library(Rcapture)
 data(hare)
 desc<-descriptive(hare)
plot(desc)

 closedp(hare)
## 
## Number of captured units: 68 
## 
## Abundance estimations and model fits:
##               abundance stderr deviance df     AIC     BIC infoFit
## M0                 75.4    3.5   68.516 61 154.707 159.146      OK
## Mt                 75.1    3.4   58.314 56 154.505 170.041      OK
## Mh Chao (LB)       79.8    6.4   58.023 58 150.214 161.311      OK
## Mh Poisson2        81.5    5.7   59.107 60 147.298 153.956      OK
## Mh Darroch         90.4   11.6   61.600 60 149.791 156.449      OK
## Mh Gamma3.5       100.6   21.7   62.771 60 150.961 157.619      OK
## Mth Chao (LB)      79.6    6.3   47.115 52 151.305 175.720      OK
## Mth Poisson2       81.1    5.6   48.137 55 146.327 164.083      OK
## Mth Darroch        90.5   11.7   50.706 55 148.896 166.652      OK
## Mth Gamma3.5      101.6   22.4   51.956 55 150.147 167.903      OK
## Mb                 81.1    8.3   67.027 60 155.217 161.876      OK
## Mbh                74.2   14.6   63.257 59 153.447 162.325      OK
  col<-rep(0,2^6-1)
  mat<-histpos.t(6)
col[apply(mat,1,sum)==6]<-1
  cp.m2<-closedp.mX(hare,mX=cbind(mat,col),mname="Mt without 111111")
cp.m2$results 
##                   abundance   stderr deviance df      AIC
## Mt without 111111  76.77761 3.911153 47.89417 55 146.0846
 CI1<-profileCI(hare,m="Mth",h="Poisson",a=2)

CI1$results
##              abundance    InfCL    SupCL
## Mth Poisson2        80 71.84073 93.84254
CI2<-profileCI(hare,mX=cbind(mat,col),mname="Mt without 111111")

 CI2$results
##                   abundance    InfCL    SupCL
## Mt without 111111        76 70.08663 85.41181
  data(HIV)
  descriptive(HIV,dfreq=TRUE)
## 
## Number of captured units: 1896 
##  
## Frequency statistics:
##        fi    ui    vi    ni  
## i = 1  1774   466   403   466
## i = 2   115   593   578   630
## i = 3     7   632   679   693
## i = 4     0   205   236   236
## fi: number of units captured i times
## ui: number of units captured for the first time on occasion i
## vi: number of units captured for the last time on occasion i
## ni: number of units captured on occasion i
  mat<-histpos.t(4)
  mX1<-cbind(mat,mat[,1]*mat[,2],mat[,1]*mat[,3],mat[,1]*mat[,4],mat[,2]*mat[,3],mat[,2]*mat[,4],mat[,3]*mat[,4])
  cp.m1<-closedp.mX(HIV,dfreq=TRUE,mX=mX1,mname="Mt double interactions")
   cp.m1$results  
##                        abundance   stderr deviance df      AIC
## Mt double interactions  23443.54 9594.879 3.036804  4 92.07266
   summary(cp.m1$glm)$coefficients  
##               Estimate Std. Error     z value      Pr(>|z|)
## (Intercept)  9.9780167  0.4452368  22.4105827 3.103499e-111
## mX1         -3.9758604  0.4438850  -8.9569599  3.337529e-19
## mX2         -3.6785194  0.4437085  -8.2903961  1.128719e-16
## mX3         -3.5469201  0.4440686  -7.9873239  1.378994e-15
## mX4         -4.6582017  0.4453831 -10.4588655  1.334439e-25
## mX5          1.1545857  0.4329136   2.6670119  7.652896e-03
## mX6          0.4810600  0.4305346   1.1173552  2.638425e-01
## mX7          0.3339371  0.5168483   0.6461027  5.182129e-01
## mX8          0.8266913  0.4291786   1.9262176  5.407721e-02
## mX9          0.7884198  0.4612659   1.7092522  8.740424e-02
## mX10         0.6951611  0.4705025   1.4774867  1.395452e-01
   mX2<-cbind(mat,mat[,1]*mat[,2])   
   cp.m2<-closedp.mX(HIV,dfreq=TRUE,mX=mX2,mname="Mt interaction 1,2")
   cp.m2$results   
##                    abundance   stderr deviance df      AIC
## Mt interaction 1,2  12318.47 1188.722 7.613759  9 86.64962
   CI<-profileCI(HIV,dfreq=TRUE,mX=mX2,mname="Mt interaction 1,2")

    CI$results
##                    abundance    InfCL    SupCL
## Mt interaction 1,2     12308 10286.85 14977.69
    data(mvole)
     cp<-closedp(mvole[,11:15])
     cp    
## 
## Number of captured units: 49 
## 
## Abundance estimations and model fits:
##               abundance stderr deviance df     AIC     BIC    infoFit
## M0                 51.1    1.6   66.964 29 122.895 126.678         OK
## Mt                 50.9    1.6   61.208 25 125.138 136.489         OK
## Mh Chao (LB)       71.9   14.2   33.556 26  95.486 104.945         OK
## Mh Poisson2        61.0    6.3   37.902 28  95.833 101.508         OK
## Mh Darroch         93.2   26.7   34.611 28  92.541  98.217         OK
## Mh Gamma3.5       203.2  119.1   33.984 28  91.915  97.590 warning #1
## Mth Chao (LB)      71.0   13.7   26.120 22  96.051 113.077         OK
## Mth Poisson2       60.5    6.1   30.652 24  96.582 109.825         OK
## Mth Darroch        93.1   26.6   27.178 24  93.108 106.351         OK
## Mth Gamma3.5      209.9  124.3   26.539 24  92.470 105.712 warning #1
## Mb                 51.0    2.0   66.964 28 124.894 130.570         OK
## Mbh                52.6    9.1   66.256 27 126.187 133.754         OK
     psi<-function(x){-log(3.5+x)+log(3.5)}
      lgmodel<-closedp.h(mvole[,11:15],h=psi)
      lgmodel$results     
##        abundance   stderr deviance df      AIC
## Mh psi  203.2393 119.0627 33.98449 28 91.91481
       xx<-uifit(cp)
       xx$predicted[,c(1,4,5,6)]      
##     observed Mh Chao (LB) Mh Poisson2 Mh Darroch
## u1        26         24.2  24.2000000  24.200000
## u2        12          9.9  10.1340984   9.900000
## u3         3          6.2   6.5764481   6.340635
## u4         6          4.7   4.6588525   4.747957
## u5         2          4.0   3.4306010   3.811407
## u6        NA           NA   2.5849972   3.180338
## u7        NA           NA   1.9785928   2.720707
## u8        NA           NA   1.5319327   2.368835
## u9        NA           NA   1.1965924   2.089944
## u10       NA           NA   0.9411818   1.863153