TODO: have joined rounds & exclude NEED TO DEAL WITH CHAT! & FILE LOCATIONS

Pretty pictures

Everything here has bootstrapped 95% CIs.

Should find better curves to fit, but using quadratic to allow for some curvature.

Models

Overall model predicting number of speaker words from block and player count.

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: words ~ block * numPlayers + (block | tangram) + (1 | playerId) + (1 | tangram_group) + (block | gameId) 
##    Data: model_input (Number of observations: 4013) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 4000
## 
## Group-Level Effects: 
## ~gameId (Number of levels: 60) 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)            6.19      0.69     5.00     7.74 1.00     2011
## sd(block)                1.55      0.16     1.27     1.91 1.00     1888
## cor(Intercept,block)    -0.89      0.04    -0.95    -0.79 1.00     1828
##                      Tail_ESS
## sd(Intercept)            2276
## sd(block)                2717
## cor(Intercept,block)     2405
## 
## ~playerId (Number of levels: 176) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.27      0.28     2.76     3.85 1.00     1758     2593
## 
## ~tangram (Number of levels: 12) 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)            5.26      1.25     3.47     8.24 1.00     1591
## sd(block)                0.81      0.20     0.51     1.29 1.00     1825
## cor(Intercept,block)    -0.93      0.06    -0.99    -0.76 1.00     2238
##                      Tail_ESS
## sd(Intercept)            2317
## sd(block)                2445
## cor(Intercept,block)     2297
## 
## ~tangram_group (Number of levels: 720) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.99      0.18     2.63     3.33 1.00     1715     2453
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           15.82      3.66     8.69    22.99 1.00     1346     2241
## block               -3.22      0.85    -4.95    -1.55 1.00     1544     2375
## numPlayers           1.93      1.07    -0.15     4.02 1.00     1353     1867
## block:numPlayers    -0.13      0.26    -0.65     0.40 1.00     1497     2301
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     7.37      0.09     7.19     7.56 1.00     4019     3293
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: words ~ block * numPlayers + block * was_INcorrect + (block | tangram) + (1 | playerId) + (1 | tangram_group) + (block | gameId) 
##    Data: model_input (Number of observations: 3294) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 4000
## 
## Group-Level Effects: 
## ~gameId (Number of levels: 58) 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)            5.81      0.67     4.62     7.25 1.00     1799
## sd(block)                1.23      0.15     0.96     1.56 1.00     1598
## cor(Intercept,block)    -0.86      0.05    -0.94    -0.75 1.00     2276
##                      Tail_ESS
## sd(Intercept)            2632
## sd(block)                2672
## cor(Intercept,block)     2601
## 
## ~playerId (Number of levels: 172) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.49      0.22     2.09     2.96 1.00     1799     3175
## 
## ~tangram (Number of levels: 12) 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)            4.91      1.20     3.16     7.80 1.00     1917
## sd(block)                0.70      0.19     0.43     1.15 1.00     2227
## cor(Intercept,block)    -0.96      0.05    -1.00    -0.85 1.00     2295
##                      Tail_ESS
## sd(Intercept)            2907
## sd(block)                2890
## cor(Intercept,block)     3339
## 
## ~tangram_group (Number of levels: 696) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     3.00      0.16     2.70     3.31 1.00     2194     3171
## 
## Population-Level Effects: 
##                     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept              12.99      3.48     6.12    19.86 1.00     1520     2395
## block                  -2.55      0.72    -3.99    -1.16 1.00     1651     2581
## numPlayers              1.74      1.00    -0.20     3.70 1.00     1715     2536
## was_INcorrect           4.15      0.82     2.54     5.79 1.00     7299     3692
## block:numPlayers       -0.06      0.22    -0.47     0.38 1.00     1851     2687
## block:was_INcorrect    -0.25      0.30    -0.85     0.33 1.00     7004     3398
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     5.86      0.09     5.70     6.04 1.00     3592     2826
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

Pre any listener commentary

What’s the model look like if we discard anything post listener talking? There’s an effect of block, but not a large effect of number of players, no interaction.

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: words ~ block * numPlayers + (block | tangram) + (1 | playerId) + (1 | tangram_group) + (block | gameId) 
##    Data: model_input (Number of observations: 4001) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 4000
## 
## Group-Level Effects: 
## ~gameId (Number of levels: 60) 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)            4.97      0.58     3.95     6.21 1.00     1648
## sd(block)                1.31      0.14     1.07     1.62 1.00     1763
## cor(Intercept,block)    -0.91      0.04    -0.97    -0.81 1.00     1094
##                      Tail_ESS
## sd(Intercept)            2295
## sd(block)                2775
## cor(Intercept,block)     1014
## 
## ~playerId (Number of levels: 176) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.86      0.23     2.42     3.33 1.00     1168     2214
## 
## ~tangram (Number of levels: 12) 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)            3.78      0.90     2.46     5.98 1.00     1417
## sd(block)                0.53      0.14     0.32     0.89 1.00     1678
## cor(Intercept,block)    -0.89      0.10    -0.99    -0.63 1.00     2402
##                      Tail_ESS
## sd(Intercept)            2208
## sd(block)                1921
## cor(Intercept,block)     2917
## 
## ~tangram_group (Number of levels: 720) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     2.25      0.15     1.96     2.54 1.00     1656     3053
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           15.99      2.95    10.18    21.75 1.00     1271     2035
## block               -3.12      0.72    -4.52    -1.74 1.00     1275     1889
## numPlayers           0.65      0.86    -1.05     2.33 1.00     1174     1963
## block:numPlayers     0.11      0.22    -0.32     0.54 1.00     1179     1856
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     6.07      0.08     5.92     6.22 1.00     4371     2666
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).

First two rounds only

Speaker’s experience at talking about these images is confounded with player count. However, this isn’t true in the first two rounds, so we can limit to that.

##  Family: gaussian 
##   Links: mu = identity; sigma = identity 
## Formula: words ~ block * numPlayers + (block | tangram) + (1 | playerId) 
##    Data: model_input (Number of observations: 1413) 
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
##          total post-warmup samples = 4000
## 
## Group-Level Effects: 
## ~playerId (Number of levels: 118) 
##               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept)     7.70      0.58     6.68     8.94 1.00     1042     1806
## 
## ~tangram (Number of levels: 12) 
##                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept)            5.46      1.37     3.40     8.70 1.00      970
## sd(block)                1.00      0.75     0.04     2.75 1.00     1328
## cor(Intercept,block)    -0.23      0.49    -0.95     0.84 1.00     3454
##                      Tail_ESS
## sd(Intercept)            1461
## sd(block)                1789
## cor(Intercept,block)     2256
## 
## Population-Level Effects: 
##                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept           15.91      4.20     7.59    24.10 1.00      685     1301
## block               -2.29      4.99   -11.79     7.51 1.00      805     1420
## numPlayers           2.76      1.22     0.27     5.21 1.00      690     1406
## block:numPlayers    -1.66      1.60    -4.85     1.38 1.00      792     1359
## 
## Family Specific Parameters: 
##       Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma     9.81      0.20     9.43    10.21 1.00     4973     2302
## 
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).