getwd()
## [1] "C:/Users/OCN/Documents"
setwd("C:/Users/OCN/Documents")
myamandamovie<-read.csv("C:/Users/OCN/Documents/Archie4.csv")
###Install Library Package for ANOVA##
library(agricolae)
names(myamandamovie)
## [1] "Treatment" "Number.of.Roots"
head(myamandamovie)
str(myamandamovie)
## 'data.frame': 50 obs. of 2 variables:
## $ Treatment : chr "T1-IBA 100 ppm" "T1-IBA 100 ppm" "T1-IBA 100 ppm" "T1-IBA 100 ppm" ...
## $ Number.of.Roots: num 19 18 11 15 15 17 18 17 16 15 ...
hist(myamandamovie$Number.of.Roots)
##ANOVA and Shapiro Wilk Test for Normality###
Piolo<-aov(Number.of.Roots~Treatment, data=myamandamovie)
summary(Piolo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Treatment 3 267.5 89.16 17.55 9.81e-08 ***
## Residuals 46 233.7 5.08
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
shapiro.test(Piolo$residuals)
##
## Shapiro-Wilk normality test
##
## data: Piolo$residuals
## W = 0.9773, p-value = 0.4446
###Bartlett Test for Homogeneity of Variance##
bartlett.test(Number.of.Roots~Treatment, data=myamandamovie)
##
## Bartlett test of homogeneity of variances
##
## data: Number.of.Roots by Treatment
## Bartlett's K-squared = 6.2728, df = 3, p-value = 0.09907
###Checking of Assumptions###
plot (Piolo)
##Install Packages for Graphs and Analysis##
library(ggplot2)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## v purrr 0.3.4
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ggpubr)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
##Boxplot with Jitter##
ggboxplot(myamandamovie, x = "Treatment", y = "Number.of.Roots", add = "jitter")
##Simple Boxplot##
boxplot(Number.of.Roots~Treatment, data = myamandamovie)
##Colored BOxplot##
ggplot(myamandamovie, aes(x=Treatment, y=Number.of.Roots)) +
geom_boxplot(color="red", fill="blue", alpha=0.5)
TukeyHSD(Piolo, which = 'Treatment')
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Number.of.Roots ~ Treatment, data = myamandamovie)
##
## $Treatment
## diff lwr upr p adj
## T2-35% GA -T1-IBA 100 ppm -3.600000 -5.7939608 -1.4060392 0.0003923
## T3-Mykovam-T1-IBA 100 ppm 1.733333 -0.4606274 3.9272941 0.1664838
## T4- CONTROL-T1-IBA 100 ppm -3.800000 -6.9027291 -0.6972709 0.0107791
## T3-Mykovam-T2-35% GA 5.333333 3.1393726 7.5272941 0.0000003
## T4- CONTROL-T2-35% GA -0.200000 -3.3027291 2.9027291 0.9981704
## T4- CONTROL-T3-Mykovam -5.533333 -8.6360624 -2.4306043 0.0001147
tukey.test2 <- HSD.test(Piolo,trt = 'Treatment')
tukey.test2
## $statistics
## MSerror Df Mean CV
## 5.081159 46 15.66 14.39427
##
## $parameters
## test name.t ntr StudentizedRange alpha
## Tukey Treatment 4 3.769581 0.05
##
## $means
## Number.of.Roots std r Min Max Q25 Q50 Q75
## T1-IBA 100 ppm 16.60000 2.261479 15 11 21 15.5 17 18
## T2-35% GA 13.00000 1.603567 15 9 15 12.0 13 14
## T3-Mykovam 18.33333 2.919556 15 14 25 16.5 18 20
## T4- CONTROL 12.80000 1.303840 5 11 14 12.0 13 14
##
## $comparison
## NULL
##
## $groups
## Number.of.Roots groups
## T3-Mykovam 18.33333 a
## T1-IBA 100 ppm 16.60000 a
## T2-35% GA 13.00000 b
## T4- CONTROL 12.80000 b
##
## attr(,"class")
## [1] "group"