A visual comparison of median, map_estimate, and mean of posterior in Bayesian Statistics of bank_salary data.set in R. The data.set comes with bayesutils package (French 2021) version 0.1.2. Modeled using rstanarm package (Gabry and Goodrich 2020) version 2.21.1 and plotted using ggplot2 package (Wickham 2016) version 3.3.5 in R Statistical package version 4.1.0 a.k.a Camp Pontanezen.

References

Brilleman, SL, MJ Crowther, M Moreno-Betancur, J Buros Novik, and R Wolfe. 2018. “Joint Longitudinal and Time-to-Event Models via Stan.” https://github.com/stan-dev/stancon_talks/.
Eddelbuettel, Dirk. 2013. Seamless R and C++ Integration with Rcpp. New York: Springer. https://doi.org/10.1007/978-1-4614-6868-4.
Eddelbuettel, Dirk, and James Joseph Balamuta. 2018. Extending extitR with extitC++: A Brief Introduction to extitRcpp.” The American Statistician 72 (1): 28–36. https://doi.org/10.1080/00031305.2017.1375990.
Eddelbuettel, Dirk, Romain Francois, JJ Allaire, Kevin Ushey, Qiang Kou, Nathan Russell, Inaki Ucar, Douglas Bates, and John Chambers. 2021. Rcpp: Seamless r and c++ Integration. https://CRAN.R-project.org/package=Rcpp.
Eddelbuettel, Dirk, and Romain François. 2011. Rcpp: Seamless R and C++ Integration.” Journal of Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.
French, Joshua. 2021. Bayesutils: Utilities for Bayesian Analysis.
Gabry, Jonah, and Ben Goodrich. 2020. Rstanarm: Bayesian Applied Regression Modeling via Stan. https://CRAN.R-project.org/package=rstanarm.
Lüdecke, Daniel, Dominique Makowski, Indrajeet Patil, Philip Waggoner, Mattan S. Ben-Shachar, and Brenton M. Wiernik. 2021. Insight: Easy Access to Model Information for Various Model Objects. https://easystats.github.io/insight/.
Lüdecke, Daniel, Philip Waggoner, and Dominique Makowski. 2019. insight: A Unified Interface to Access Information from Model Objects in R.” Journal of Open Source Software 4 (38): 1412. https://doi.org/10.21105/joss.01412.
Makowski, Dominique, Mattan S. Ben-Shachar, and Daniel Lüdecke. 2019. “bayestestR: Describing Effects and Their Uncertainty, Existence and Significance Within the Bayesian Framework.” Journal of Open Source Software 4 (40): 1541. https://doi.org/10.21105/joss.01541.
Makowski, Dominique, Daniel Lüdecke, Mattan S. Ben-Shachar, Indrajeet Patil, and Michael D. Wilson. 2021. bayestestR: Understand and Describe Bayesian Models and Posterior Distributions. https://easystats.github.io/bayestestR/.
R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, Hiroaki Yutani, and Dewey Dunnington. 2021. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2.
LS0tDQp0aXRsZTogIjxjZW50ZXI+QmF5ZXNpYW4gU3RhdGlzdGljcyBpcyAnQmFlJzwvY2VudGVyPiINCmF1dGhvcjogIjxjZW50ZXI+V3ljbGlmZSBBZ3VtYmEgT2x1b2NoICAod3ljbGlmZW9sdW9jaEBnbWFpbC5jb20pPC9jZW50ZXI+Ig0KZGF0ZTogJzxjZW50ZXI+RGF0ZTogYHIgU3lzLnRpbWUoKWA8L2NlbnRlcj4nDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgZGZfcHJpbnQ6IHBhZ2VkDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgZGZfcHJpbnQ6IHBhZ2VkDQpiaWJsaW9ncmFwaHk6IHBhY2thZ2VzLmJpYg0Kbm9jaXRlOiAnQConDQotLS0NCg0KYGBge3IgbGlicywgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgaW5jbHVkZT1GQUxTRX0NCnBhY2thZ2VzIDwtIGMoImJheWVzdXRpbHMiLA0KICAgICAgICAgICAgICAnYmF5ZXN0ZXN0UicsDQogICAgICAgICAgICAgICdpbnNpZ2h0JywNCiAgICAgICAgICAgICAgInJzdGFuYXJtIiwNCiAgICAgICAgICAgICAgImdncGxvdDIiKQ0KaW5zdGFsbGVkX3BhY2thZ2VzIDwtIHBhY2thZ2VzICVpbiUgcm93bmFtZXMoaW5zdGFsbGVkLnBhY2thZ2VzKCkpDQppZihhbnkoaW5zdGFsbGVkX3BhY2thZ2VzID09IEZBTFNFKSl7DQogIGluc3RhbGwucGFja2FnZXMocGFja2FnZXNbIWluc3RhbGxlZF9wYWNrYWdlc10pDQp9DQpsYXBwbHkocGFja2FnZXMsIGxpYnJhcnksIGNoYXJhY3Rlci5vbmx5ID0gVFJVRSkgfD4gDQogIGludmlzaWJsZSgpDQpgYGANCg0KYGBge3Igd3JpdGVfYmliLCBlY2hvPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCBpbmNsdWRlPUZBTFNFfQ0Ka25pdHI6OndyaXRlX2JpYihjKA0KICAucGFja2FnZXMoKSwgcGFja2FnZXMNCiksICdwYWNrYWdlcy5iaWInKQ0KYGBgDQoNCg0KYGBge3IsIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0UsIGluY2x1ZGU9RkFMU0V9DQptb2RlbCA8LSBzdGFuX2dsbShic2FsYXJ5IH4uLCBkYXRhID0gYmFua19zYWxhcnksIGNoYWlucyA9IDIsIGl0ZXIgPSAxMDAwMCwgd2FybXVwID0gNTAwMCkNCnBvc3RlcmlvcnMgPC0gZ2V0X3BhcmFtZXRlcnMobW9kZWwpDQpkZXNjIDwtIGRlc2NyaWJlX3Bvc3Rlcmlvcihtb2RlbCkNCnByaW50KGRlc2MpDQpoZWFkKGdldF9wYXJhbWV0ZXJzKG1vZGVsKSkNCm5yb3coZ2V0X3BhcmFtZXRlcnMobW9kZWwpKQ0KYGBgDQpgYGB7ciwgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRSwgaW5jbHVkZT1GQUxTRX0NCmdncGxvdChwb3N0ZXJpb3JzLCBhZXMoeCA9IG1hbGUpKSArDQogIGdlb21fZGVuc2l0eShmaWxsID0gJ3B1cnBsZScpDQpgYGANCjxmb250IHNpemUgPSAnNSc+QSB2aXN1YWwgY29tcGFyaXNvbiBvZiBgbWVkaWFuYCwgYG1hcF9lc3RpbWF0ZWAsIGFuZCBgbWVhbmAgb2YgcG9zdGVyaW9yIGluICoqQmF5ZXNpYW4gU3RhdGlzdGljcyoqIG9mIGBiYW5rX3NhbGFyeWAgZGF0YS5zZXQgaW4gKipgUmAqKi4gVGhlIGRhdGEuc2V0IGNvbWVzIHdpdGggYGJheWVzdXRpbHNgIHBhY2thZ2UgW0BSLWJheWVzdXRpbHNdIHZlcnNpb24gYHIgcGFja2FnZVZlcnNpb24oJ2JheWVzdXRpbHMnKWAuIE1vZGVsZWQgdXNpbmcgYHJzdGFuYXJtYCBwYWNrYWdlIFtAUi1yc3RhbmFybV0gdmVyc2lvbiBgciBwYWNrYWdlVmVyc2lvbigncnN0YW5hcm0nKWAgYW5kIHBsb3R0ZWQgdXNpbmcgYGdncGxvdDJgIHBhY2thZ2UgW0BnZ3Bsb3QyMjAxNl0gdmVyc2lvbiBgciBwYWNrYWdlVmVyc2lvbignZ2dwbG90MicpYCBpbiBgUmAgU3RhdGlzdGljYWwgcGFja2FnZSB2ZXJzaW9uIDQuMS4wIGEuay5hIGBDYW1wIFBvbnRhbmV6ZW5gPC9mb250Pi4gDQpgYGB7ciwgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0NCmdncGxvdChwb3N0ZXJpb3JzLCBhZXMoeCA9IG1hbGUpKSArDQogIGdlb21fZGVuc2l0eShmaWxsID0gInB1cnBsZSIpICsNCiAgIyBUaGUgbWVhbiBpbiBibHVlDQogIGdlb21fdmxpbmUoeGludGVyY2VwdCA9IG1lYW4ocG9zdGVyaW9ycyRtYWxlKSwgDQogICAgICAgICAgICAgY29sb3IgPSAiYmx1ZSIsIHNpemUgPSAxKSArDQogICMgVGhlIG1lZGlhbiBpbiByZWQNCiAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gbWVkaWFuKHBvc3RlcmlvcnMkbWFsZSksIA0KICAgICAgICAgICAgIGNvbG9yID0gInJlZCIsIHNpemUgPSAxKSArDQogICMgVGhlIE1BUCBpbiBwdXJwbGUNCiAgZ2VvbV92bGluZSh4aW50ZXJjZXB0ID0gbWFwX2VzdGltYXRlKHBvc3RlcmlvcnMkbWFsZSksIA0KICAgICAgICAgICAgIGNvbG9yID0gIm9yYW5nZSIsIHNpemUgPSAxKQ0KYGBgDQojIFJlZmVyZW5jZXM=