library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3 v purrr 0.3.4
## v tibble 3.1.0 v dplyr 1.0.5
## v tidyr 1.1.3 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(caret)
## Warning: package 'caret' was built under R version 4.0.5
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
## lift
library(ggplot2)
library(dplyr)
library(GGally)
## Warning: package 'GGally' was built under R version 4.0.5
## Registered S3 method overwritten by 'GGally':
## method from
## +.gg ggplot2
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.0.5
## corrplot 0.88 loaded
library(rpart)
library(gplots)
## Warning: package 'gplots' was built under R version 4.0.5
##
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
##
## lowess
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.0.5
lap.df <- read.csv("LaptopSalesJanuary2008.csv")
store.avg <- aggregate(lap.df$Retail.Price ~ lap.df$Store.Postcode, data = lap.df, mean)
store.avg
## lap.df$Store.Postcode lap.df$Retail.Price
## 1 CR7 8LE 488.6190
## 2 E2 0RY 483.1717
## 3 E7 8NW 494.3814
## 4 KT2 5AU 493.9048
## 5 N17 6QA 494.6341
## 6 N3 1DH 487.3684
## 7 NW5 2QH 486.5805
## 8 S1P 3AU 486.2500
## 9 SE1 2BN 486.6802
## 10 SE8 3JD 492.1778
## 11 SW12 9HD 485.2957
## 12 SW18 1NN 493.0389
## 13 SW1P 3AU 488.5069
## 14 SW1V 4QQ 489.3450
## 15 W10 6HQ 489.8667
## 16 W4 3PH 481.0063
ggplot(store.avg)+geom_col(aes(x=store.avg$`lap.df$Store.Postcode`,y=store.avg$`lap.df$Retail.Price`))+theme(axis.text.x = element_text(angle = 90)) + coord_cartesian(ylim=c(475, 500))
## Warning: Use of `store.avg$`lap.df$Store.Postcode`` is discouraged. Use
## `lap.df$Store.Postcode` instead.
## Warning: Use of `store.avg$`lap.df$Retail.Price`` is discouraged. Use
## `lap.df$Retail.Price` instead.

ggplot(lap.df) + geom_boxplot(aes(lap.df$Store.Postcode, lap.df$Retail.Price)) + theme(axis.text.x = element_text(angle = 90))
## Warning: Use of `lap.df$Store.Postcode` is discouraged. Use `Store.Postcode`
## instead.
## Warning: Use of `lap.df$Retail.Price` is discouraged. Use `Retail.Price`
## instead.
