TODO: have joined rounds & exclude NEED TO DEAL WITH CHAT! & FILE LOCATIONS
Everything here has bootstrapped 95% CIs.
Should find better curves to fit, but using quadratic to allow for some curvature.
Overall model predicting number of speaker words from block and player count.
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: words ~ block * numPlayers + (block | tangram) + (1 | playerId) + (1 | tangram_group) + (block | gameId)
## Data: model_input (Number of observations: 4013)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Group-Level Effects:
## ~gameId (Number of levels: 60)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 6.19 0.69 5.00 7.74 1.00 2011
## sd(block) 1.55 0.16 1.27 1.91 1.00 1888
## cor(Intercept,block) -0.89 0.04 -0.95 -0.79 1.00 1828
## Tail_ESS
## sd(Intercept) 2276
## sd(block) 2717
## cor(Intercept,block) 2405
##
## ~playerId (Number of levels: 176)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 3.27 0.28 2.76 3.85 1.00 1758 2593
##
## ~tangram (Number of levels: 12)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 5.26 1.25 3.47 8.24 1.00 1591
## sd(block) 0.81 0.20 0.51 1.29 1.00 1825
## cor(Intercept,block) -0.93 0.06 -0.99 -0.76 1.00 2238
## Tail_ESS
## sd(Intercept) 2317
## sd(block) 2445
## cor(Intercept,block) 2297
##
## ~tangram_group (Number of levels: 720)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.99 0.18 2.63 3.33 1.00 1715 2453
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 15.82 3.66 8.69 22.99 1.00 1346 2241
## block -3.22 0.85 -4.95 -1.55 1.00 1544 2375
## numPlayers 1.93 1.07 -0.15 4.02 1.00 1353 1867
## block:numPlayers -0.13 0.26 -0.65 0.40 1.00 1497 2301
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 7.37 0.09 7.19 7.56 1.00 4019 3293
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: words ~ block * numPlayers + block * was_INcorrect + (block | tangram) + (1 | playerId) + (1 | tangram_group) + (block | gameId)
## Data: model_input (Number of observations: 3294)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Group-Level Effects:
## ~gameId (Number of levels: 58)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 5.81 0.67 4.62 7.25 1.00 1799
## sd(block) 1.23 0.15 0.96 1.56 1.00 1598
## cor(Intercept,block) -0.86 0.05 -0.94 -0.75 1.00 2276
## Tail_ESS
## sd(Intercept) 2632
## sd(block) 2672
## cor(Intercept,block) 2601
##
## ~playerId (Number of levels: 172)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.49 0.22 2.09 2.96 1.00 1799 3175
##
## ~tangram (Number of levels: 12)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 4.91 1.20 3.16 7.80 1.00 1917
## sd(block) 0.70 0.19 0.43 1.15 1.00 2227
## cor(Intercept,block) -0.96 0.05 -1.00 -0.85 1.00 2295
## Tail_ESS
## sd(Intercept) 2907
## sd(block) 2890
## cor(Intercept,block) 3339
##
## ~tangram_group (Number of levels: 696)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 3.00 0.16 2.70 3.31 1.00 2194 3171
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 12.99 3.48 6.12 19.86 1.00 1520 2395
## block -2.55 0.72 -3.99 -1.16 1.00 1651 2581
## numPlayers 1.74 1.00 -0.20 3.70 1.00 1715 2536
## was_INcorrect 4.15 0.82 2.54 5.79 1.00 7299 3692
## block:numPlayers -0.06 0.22 -0.47 0.38 1.00 1851 2687
## block:was_INcorrect -0.25 0.30 -0.85 0.33 1.00 7004 3398
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 5.86 0.09 5.70 6.04 1.00 3592 2826
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
What’s the model look like if we discard anything post listener talking? There’s an effect of block, but not a large effect of number of players, no interaction.
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: words ~ block * numPlayers + (block | tangram) + (1 | playerId) + (1 | tangram_group) + (block | gameId)
## Data: model_input (Number of observations: 4001)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Group-Level Effects:
## ~gameId (Number of levels: 60)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 4.97 0.58 3.95 6.21 1.00 1648
## sd(block) 1.31 0.14 1.07 1.62 1.00 1763
## cor(Intercept,block) -0.91 0.04 -0.97 -0.81 1.00 1094
## Tail_ESS
## sd(Intercept) 2295
## sd(block) 2775
## cor(Intercept,block) 1014
##
## ~playerId (Number of levels: 176)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.86 0.23 2.42 3.33 1.00 1168 2214
##
## ~tangram (Number of levels: 12)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 3.78 0.90 2.46 5.98 1.00 1417
## sd(block) 0.53 0.14 0.32 0.89 1.00 1678
## cor(Intercept,block) -0.89 0.10 -0.99 -0.63 1.00 2402
## Tail_ESS
## sd(Intercept) 2208
## sd(block) 1921
## cor(Intercept,block) 2917
##
## ~tangram_group (Number of levels: 720)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 2.25 0.15 1.96 2.54 1.00 1656 3053
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 15.99 2.95 10.18 21.75 1.00 1271 2035
## block -3.12 0.72 -4.52 -1.74 1.00 1275 1889
## numPlayers 0.65 0.86 -1.05 2.33 1.00 1174 1963
## block:numPlayers 0.11 0.22 -0.32 0.54 1.00 1179 1856
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 6.07 0.08 5.92 6.22 1.00 4371 2666
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).
Speaker’s experience at talking about these images is confounded with player count. However, this isn’t true in the first two rounds, so we can limit to that.
## Family: gaussian
## Links: mu = identity; sigma = identity
## Formula: words ~ block * numPlayers + (block | tangram) + (1 | playerId)
## Data: model_input (Number of observations: 1413)
## Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
## total post-warmup samples = 4000
##
## Group-Level Effects:
## ~playerId (Number of levels: 118)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sd(Intercept) 7.70 0.58 6.68 8.94 1.00 1042 1806
##
## ~tangram (Number of levels: 12)
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
## sd(Intercept) 5.46 1.37 3.40 8.70 1.00 970
## sd(block) 1.00 0.75 0.04 2.75 1.00 1328
## cor(Intercept,block) -0.23 0.49 -0.95 0.84 1.00 3454
## Tail_ESS
## sd(Intercept) 1461
## sd(block) 1789
## cor(Intercept,block) 2256
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## Intercept 15.91 4.20 7.59 24.10 1.00 685 1301
## block -2.29 4.99 -11.79 7.51 1.00 805 1420
## numPlayers 2.76 1.22 0.27 5.21 1.00 690 1406
## block:numPlayers -1.66 1.60 -4.85 1.38 1.00 792 1359
##
## Family Specific Parameters:
## Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
## sigma 9.81 0.20 9.43 10.21 1.00 4973 2302
##
## Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
## and Tail_ESS are effective sample size measures, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).