6 | 3 | 1981 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 25 | 1 | 2 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 1 | 1 | 2 | 31 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 1 | A | 2 | 2 | 4 | 2008 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 2 | 4 | 1 | 35 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 2 | 6 | 5 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 6 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 3 | 5 | 1 | 11 | 1 | 98 | 998 | 2 | 98 | 998 | 5 | 98 | 998 | 2007 | 2 | 1 | 5 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 68 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 4 | 5 | 1 | 8 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 2 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 28 | 1 | 5 | 15 | 2 | 74 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 6 | 6 | 99 | 9999 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 2 | 2 | 2 | 47 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 2 | 1 | 4 | 1996 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 3 | 14 | 1 | 88 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 33 | 1 | 4 | 14 | 1 | 65 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 1 | 1 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 8 | 8 | 2 | 1998 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 2 | 2 | 1 | 56 | 1 | 98 | 998 | 99 | 99 | 999 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 999 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 99 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 3 | 5 | 2 | 36 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 7 | 2010 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 4 | 12 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 5 | 12 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 6 | 5 | 1 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 7 | 11 | 2 | 24 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 1 | N | 2 | 2 | 11 | 2015 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 8 | 12 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 36 | 1 | 9 | 12 | 2 | 1 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 38 | 1 | 1 | 1 | 1 | 19 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 1 | 8 | 2 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 7 | 2 | 1 | 2 | 98 | 1 | F | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 39 | 1 | 2 | 4 | 2 | 22 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 8 | 2 | 1 | 2 | 98 | 6 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 9 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 1 | 1 | 2 | 26 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 10 | 2013 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 2 | 2 | 1 | 24 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 3 | 13 | 2 | 71 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 12 | 1974 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 4 | 5 | 2 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 6 | 13225 | 43 | 1 | 5 | 5 | 2 | 3 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 0 | 1 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012006 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 1 | 1 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2005 | 2 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 2 | 2 | 2 | 42 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 1 | P | 3 | 3 | 12 | 2006 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 5 | 1 | 3 | 5 | 2 | 10 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 1 | 1 | 2 | 70 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 7 | 7 | 6 | 1994 | 998 | 998 | 998 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 7 | 1 | 2 | 5 | 1 | 44 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 5 | 2 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 5 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 1 | 1 | 1 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 8 | 1 | 2 | 2 | 2 | 59 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 2004 | 2 | 2 | 2 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 7 | 1999 | 998 | 998 | 604 | 2 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 19 | 1 | 1 | 1 | 1 | 58 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 1 | 1 | 1 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | H | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 21 | 1 | 2 | 2 | 2 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 3 | 3 | 2 | 1990 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 22 | 1 | 1 | 1 | 2 | 73 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 6 | 98 | 6 | 5 | 3 | 1979 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 8 | 13910 | 30 | 1 | 1 | 1 | 1 | 57 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 3 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 3 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012008 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 1 | 2 | 2 | 64 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1974 | 4 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 1 | A | 12 | 10 | 99 | 9999 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 2 | 1 | 1 | 74 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 99 | 99 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 3 | 5 | 2 | 38 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 0 | 98 | 98 | 9998 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 3 | 1 | 4 | 14 | 1 | 38 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 8 | 98 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 9 | 1 | 1 | 1 | 2 | 79 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 2 | 2 | 99 | 9999 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 19 | 1 | 1 | 1 | 1 | 46 | 99 | 99 | 999 | 99 | 99 | 999 | 99 | 99 | 999 | 9999 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 99 | 98 | 98 | 98 | 9998 | 999 | 999 | 999 | 99 | 99 | 15 | 152 | 15202 | 99 | 99 | 99 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 20 | 1 | 1 | 1 | 2 | 58 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 3 | 3 | 7 | 1982 | 998 | 998 | 998 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 1 | 1 | 2 | 45 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 997 | 998 | 9998 | 98 | 2 | 4 | 5 | 2 | 1 | 2 | 98 | 1 | A | 6 | 6 | 2 | 2007 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 997 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 21 | 1 | 2 | 5 | 2 | 10 | 1 | 98 | 998 | 6 | 98 | 998 | 2 | 3201 | 998 | 9998 | 98 | 1 | 4 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 68 | 998 | 4 | 2 | 15 | 152 | 15202 | 98 | 98 | 3201 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 1 | 1 | 1 | 67 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 24 | 1 | 2 | 2 | 2 | 53 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 8 | 98 | 0 | 98 | 98 | 9998 | 998 | 998 | 604 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 27 | 1 | 1 | 1 | 1 | 48 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 7 | 1 | 1 | 2 | 98 | 8 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 31 | 1 | 1 | 1 | 1 | 49 | 1 | 98 | 998 | 4 | 98 | 998 | 3 | 98 | 998 | 2001 | 2 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | A | 98 | 98 | 98 | 9998 | 998 | 604 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 1 | 1 | 1 | 46 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 1992 | 3 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 2 | A | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 2 | 2 | 2 | 24 | 1 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2013 | 1 | 2 | 7 | 5 | 2 | 1 | 2 | 98 | 6 | 98 | 2 | 2 | 6 | 2016 | 998 | 68 | 68 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 3 | 6 | 2 | 2 | 1 | 98 | 998 | 1 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 4 | 5 | 1 | 0 | 1 | 98 | 998 | 1 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 99 | 99 | 99 | 99 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 5 | 5 | 2 | 13 | 1 | 98 | 998 | 2 | 98 | 998 | 3 | 98 | 998 | 9999 | 99 | 1 | 7 | 5 | 2 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 604 | 7 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 12 | 8394 | 42 | 1 | 6 | 5 | 1 | 6 | 1 | 98 | 998 | 2 | 98 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 0 | 3 | 1 | 1 | 2 | 98 | 98 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 15101 | 15202012012 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 2 | 1 | 1 | 1 | 1 | 41 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 1 | 17 | 1 | 70 | 2 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 3 | 98 | 98 | 98 | 1 | 2 | 98 | 7 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 0 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 2 | 17 | 1 | 47 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 8101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | Z | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 3 | 17 | 1 | 19 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 1 | 99 | 7 | 99 | 1 | 2 | 98 | 1 | I | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 99 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 4 | 17 | 1 | 43 | 2 | 98 | 998 | 3 | 4302 | 998 | 2 | 8101 | 998 | 9998 | 98 | 99 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 4302 | 8101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 5 | 17 | 2 | 35 | 2 | 98 | 998 | 6 | 98 | 998 | 5 | 98 | 998 | 2016 | 1 | 2 | 8 | 5 | 1 | 1 | 2 | 98 | 1 | I | 2 | 2 | 3 | 2007 | 998 | 68 | 68 | 8 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 6 | 17 | 1 | 36 | 3 | 13123 | 998 | 3 | 13123 | 998 | 2 | 12101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 2 | 98 | 98 | 1 | J | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 98 | 15 | 152 | 15202 | 13123 | 13123 | 12101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 8 | 1 | 7 | 17 | 2 | 25 | 2 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | Q | 1 | 1 | 12 | 2011 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 9 | 1 | 1 | 1 | 1 | 72 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 1 | 5 | 2 | 1 | 2 | 98 | 1 | G | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 1 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 12 | 1 | 1 | 1 | 1 | 21 | 1 | 98 | 998 | 3 | 15101 | 998 | 2 | 15101 | 998 | 9998 | 98 | 2 | 4 | 8 | 1 | 1 | 2 | 98 | 1 | N | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 12 | 2 | 15 | 152 | 15202 | 98 | 15101 | 15101 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 1 | 1 | 1 | 61 | 1 | 98 | 998 | 2 | 98 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 3 | 7 | 2 | 1 | 2 | 98 | 4 | 98 | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 11 | 2 | 15 | 152 | 15202 | 98 | 98 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 15 | 1 | 2 | 5 | 2 | 31 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 4 | 12 | 1 | 1 | 2 | 98 | 1 | P | 1 | 1 | 10 | 2007 | 998 | 998 | 998 | 16 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
15 | 152 | 15202 | 1 | 2 | 15 | 4094 | 16 | 1 | 1 | 1 | 1 | 34 | 1 | 98 | 998 | 3 | 15101 | 998 | 1 | 98 | 998 | 9998 | 98 | 2 | 5 | 12 | 1 | 1 | 2 | 98 | 1 | O | 98 | 98 | 98 | 9998 | 998 | 998 | 998 | 17 | 2 | 15 | 152 | 15202 | 98 | 15101 | 98 | 15202012015 |
Filtramos:
<- filter(tabla_con_clave, tabla_con_clave$P09 > 15) tabla_con_clave
Queremos saber cuantas personas en Chile hay
length(tabla_con_clave$clave)
## [1] 13810761
Queremos saber cuantas zonas hay en Chile:
length(unique(tabla_con_clave$clave))
## [1] 15500
2.1.2 Cálculo de frecuencias
Obtenemos las frecuencias a la pregunta P17 filtradas por region = 1 y zona urbana = 1 y respuesta 1.
<- tabla_con_clave[,-c(2,4,6:31,33:48),drop=FALSE]
tabla_con_clave_f <- filter(tabla_con_clave_f, tabla_con_clave_f$P17 == 1)
claves_con_1 <- filter(claves_con_1, claves_con_1$AREA == 1)
claves_con_1 <- filter(claves_con_1, claves_con_1$REGION == 01)
claves_con_1 <- as.data.frame(claves_con_1)
claves_con_1
head(claves_con_1,10)
## REGION COMUNA AREA P17 clave
## 1 1 1405 1 1 1405011001
## 2 1 1405 1 1 1405011001
## 3 1 1405 1 1 1405011001
## 4 1 1405 1 1 1405011001
## 5 1 1405 1 1 1405011001
## 6 1 1405 1 1 1405011001
## 7 1 1405 1 1 1405011001
## 8 1 1405 1 1 1405011001
## 9 1 1405 1 1 1405011001
## 10 1 1405 1 1 1405011001
Hay que arreglar el codigo comunal a aaa:
<- claves_con_1$COMUNA
codigos <- seq(1:nrow(claves_con_1))
rango <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
cadena <- as.data.frame(codigos)
codigos <- as.data.frame(cadena)
cadena <- cbind(claves_con_1,cadena)
comuna_corr #comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
#names(comuna_corr)[3] <- "código"
head(comuna_corr,10)
## REGION COMUNA AREA P17 clave cadena
## 1 1 1405 1 1 1405011001 01405
## 2 1 1405 1 1 1405011001 01405
## 3 1 1405 1 1 1405011001 01405
## 4 1 1405 1 1 1405011001 01405
## 5 1 1405 1 1 1405011001 01405
## 6 1 1405 1 1 1405011001 01405
## 7 1 1405 1 1 1405011001 01405
## 8 1 1405 1 1 1405011001 01405
## 9 1 1405 1 1 1405011001 01405
## 10 1 1405 1 1 1405011001 01405
<- unique(comuna_corr)
unicos head(unicos,10)
## REGION COMUNA AREA P17 clave cadena
## 1 1 1405 1 1 1405011001 01405
## 1521 1 1405 1 1 1405991999 01405
## 1539 1 1404 1 1 1404011001 01404
## 1987 1 1404 1 1 1404991999 01404
## 2008 1 1401 1 1 1401011001 01401
## 3130 1 1401 1 1 1401011002 01401
## 5377 1 1401 1 1 1401991999 01401
## 6114 1 1107 1 1 1107011001 01107
## 7680 1 1107 1 1 1107011002 01107
## 9292 1 1107 1 1 1107011003 01107
#e <- table(claves_con_1$clave, claves_con_1$P17)
library(MASS)
##
## Attaching package: 'MASS'
## The following object is masked from 'package:plotly':
##
## select
## The following object is masked from 'package:dplyr':
##
## select
<- xtabs(~clave+P17, data=claves_con_1)
e <- as.data.frame(e)
e head(e,10)
## clave P17 Freq
## 1 1101011001 1 1255
## 2 1101011002 1 621
## 3 1101021001 1 493
## 4 1101021002 1 33
## 5 1101021003 1 1224
## 6 1101021004 1 968
## 7 1101021005 1 1927
## 8 1101031001 1 1179
## 9 1101031002 1 1582
## 10 1101031003 1 2111
nrow(e)
## [1] 86
- Unir los codigos comunales correctos a las frecuencias
= merge( x = e, y = unicos, by = "clave", all.x = TRUE)
tabla_1 head(tabla_1,10)
## clave P17.x Freq REGION COMUNA AREA P17.y cadena
## 1 1101011001 1 1255 1 1101 1 1 01101
## 2 1101011002 1 621 1 1101 1 1 01101
## 3 1101021001 1 493 1 1101 1 1 01101
## 4 1101021002 1 33 1 1101 1 1 01101
## 5 1101021003 1 1224 1 1101 1 1 01101
## 6 1101021004 1 968 1 1101 1 1 01101
## 7 1101021005 1 1927 1 1101 1 1 01101
## 8 1101031001 1 1179 1 1101 1 1 01101
## 9 1101031002 1 1582 1 1101 1 1 01101
## 10 1101031003 1 2111 1 1101 1 1 01101
nrow(tabla_1)
## [1] 86
2.2 Eliminemos la grasa y renombremos:
<- tabla_1[, -c(2,5,6,7)]
tabla_2 names(tabla_2)[4] <- "código"
head(tabla_2,10)
## clave Freq REGION código
## 1 1101011001 1255 1 01101
## 2 1101011002 621 1 01101
## 3 1101021001 493 1 01101
## 4 1101021002 33 1 01101
## 5 1101021003 1224 1 01101
## 6 1101021004 968 1 01101
## 7 1101021005 1927 1 01101
## 8 1101031001 1179 1 01101
## 9 1101031002 1582 1 01101
## 10 1101031003 2111 1 01101
- Unir los ingresos expandidos urbanos
<- readRDS("ingresos_expandidos_casen_2017_totales_u.rds")
ingresos_expandidos_urbanos head(ingresos_expandidos_urbanos,10)
## código comuna zona promedio_i año personas
## 1 01101 Iquique Urbano 356487.6 2017 191468
## 2 01107 Alto Hospicio Urbano 301933.4 2017 108375
## 3 01401 Pozo Almonte Urbano 299998.6 2017 15711
## 4 01405 Pica Urbano 330061.1 2017 9296
## 5 02101 Antofagasta Urbano 347580.2 2017 361873
## 6 02102 Mejillones Urbano 369770.7 2017 13467
## 7 02104 Taltal Urbano 376328.9 2017 13317
## 8 02201 Calama Urbano 416281.1 2017 165731
## 9 02203 San Pedro de Atacama Urbano 437934.7 2017 10996
## 10 02301 Tocopilla Urbano 271720.8 2017 25186
## Ingresos_expandidos
## 1 68255976664
## 2 32722034397
## 3 4713278189
## 4 3068247619
## 5 125779893517
## 6 4979702302
## 7 5011572025
## 8 68990679686
## 9 4815529626
## 10 6843559467
= merge( x = tabla_2 , y = ingresos_expandidos_urbanos, by = "código", all.x = TRUE)
tabla_3 names(tabla_3)[2] <- "zona"
names(tabla_3)[5] <- "comuna"
names(tabla_3)[6] <- "tipo"
$zona <- as.character(tabla_3$zona)
tabla_3head(tabla_3,10)
## código zona Freq REGION comuna tipo promedio_i año personas
## 1 01101 1101021001 493 1 Iquique Urbano 356487.6 2017 191468
## 2 01101 1101021002 33 1 Iquique Urbano 356487.6 2017 191468
## 3 01101 1101011001 1255 1 Iquique Urbano 356487.6 2017 191468
## 4 01101 1101011002 621 1 Iquique Urbano 356487.6 2017 191468
## 5 01101 1101021005 1927 1 Iquique Urbano 356487.6 2017 191468
## 6 01101 1101031001 1179 1 Iquique Urbano 356487.6 2017 191468
## 7 01101 1101031002 1582 1 Iquique Urbano 356487.6 2017 191468
## 8 01101 1101031003 2111 1 Iquique Urbano 356487.6 2017 191468
## 9 01101 1101031004 1532 1 Iquique Urbano 356487.6 2017 191468
## 10 01101 1101041001 712 1 Iquique Urbano 356487.6 2017 191468
## Ingresos_expandidos
## 1 68255976664
## 2 68255976664
## 3 68255976664
## 4 68255976664
## 5 68255976664
## 6 68255976664
## 7 68255976664
## 8 68255976664
## 9 68255976664
## 10 68255976664
hay que integrar las proporciones poblacionales zonales:
<- readRDS("../../../../archivos_grandes/tabla_de_prop_pob.rds")
tabla_de_prop_pob names(tabla_de_prop_pob)[1] <- "zona"
$zona <- as.character(tabla_de_prop_pob$zona)
tabla_de_prop_pobhead(tabla_de_prop_pob,10)
## zona Freq p código
## 1 1101011001 2491 0.0130100069 01101
## 2 1101011002 1475 0.0077036372 01101
## 3 1101021001 1003 0.0052384733 01101
## 4 1101021002 54 0.0002820315 01101
## 5 1101021003 2895 0.0151200201 01101
## 6 1101021004 2398 0.0125242860 01101
## 7 1101021005 4525 0.0236331920 01101
## 8 1101031001 2725 0.0142321432 01101
## 9 1101031002 3554 0.0185618485 01101
## 10 1101031003 5246 0.0273988343 01101
= merge( x = tabla_3, y = tabla_de_prop_pob, by = "zona", all.x = TRUE)
tabla_4 head(tabla_4,10)
## zona código.x Freq.x REGION comuna tipo promedio_i año personas
## 1 1101011001 01101 1255 1 Iquique Urbano 356487.6 2017 191468
## 2 1101011002 01101 621 1 Iquique Urbano 356487.6 2017 191468
## 3 1101021001 01101 493 1 Iquique Urbano 356487.6 2017 191468
## 4 1101021002 01101 33 1 Iquique Urbano 356487.6 2017 191468
## 5 1101021003 01101 1224 1 Iquique Urbano 356487.6 2017 191468
## 6 1101021004 01101 968 1 Iquique Urbano 356487.6 2017 191468
## 7 1101021005 01101 1927 1 Iquique Urbano 356487.6 2017 191468
## 8 1101031001 01101 1179 1 Iquique Urbano 356487.6 2017 191468
## 9 1101031002 01101 1582 1 Iquique Urbano 356487.6 2017 191468
## 10 1101031003 01101 2111 1 Iquique Urbano 356487.6 2017 191468
## Ingresos_expandidos Freq.y p código.y
## 1 68255976664 2491 0.0130100069 01101
## 2 68255976664 1475 0.0077036372 01101
## 3 68255976664 1003 0.0052384733 01101
## 4 68255976664 54 0.0002820315 01101
## 5 68255976664 2895 0.0151200201 01101
## 6 68255976664 2398 0.0125242860 01101
## 7 68255976664 4525 0.0236331920 01101
## 8 68255976664 2725 0.0142321432 01101
## 9 68255976664 3554 0.0185618485 01101
## 10 68255976664 5246 0.0273988343 01101
2.3 Eliminemos la grasa y renombremos:
<- tabla_4[, -c( 11,13)]
tabla_5 names(tabla_5)[2] <- "código"
names(tabla_5)[3] <- "frecuencia_de_resp"
names(tabla_5)[4] <- "region"
head(tabla_5,10)
## zona código frecuencia_de_resp region comuna tipo promedio_i año
## 1 1101011001 01101 1255 1 Iquique Urbano 356487.6 2017
## 2 1101011002 01101 621 1 Iquique Urbano 356487.6 2017
## 3 1101021001 01101 493 1 Iquique Urbano 356487.6 2017
## 4 1101021002 01101 33 1 Iquique Urbano 356487.6 2017
## 5 1101021003 01101 1224 1 Iquique Urbano 356487.6 2017
## 6 1101021004 01101 968 1 Iquique Urbano 356487.6 2017
## 7 1101021005 01101 1927 1 Iquique Urbano 356487.6 2017
## 8 1101031001 01101 1179 1 Iquique Urbano 356487.6 2017
## 9 1101031002 01101 1582 1 Iquique Urbano 356487.6 2017
## 10 1101031003 01101 2111 1 Iquique Urbano 356487.6 2017
## personas Ingresos_expandidos p
## 1 191468 68255976664 0.0130100069
## 2 191468 68255976664 0.0077036372
## 3 191468 68255976664 0.0052384733
## 4 191468 68255976664 0.0002820315
## 5 191468 68255976664 0.0151200201
## 6 191468 68255976664 0.0125242860
## 7 191468 68255976664 0.0236331920
## 8 191468 68255976664 0.0142321432
## 9 191468 68255976664 0.0185618485
## 10 191468 68255976664 0.0273988343
- construir multipob
$multipob <- tabla_5$Ingresos_expandidos*tabla_5$p
tabla_5head(tabla_5,10)
## zona código frecuencia_de_resp region comuna tipo promedio_i año
## 1 1101011001 01101 1255 1 Iquique Urbano 356487.6 2017
## 2 1101011002 01101 621 1 Iquique Urbano 356487.6 2017
## 3 1101021001 01101 493 1 Iquique Urbano 356487.6 2017
## 4 1101021002 01101 33 1 Iquique Urbano 356487.6 2017
## 5 1101021003 01101 1224 1 Iquique Urbano 356487.6 2017
## 6 1101021004 01101 968 1 Iquique Urbano 356487.6 2017
## 7 1101021005 01101 1927 1 Iquique Urbano 356487.6 2017
## 8 1101031001 01101 1179 1 Iquique Urbano 356487.6 2017
## 9 1101031002 01101 1582 1 Iquique Urbano 356487.6 2017
## 10 1101031003 01101 2111 1 Iquique Urbano 356487.6 2017
## personas Ingresos_expandidos p multipob
## 1 191468 68255976664 0.0130100069 888010727
## 2 191468 68255976664 0.0077036372 525819278
## 3 191468 68255976664 0.0052384733 357557109
## 4 191468 68255976664 0.0002820315 19250333
## 5 191468 68255976664 0.0151200201 1032031736
## 6 191468 68255976664 0.0125242860 854857376
## 7 191468 68255976664 0.0236331920 1613106600
## 8 191468 68255976664 0.0142321432 971428836
## 9 191468 68255976664 0.0185618485 1266957095
## 10 191468 68255976664 0.0273988343 1870134193
3 Análisis de regresión
Aplicaremos un análisis de regresión donde:
\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]
\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]
3.1 Diagrama de dispersión loess
scatter.smooth(x=tabla_5$frecuencia_de_resp, y=tabla_5$multipob, main="multi_pob ~ Freq",
xlab = "Freq",
ylab = "multi_pob",
col = 2, is.na = T)
## Warning in plot.window(...): "is.na" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "is.na" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "is.na" is not a
## graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): "is.na" is not a
## graphical parameter
## Warning in box(...): "is.na" is not a graphical parameter
## Warning in title(...): "is.na" is not a graphical parameter
3.2 Outliers
Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.
3.3 Modelo lineal
Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.
<- lm( multipob~(frecuencia_de_resp) , data=tabla_5)
linearMod summary(linearMod)
##
## Call:
## lm(formula = multipob ~ (frecuencia_de_resp), data = tabla_5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -315501962 -49447152 16823609 59843648 177323100
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -46244637 27223954 -1.699 0.0932 .
## frecuencia_de_resp 823807 16363 50.344 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 88900000 on 82 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.9687, Adjusted R-squared: 0.9683
## F-statistic: 2535 on 1 and 82 DF, p-value: < 2.2e-16
3.4 Gráfica de la recta de regresión lineal
ggplot(tabla_5, aes(x = frecuencia_de_resp, y = multipob)) +
geom_point() +
stat_smooth(method = "lm", col = "red")
Si bien obtenemos nuestro modelo lineal da cuenta del 0.9659 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.
4 Modelos alternativos
### 8.1 Modelo cuadrático
<- lm( multipob~(frecuencia_de_resp^2) , data=tabla_5)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cuadrático"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos1
<- cbind(modelo,dato,sintaxis)
modelos1
### 8.2 Modelo cúbico
<- lm( multipob~(frecuencia_de_resp^3) , data=tabla_5)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "cúbico"
modelo <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos2
### 8.3 Modelo logarítmico
<- lm( multipob~log(frecuencia_de_resp) , data=tabla_5)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "logarítmico"
modelo <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos3
### 8.5 Modelo con raíz cuadrada
<- lm( multipob~sqrt(frecuencia_de_resp) , data=tabla_5)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz cuadrada"
modelo <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos5
### 8.6 Modelo raíz-raíz
<- lm( sqrt(multipob)~sqrt(frecuencia_de_resp) , data=tabla_5)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-raíz"
modelo <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos6
### 8.7 Modelo log-raíz
<- lm( log(multipob)~sqrt(frecuencia_de_resp) , data=tabla_5)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-raíz"
modelo <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos7
### 8.8 Modelo raíz-log
<- lm( sqrt(multipob)~log(frecuencia_de_resp) , data=tabla_5)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "raíz-log"
modelo <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos8
### 8.9 Modelo log-log
<- lm( log(multipob)~log(frecuencia_de_resp) , data=tabla_5)
linearMod <- summary(linearMod)
datos <- datos$adj.r.squared
dato <- "log-log"
modelo <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
sintaxis
<- cbind(modelo,dato,sintaxis)
modelos9
<- rbind(modelos1, modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)
modelos_bind
<<- modelos_bind[order(modelos_bind$dato, decreasing = T ),]
modelos_bind
#h_y_m_comuna_corr_01 <<- comunas_censo_casen
kbl(modelos_bind) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
modelo | dato | sintaxis | |
---|---|---|---|
8 | log-log | 0.97989629522072 | linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 | raíz-raíz | 0.970322106713924 | linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
1 | cuadrático | 0.968279027105152 | linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) |
2 | cúbico | 0.968279027105152 | linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) |
4 | raíz cuadrada | 0.906187228583836 | linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
6 | log-raíz | 0.859772208419047 | linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) |
7 | raíz-log | 0.832839000077064 | linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) |
3 | logarítmico | 0.645781469772034 | linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) |
5 Elección del modelo.
Elegimos el modelo log-log (8) pues tiene el más alto \(R^2\)
#h_y_m_comuna_corr <- h_y_m_comuna_corr_01
<- 8
metodo switch (metodo,
case = linearMod <- lm( multipob~(frecuencia_de_resp^2) , data=tabla_5),
case = linearMod <- lm( multipob~(frecuencia_de_resp^3) , data=tabla_5),
case = linearMod <- lm( multipob~log(frecuencia_de_resp) , data=tabla_5),
case = linearMod <- lm( multipob~sqrt(frecuencia_de_resp) , data=tabla_5),
case = linearMod <- lm( sqrt(multipob)~sqrt(frecuencia_de_resp) , data=tabla_5),
case = linearMod <- lm( log(multipob)~sqrt(frecuencia_de_resp) , data=tabla_5),
case = linearMod <- lm( sqrt(multipob)~log(frecuencia_de_resp) , data=tabla_5),
case = linearMod <- lm( log(multipob)~log(frecuencia_de_resp) , data=tabla_5)
)summary(linearMod)
##
## Call:
## lm(formula = log(multipob) ~ log(frecuencia_de_resp), data = tabla_5)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.81033 -0.03828 0.01306 0.06634 0.18759
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 13.10277 0.12102 108.27 <2e-16 ***
## log(frecuencia_de_resp) 1.06412 0.01673 63.61 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1179 on 82 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.9801, Adjusted R-squared: 0.9799
## F-statistic: 4047 on 1 and 82 DF, p-value: < 2.2e-16
5.1 Modelo log-log (log-log)
Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.98).
5.1.1 Diagrama de dispersión sobre log-log
Desplegamos una curva suavizada por loess en el diagrama de dispersión.
scatter.smooth(x=log(tabla_5$frecuencia_de_resp), y=log(tabla_5$multipob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")
ggplot(tabla_5, aes(x = log(frecuencia_de_resp) , y = log(multipob))) + geom_point() + stat_smooth(method = "lm", col = "red")
head(tabla_5,10)
## zona código frecuencia_de_resp region comuna tipo promedio_i año
## 1 1101011001 01101 1255 1 Iquique Urbano 356487.6 2017
## 2 1101011002 01101 621 1 Iquique Urbano 356487.6 2017
## 3 1101021001 01101 493 1 Iquique Urbano 356487.6 2017
## 4 1101021002 01101 33 1 Iquique Urbano 356487.6 2017
## 5 1101021003 01101 1224 1 Iquique Urbano 356487.6 2017
## 6 1101021004 01101 968 1 Iquique Urbano 356487.6 2017
## 7 1101021005 01101 1927 1 Iquique Urbano 356487.6 2017
## 8 1101031001 01101 1179 1 Iquique Urbano 356487.6 2017
## 9 1101031002 01101 1582 1 Iquique Urbano 356487.6 2017
## 10 1101031003 01101 2111 1 Iquique Urbano 356487.6 2017
## personas Ingresos_expandidos p multipob
## 1 191468 68255976664 0.0130100069 888010727
## 2 191468 68255976664 0.0077036372 525819278
## 3 191468 68255976664 0.0052384733 357557109
## 4 191468 68255976664 0.0002820315 19250333
## 5 191468 68255976664 0.0151200201 1032031736
## 6 191468 68255976664 0.0125242860 854857376
## 7 191468 68255976664 0.0236331920 1613106600
## 8 191468 68255976664 0.0142321432 971428836
## 9 191468 68255976664 0.0185618485 1266957095
## 10 191468 68255976664 0.0273988343 1870134193
5.1.2 Análisis de residuos
par(mfrow = c (2,2))
plot(linearMod)
5.1.3 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]
5.1.4 Modelo real:
\[ \hat Y = e^{13.10277 + 1.064123 \cdot ln{X}} \]
<- lm( log(multipob)~log(frecuencia_de_resp) , data=tabla_5)
linearMod <- linearMod$coefficients[1]
aa <- linearMod$coefficients[2]
bb aa
## (Intercept)
## 13.10277
bb
## log(frecuencia_de_resp)
## 1.064123
6 Aplicación la regresión a los valores de la variable a nivel de zona
Esta nueva variable se llamará: est_ing
$est_ing <- exp(aa+bb*log(tabla_5$frecuencia_de_resp)) tabla_5
head(tabla_5,10)
## zona código frecuencia_de_resp region comuna tipo promedio_i año
## 1 1101011001 01101 1255 1 Iquique Urbano 356487.6 2017
## 2 1101011002 01101 621 1 Iquique Urbano 356487.6 2017
## 3 1101021001 01101 493 1 Iquique Urbano 356487.6 2017
## 4 1101021002 01101 33 1 Iquique Urbano 356487.6 2017
## 5 1101021003 01101 1224 1 Iquique Urbano 356487.6 2017
## 6 1101021004 01101 968 1 Iquique Urbano 356487.6 2017
## 7 1101021005 01101 1927 1 Iquique Urbano 356487.6 2017
## 8 1101031001 01101 1179 1 Iquique Urbano 356487.6 2017
## 9 1101031002 01101 1582 1 Iquique Urbano 356487.6 2017
## 10 1101031003 01101 2111 1 Iquique Urbano 356487.6 2017
## personas Ingresos_expandidos p multipob est_ing
## 1 191468 68255976664 0.0130100069 888010727 972289284
## 2 191468 68255976664 0.0077036372 525819278 459886409
## 3 191468 68255976664 0.0052384733 357557109 359731066
## 4 191468 68255976664 0.0002820315 19250333 20246207
## 5 191468 68255976664 0.0151200201 1032031736 946752960
## 6 191468 68255976664 0.0125242860 854857376 737557917
## 7 191468 68255976664 0.0236331920 1613106600 1534530600
## 8 191468 68255976664 0.0142321432 971428836 909758113
## 9 191468 68255976664 0.0185618485 1266957095 1243960523
## 10 191468 68255976664 0.0273988343 1870134193 1690914875
7 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona
\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]
$ing_medio_zona <- tabla_5$est_ing /(tabla_5$personas * tabla_5$p) tabla_5
<- tabla_5[c(1:100),]
r3_100 kbl(r3_100) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
zona | código | frecuencia_de_resp | region | comuna | tipo | promedio_i | año | personas | Ingresos_expandidos | p | multipob | est_ing | ing_medio_zona | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1101011001 | 01101 | 1255 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0130100 | 888010727 | 972289284 | 390320.9 |
2 | 1101011002 | 01101 | 621 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0077036 | 525819278 | 459886409 | 311787.4 |
3 | 1101021001 | 01101 | 493 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0052385 | 357557109 | 359731066 | 358655.1 |
4 | 1101021002 | 01101 | 33 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0002820 | 19250333 | 20246207 | 374929.8 |
5 | 1101021003 | 01101 | 1224 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0151200 | 1032031736 | 946752960 | 327030.4 |
6 | 1101021004 | 01101 | 968 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0125243 | 854857376 | 737557917 | 307572.1 |
7 | 1101021005 | 01101 | 1927 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0236332 | 1613106600 | 1534530600 | 339122.8 |
8 | 1101031001 | 01101 | 1179 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0142321 | 971428836 | 909758113 | 333856.2 |
9 | 1101031002 | 01101 | 1582 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0185618 | 1266957095 | 1243960523 | 350017.0 |
10 | 1101031003 | 01101 | 2111 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0273988 | 1870134193 | 1690914875 | 322324.6 |
11 | 1101031004 | 01101 | 1532 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0177001 | 1208136633 | 1202166221 | 354725.9 |
12 | 1101041001 | 01101 | 712 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0094010 | 641677763 | 531920965 | 295511.6 |
13 | 1101041002 | 01101 | 1084 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0132555 | 904765646 | 831959015 | 327801.0 |
14 | 1101041003 | 01101 | 1689 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0201339 | 1374259877 | 1333682143 | 345961.6 |
15 | 1101041004 | 01101 | 2402 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0295767 | 2018789541 | 1940004852 | 342575.5 |
16 | 1101041005 | 01101 | 1840 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0217373 | 1483701584 | 1460915552 | 351012.9 |
17 | 1101041006 | 01101 | 1101 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0140441 | 958595281 | 845849918 | 314559.3 |
18 | 1101051001 | 01101 | 1514 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0172144 | 1174983282 | 1187141524 | 360176.4 |
19 | 1101051002 | 01101 | 2044 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0233198 | 1591717341 | 1633865173 | 365927.3 |
20 | 1101051003 | 01101 | 1964 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0243174 | 1659806481 | 1565903373 | 336319.5 |
21 | 1101051004 | 01101 | 874 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0109522 | 747554594 | 661587779 | 315492.5 |
22 | 1101051005 | 01101 | 1619 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0186402 | 1272304410 | 1274943040 | 357227.0 |
23 | 1101051006 | 01101 | 1303 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0143157 | 977132639 | 1011908938 | 369175.1 |
24 | 1101061001 | 01101 | 863 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0084871 | 579292425 | 652730824 | 401680.5 |
25 | 1101061002 | 01101 | 2264 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0248971 | 1699376610 | 1821623011 | 382132.0 |
26 | 1101061003 | 01101 | 2174 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0252053 | 1720409381 | 1744664727 | 361513.6 |
27 | 1101061004 | 01101 | 2043 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0212934 | 1453400134 | 1633014584 | 400543.2 |
28 | 1101061005 | 01101 | 1022 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0113126 | 772152242 | 781417967 | 360765.5 |
29 | 1101071001 | 01101 | 1192 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0121378 | 828477290 | 920436365 | 396057.0 |
30 | 1101071002 | 01101 | 1328 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0146291 | 998521897 | 1032581494 | 368647.4 |
31 | 1101071003 | 01101 | 1813 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0199981 | 1364991198 | 1438114367 | 375584.8 |
32 | 1101071004 | 01101 | 893 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0103777 | 708340953 | 676902951 | 340665.8 |
33 | 1101081001 | 01101 | 2420 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0268087 | 1829851089 | 1955478691 | 380962.1 |
34 | 1101081002 | 01101 | 1701 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0168853 | 1152524561 | 1343767570 | 415641.1 |
35 | 1101081003 | 01101 | 1160 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0110828 | 756466785 | 894165037 | 421378.4 |
36 | 1101081004 | 01101 | 1307 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0124929 | 852718450 | 1015214850 | 424420.9 |
37 | 1101101001 | 01101 | 1148 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0139553 | 952534991 | 884325196 | 330960.0 |
38 | 1101101002 | 01101 | 1896 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0229699 | 1567832668 | 1508274996 | 342945.7 |
39 | 1101101003 | 01101 | 1837 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0236280 | 1612750112 | 1458381022 | 322365.4 |
40 | 1101101004 | 01101 | 1503 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0185096 | 1263392219 | 1177965394 | 332383.0 |
41 | 1101101005 | 01101 | 2092 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0256492 | 1750710831 | 1674724643 | 341015.0 |
42 | 1101101006 | 01101 | 1616 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0192617 | 1314726440 | 1272429238 | 345018.8 |
43 | 1101111001 | 01101 | 1620 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0202958 | 1385310994 | 1275781041 | 328301.9 |
44 | 1101111002 | 01101 | 972 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0120751 | 824199438 | 740801537 | 320415.9 |
45 | 1101111003 | 01101 | 2083 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0254560 | 1737520788 | 1667058871 | 342031.0 |
46 | 1101111004 | 01101 | 1961 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0237272 | 1619523377 | 1563358213 | 344124.6 |
47 | 1101111005 | 01101 | 1950 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0226200 | 1543947996 | 1554028098 | 358815.1 |
48 | 1101111006 | 01101 | 1517 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0169898 | 1159654313 | 1189644849 | 365707.0 |
49 | 1101111007 | 01101 | 1881 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0242286 | 1653746191 | 1495580523 | 322392.9 |
50 | 1101111008 | 01101 | 2141 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0254925 | 1740016202 | 1716497400 | 351669.2 |
51 | 1101111009 | 01101 | 2137 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0261454 | 1784577157 | 1713085061 | 342206.4 |
52 | 1101111010 | 01101 | 208 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0019115 | 130474479 | 143602586 | 392356.8 |
53 | 1101111011 | 01101 | 1938 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0227244 | 1551077749 | 1543853639 | 354827.3 |
54 | 1101111012 | 01101 | 1257 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0152819 | 1043082853 | 973938189 | 332856.5 |
55 | 1101111013 | 01101 | 1613 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0177053 | 1208493121 | 1269915736 | 374606.4 |
56 | 1101111014 | 01101 | 1173 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0153550 | 1048073680 | 904832231 | 307766.1 |
57 | 1101991999 | 01101 | 581 | 1 | Iquique | Urbano | 356487.6 | 2017 | 191468 | 68255976664 | 0.0055466 | 378589880 | 428431084 | 403419.1 |
58 | 1107011001 | 01107 | 1566 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0378685 | 1239134756 | 1230576999 | 299848.2 |
59 | 1107011002 | 01107 | 1612 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0402307 | 1316429711 | 1269077968 | 291072.9 |
60 | 1107011003 | 01107 | 3143 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0788835 | 2581228808 | 2582628141 | 302097.1 |
61 | 1107021001 | 01107 | 2570 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0618316 | 2023255848 | 2084709683 | 311104.3 |
62 | 1107021002 | 01107 | 1604 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0366413 | 1198977611 | 1262377028 | 317899.0 |
63 | 1107021003 | 01107 | 2520 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0585836 | 1916975284 | 2041577495 | 321558.9 |
64 | 1107021004 | 01107 | 2018 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0472895 | 1547408778 | 1611758547 | 314489.5 |
65 | 1107021005 | 01107 | 1754 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0410704 | 1343905653 | 1388365722 | 311922.2 |
66 | 1107021006 | 01107 | 1550 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0356540 | 1166670735 | 1217202241 | 315010.9 |
67 | 1107021007 | 01107 | 1981 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0483045 | 1580621454 | 1580330646 | 301877.9 |
68 | 1107021008 | 01107 | 1839 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0421315 | 1378627996 | 1460070679 | 319770.2 |
69 | 1107031001 | 01107 | 1826 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0387082 | 1266610697 | 1449090017 | 345432.7 |
70 | 1107031002 | 01107 | 2588 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0655040 | 2143425349 | 2100250504 | 295851.6 |
71 | 1107031003 | 01107 | 1833 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0435525 | 1425125743 | 1455002061 | 308263.1 |
72 | 1107041001 | 01107 | 1404 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0334948 | 1096018315 | 1095577618 | 301812.0 |
73 | 1107041002 | 01107 | 1993 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0494394 | 1617759265 | 1590519389 | 296849.5 |
74 | 1107041003 | 01107 | 1686 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0417070 | 1364739059 | 1331161503 | 294504.8 |
75 | 1107041004 | 01107 | 1987 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0490611 | 1605379994 | 1585424524 | 298180.3 |
76 | 1107041005 | 01107 | 1349 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0343714 | 1124701990 | 1049965757 | 281870.0 |
77 | 1107041006 | 01107 | 1494 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0369919 | 1210451081 | 1170460852 | 291958.3 |
78 | 1107041007 | 01107 | 1931 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0481384 | 1575186652 | 1537920402 | 294790.2 |
79 | 1107991999 | 01107 | 314 | 1 | Alto Hospicio | Urbano | 301933.4 | 2017 | 108375 | 32722034397 | 0.0075571 | 247283471 | 222586053 | 271777.8 |
80 | 1401011001 | 01401 | 1122 | 1 | Pozo Almonte | Urbano | 299998.6 | 2017 | 15711 | 4713278189 | 0.1763732 | 831296153 | 863028246 | 311450.1 |
81 | 1401011002 | 01401 | 2247 | 1 | Pozo Almonte | Urbano | 299998.6 | 2017 | 15711 | 4713278189 | 0.4141048 | 1951790968 | 1807071173 | 277754.6 |
82 | 1401991999 | 01401 | 737 | 1 | Pozo Almonte | Urbano | 299998.6 | 2017 | 15711 | 4713278189 | 0.0520654 | 245398864 | 551817715 | 674593.8 |
83 | 1404011001 | 01404 | 448 | 1 | NA | NA | NA | NA | NA | NA | 0.3963370 | NA | 324895378 | NA |
84 | 1404991999 | 01404 | 21 | 1 | NA | NA | NA | NA | NA | NA | 0.0098901 | NA | 12515901 | NA |
85 | 1405011001 | 01405 | 1520 | 1 | Pica | Urbano | 330061.1 | 2017 | 9296 | 3068247619 | 0.4169535 | 1279316671 | 1192148491 | 307571.8 |
86 | 1405991999 | 01405 | 18 | 1 | Pica | Urbano | 330061.1 | 2017 | 9296 | 3068247619 | 0.0038726 | 11882198 | 10622397 | 295066.6 |
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.2 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.3 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.4 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.5 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.6 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.7 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.8 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.9 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.11 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.12 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
NA.13 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
<- ggplot(data = tabla_5) + geom_boxplot(aes(x=comuna, y=ing_medio_zona, color=comuna))
pp + theme(axis.text.x = element_text(angle = 40, vjust = 1, hjust=1)) pp
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
8 Criterio para excluir outliers:
<- quantile(tabla_5$ing_medio_zona, probs=c(.25, .75), na.rm = T)
Q <- IQR(tabla_5$ing_medio_zona, na.rm = T)
iqr <- subset(tabla_5, tabla_5$ing_medio_zona > (Q[1] - 1.5*iqr) & tabla_5$ing_medio_zona < (Q[2]+1.5*iqr))
casen_2017_sin_o <- data.frame(lapply(casen_2017_sin_o, as.character), stringsAsFactors=FALSE)
casen_2017_sin_o
$multipob <- as.numeric(casen_2017_sin_o$multipob)
casen_2017_sin_o$est_ing<- as.numeric(casen_2017_sin_o$est_ing)
casen_2017_sin_o$ing_medio_zona <- as.numeric(casen_2017_sin_o$ing_medio_zona)
casen_2017_sin_o
head(casen_2017_sin_o,10)
## zona código frecuencia_de_resp region comuna tipo promedio_i
## 1 1101011001 01101 1255 1 Iquique Urbano 356487.646309696
## 2 1101011002 01101 621 1 Iquique Urbano 356487.646309696
## 3 1101021001 01101 493 1 Iquique Urbano 356487.646309696
## 4 1101021002 01101 33 1 Iquique Urbano 356487.646309696
## 5 1101021003 01101 1224 1 Iquique Urbano 356487.646309696
## 6 1101021004 01101 968 1 Iquique Urbano 356487.646309696
## 7 1101021005 01101 1927 1 Iquique Urbano 356487.646309696
## 8 1101031001 01101 1179 1 Iquique Urbano 356487.646309696
## 9 1101031002 01101 1582 1 Iquique Urbano 356487.646309696
## 10 1101031003 01101 2111 1 Iquique Urbano 356487.646309696
## año personas Ingresos_expandidos p multipob est_ing
## 1 2017 191468 68255976663.6249 0.0130100068941024 888010727 972289284
## 2 2017 191468 68255976663.6249 0.00770363716130111 525819278 459886409
## 3 2017 191468 68255976663.6249 0.00523847326968475 357557109 359731066
## 4 2017 191468 68255976663.6249 0.000282031462176447 19250333 20246207
## 5 2017 191468 68255976663.6249 0.0151200200555706 1032031736 946752960
## 6 2017 191468 68255976663.6249 0.0125242860425763 854857376 737557917
## 7 2017 191468 68255976663.6249 0.0236331919694153 1613106600 1534530600
## 8 2017 191468 68255976663.6249 0.0142321432302003 971428836 909758113
## 9 2017 191468 68255976663.6249 0.0185618484550943 1266957095 1243960523
## 10 2017 191468 68255976663.6249 0.0273988342699563 1870134193 1690914875
## ing_medio_zona
## 1 390320.9
## 2 311787.4
## 3 358655.1
## 4 374929.8
## 5 327030.4
## 6 307572.1
## 7 339122.8
## 8 333856.2
## 9 350017.0
## 10 322324.6
<- ggplot(data = casen_2017_sin_o ) + geom_boxplot(aes(x=comuna, y=ing_medio_zona, color=comuna))
pp + theme(axis.text.x = element_text(angle = 40, vjust = 1, hjust=1)) pp
Guardamos:
saveRDS(tabla_5, "URBANO/region_01_P17_u_nuevo.rds")
9 Referencias
https://rpubs.com/osoramirez/316691
https://dataintelligencechile.shinyapps.io/casenfinal
Manual_de_usuario_Censo_2017_16R.pdf
http://www.censo2017.cl/microdatos/
Censo de Población y Vivienda
https://www.ine.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/poblacion-y-vivienda
10 Anexo:
10.1 Modelos alternativos
10.1.1 Modelo cuadrático
\[ \hat Y = \beta_0 + \beta_1 X^2 \]
10.1.2 Modelo cúbico
\[ \hat Y = \beta_0 + \beta_1 X^3 \]
10.1.3 Modelo logarítmico
\[ \hat Y = \beta_0 + \beta_1 ln X \]
10.1.4 Modelo exponencial
\[ \hat Y = \beta_0 + \beta_1 e^X \]
No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.
10.1.5 Modelo con raíz cuadrada
\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]
10.1.6 raiz raiz
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]
10.1.7 Modelo log-raíz
\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]
10.1.8 Modelo raíz-log
\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]
10.1.9 Modelo log-log
\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]