- Quantitative Geneticist, Corteva Agrisciences
- Adjunct Professor at Purdue University
- http://alenxav.wixsite.com/home/
Part 1: Overview
Part 2: Operations
Analytics help us to work smart and to achieve our goals more efficiently.
Empower breeders to understand the data nuances, strengths and pitfalls.
Data visualization: Quality control of locations, experiments, traits
Phenotypic analysis: BLUPs, repeatability, spatial, product placement
Genomic analysis: Predictions, crosses-combinations, diversity, QTLs
Phenomic analysis: Automation, multi-trait analysis, quality control
Envirotyping analysis: Environmental characterization, GxE predictions
Optimization analysis: Exp. Designs, resource allocation (Reps vs Locs)
Where is the main impact of breeding analytics?
Analytics must be (1) simple, (2) useful and (3) interpretable
The primary approach for breeding analytics involves MIXED MODELS:
\[ \left[\begin{array}{rr}X'R^{-1} X & Z'R^{-1}X \\X'R^{-1}Z & Z'R^{-1}Z+G^{-1}\end{array}\right] \left[\begin{array}{r} b \\ u \end{array}\right] =\left[\begin{array}{r} X'R^{-1}y \\ Z'R^{-1}y \end{array}\right] \]
Variance components (\(\partial L / \partial \sigma^2_i\))
Key summary statistics
Mixed models also enable us to evaluate multiple traits
\[ y=\{y_1,y_2,...,y_k\} \]
With multiple traits, the relation among traits is modeled
\[ V(u) = A \otimes \Sigma_a = \left[\begin{array}{rr} A \sigma^2_{a_1} & A \sigma_{a_{12}} \\ A \sigma_{a_{21}} & A \sigma^2_{a_2} \end{array}\right] \] \[ V(e) = I \otimes \Sigma_e = \left[\begin{array}{rr} I\sigma^2_{e_1} & I\sigma_{e_1e_2} \\ I\sigma_{e_2e_1} & I\sigma^2_{e_2} \end{array}\right] \] Why does it matter? Covariances (\(\sigma_{a_{12}}\), \(\sigma_{e_{12}}\)) are extra information!!
Index and multi-objective selection (Akdemir et al 2019,Batista et al. 2021)
Genetic values in multiples stages (Piepho et al 2008,Mohring et al 2009)
Genetic information theory (Habier et al 2007,Habier et al 2013)
Long-term gain (Daetwyler et al 2015,Goiffon et al 2017,Gorjanc et al 2018)
Accuracy-based optimization (Wientjes et al 2016,Mangin et al 2019)
Genomic-Spatial-Environmental (Selle 2019, Silva 2021, Costa-Neto 2021)
Incorporation of machine learning (Xavier et al 2017,Xavier 2019,Xavier 2021)
Workflow 1 - Field data analytics
Workflow 2 - Genomic-driven predictive analytics
E-mail: alenxav@gmail.com
Website: http://alenxav.wix.com/home