Loading Libraries

library(caret)
library(glmnet)
library(mlbench)
library(psych)
library(markovchain)

Reading Data

weatherData <- read.csv("weather_data.csv",header = TRUE)

View Data

dim(weatherData)
## [1] 4032   15
colnames(weatherData)
##  [1] "country_region_code"                               
##  [2] "country_region"                                    
##  [3] "sub_region_1"                                      
##  [4] "sub_region_2"                                      
##  [5] "metro_area"                                        
##  [6] "iso_3166_2_code"                                   
##  [7] "census_fips_code"                                  
##  [8] "place_id"                                          
##  [9] "date"                                              
## [10] "retail_and_recreation_percent_change_from_baseline"
## [11] "grocery_and_pharmacy_percent_change_from_baseline" 
## [12] "parks_percent_change_from_baseline"                
## [13] "transit_stations_percent_change_from_baseline"     
## [14] "workplaces_percent_change_from_baseline"           
## [15] "residential_percent_change_from_baseline"

Check Null Values

table(is.na(weatherData$residential_percent_change_from_baseline))
## 
## FALSE  TRUE 
##  3648   384

Replace Null Values With Mean and in categorical data we will replace null values with “Not Available”

weatherData$sub_region_2[is.na(weatherData$sub_region_2)] <- "Not Available"

weatherData$census_fips_code[is.na(weatherData$census_fips_code)] <- "Not Available"


weatherData$retail_and_recreation_percent_change_from_baseline[is.na(weatherData$retail_and_recreation_percent_change_from_baseline)] <- mean(weatherData$retail_and_recreation_percent_change_from_baseline, na.rm = TRUE)

weatherData$grocery_and_pharmacy_percent_change_from_baseline[is.na(weatherData$grocery_and_pharmacy_percent_change_from_baseline)] <- mean(weatherData$grocery_and_pharmacy_percent_change_from_baseline, na.rm = TRUE)

weatherData$transit_stations_percent_change_from_baseline[is.na(weatherData$transit_stations_percent_change_from_baseline)] <- mean(weatherData$transit_stations_percent_change_from_baseline, na.rm = TRUE)

weatherData$residential_percent_change_from_baseline[is.na(weatherData$residential_percent_change_from_baseline)] <- mean(weatherData$residential_percent_change_from_baseline, na.rm = TRUE)

Change Column Names

colnames(weatherData) <- c("Region_Code", "Region", "Sub_Region_1","Sub_Region_2","Metro_rea","ISO_Code","Census_Code","Place_Id","Date",
                           "Retail_And_Recreation_Percent","Grocery_And_Pharmacy_Percent","Parks_Percent","Transit_Stations_Percent","Workplace_Percent","Residential_Percent")

colnames(weatherData)
##  [1] "Region_Code"                   "Region"                       
##  [3] "Sub_Region_1"                  "Sub_Region_2"                 
##  [5] "Metro_rea"                     "ISO_Code"                     
##  [7] "Census_Code"                   "Place_Id"                     
##  [9] "Date"                          "Retail_And_Recreation_Percent"
## [11] "Grocery_And_Pharmacy_Percent"  "Parks_Percent"                
## [13] "Transit_Stations_Percent"      "Workplace_Percent"            
## [15] "Residential_Percent"
head(weatherData)
##   Region_Code   Region Sub_Region_1  Sub_Region_2 Metro_rea ISO_Code
## 1          PK Pakistan              Not Available                   
## 2          PK Pakistan              Not Available                   
## 3          PK Pakistan              Not Available                   
## 4          PK Pakistan              Not Available                   
## 5          PK Pakistan              Not Available                   
## 6          PK Pakistan              Not Available                   
##     Census_Code                    Place_Id       Date
## 1 Not Available ChIJH3X9-NJS2zgRXJIU5veht0Y 2021-01-01
## 2 Not Available ChIJH3X9-NJS2zgRXJIU5veht0Y 2021-01-02
## 3 Not Available ChIJH3X9-NJS2zgRXJIU5veht0Y 2021-01-03
## 4 Not Available ChIJH3X9-NJS2zgRXJIU5veht0Y 2021-01-04
## 5 Not Available ChIJH3X9-NJS2zgRXJIU5veht0Y 2021-01-05
## 6 Not Available ChIJH3X9-NJS2zgRXJIU5veht0Y 2021-01-06
##   Retail_And_Recreation_Percent Grocery_And_Pharmacy_Percent Parks_Percent
## 1                             1                           22            13
## 2                            -4                           23             7
## 3                             1                           23            13
## 4                             9                           34            14
## 5                            -6                           14             0
## 6                             5                           29            11
##   Transit_Stations_Percent Workplace_Percent Residential_Percent
## 1                       17               -12                   7
## 2                       19                 2                   6
## 3                       22                10                   4
## 4                       26                -3                   5
## 5                       11                -7                   7
## 6                       22                -3                   5

Pull Out Spring Dates Only

spring <- weatherData[1:2000,]

States

** Add the states to the dataset

spring$rain <- ifelse(spring$Transit_Stations_Percent > 0,1,0)
spring$rain
##    [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [35] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [69] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [103] 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1
##  [137] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [171] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [205] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
##  [239] 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
##  [273] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0
##  [307] 0 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [341] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [375] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1
##  [409] 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [443] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [477] 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1
##  [511] 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [545] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [579] 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [613] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [647] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
##  [681] 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1
##  [715] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [749] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
##  [783] 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1
##  [817] 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
##  [851] 1 0 1 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
##  [885] 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 0 1
##  [919] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [953] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [987] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1021] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1055] 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
## [1089] 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1123] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1157] 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
## [1191] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1225] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 0 0 0
## [1259] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1
## [1293] 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1327] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
## [1361] 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1395] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1429] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1
## [1463] 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1497] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1531] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1565] 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1599] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1
## [1633] 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0
## [1667] 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1701] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1735] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1769] 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1803] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0
## [1837] 1 1 1 0 0 0 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 1 1 1
## [1871] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1905] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1939] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1973] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
spring$markov_states <- ifelse(spring$rain == 1 & spring$rain < 32, "Cloudy", ifelse(spring$rain == 0 & spring$rain < 32 , "Clear","Partly Cloudy"))

spring$markov_states
##    [1] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##    [8] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [15] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [22] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [29] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [36] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [43] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [50] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [57] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [64] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [71] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [78] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [85] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [92] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##   [99] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
##  [106] "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy"
##  [113] "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy" "Clear"  "Clear" 
##  [120] "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [127] "Cloudy" "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy"
##  [134] "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [141] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [148] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [155] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [162] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [169] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [176] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [183] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [190] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [197] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [204] "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy" "Cloudy" "Cloudy"
##  [211] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [218] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [225] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [232] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy"
##  [239] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy"
##  [246] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [253] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [260] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [267] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy"
##  [274] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [281] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [288] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [295] "Cloudy" "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy"
##  [302] "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy"
##  [309] "Cloudy" "Clear"  "Cloudy" "Clear"  "Clear"  "Clear"  "Cloudy"
##  [316] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear" 
##  [323] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy"
##  [330] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [337] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [344] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [351] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [358] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [365] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [372] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [379] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [386] "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy" "Cloudy" "Cloudy"
##  [393] "Cloudy" "Clear"  "Cloudy" "Cloudy" "Clear"  "Cloudy" "Clear" 
##  [400] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy" "Clear" 
##  [407] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [414] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear" 
##  [421] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [428] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [435] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [442] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [449] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [456] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [463] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [470] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [477] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [484] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear" 
##  [491] "Clear"  "Clear"  "Cloudy" "Clear"  "Cloudy" "Cloudy" "Clear" 
##  [498] "Clear"  "Clear"  "Cloudy" "Clear"  "Clear"  "Clear"  "Clear" 
##  [505] "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [512] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
##  [519] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [526] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [533] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [540] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [547] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [554] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [561] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [568] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [575] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear" 
##  [582] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [589] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [596] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [603] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [610] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [617] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [624] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [631] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [638] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [645] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [652] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [659] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [666] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [673] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [680] "Clear"  "Cloudy" "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy"
##  [687] "Cloudy" "Clear"  "Cloudy" "Clear"  "Clear"  "Cloudy" "Cloudy"
##  [694] "Cloudy" "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy"
##  [701] "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear"  "Clear" 
##  [708] "Clear"  "Clear"  "Cloudy" "Clear"  "Cloudy" "Cloudy" "Cloudy"
##  [715] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [722] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [729] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [736] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [743] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [750] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [757] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [764] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [771] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [778] "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear"  "Clear" 
##  [785] "Clear"  "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear"  "Cloudy"
##  [792] "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear"  "Cloudy"
##  [799] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
##  [806] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
##  [813] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [820] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
##  [827] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [834] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [841] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [848] "Clear"  "Cloudy" "Clear"  "Cloudy" "Clear"  "Cloudy" "Clear" 
##  [855] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
##  [862] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
##  [869] "Clear"  "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear"  "Clear" 
##  [876] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
##  [883] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
##  [890] "Clear"  "Clear"  "Cloudy" "Clear"  "Cloudy" "Cloudy" "Clear" 
##  [897] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
##  [904] "Clear"  "Clear"  "Cloudy" "Clear"  "Clear"  "Clear"  "Clear" 
##  [911] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear" 
##  [918] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [925] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [932] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [939] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [946] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [953] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [960] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [967] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [974] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [981] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [988] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [995] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1002] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1009] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1016] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1023] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1030] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1037] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1044] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1051] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1058] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear" 
## [1065] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
## [1072] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
## [1079] "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy" "Clear"  "Cloudy"
## [1086] "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear"  "Cloudy"
## [1093] "Cloudy" "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy"
## [1100] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1107] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1114] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1121] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1128] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1135] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1142] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1149] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1156] "Cloudy" "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1163] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear" 
## [1170] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1177] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1184] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy" "Cloudy"
## [1191] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1198] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1205] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1212] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1219] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1226] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1233] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1240] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
## [1247] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
## [1254] "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
## [1261] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
## [1268] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
## [1275] "Cloudy" "Clear"  "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
## [1282] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
## [1289] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy"
## [1296] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1303] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1310] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1317] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1324] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1331] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1338] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1345] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1352] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear" 
## [1359] "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1366] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1373] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1380] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1387] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1394] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1401] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1408] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1415] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1422] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1429] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1436] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1443] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
## [1450] "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1457] "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1464] "Clear"  "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1471] "Cloudy" "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy"
## [1478] "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1485] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1492] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1499] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1506] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1513] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1520] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1527] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1534] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1541] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1548] "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy" "Cloudy" "Cloudy"
## [1555] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1562] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1569] "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy" "Clear"  "Cloudy"
## [1576] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1583] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1590] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1597] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1604] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1611] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1618] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1625] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Cloudy"
## [1632] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Cloudy"
## [1639] "Cloudy" "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
## [1646] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear" 
## [1653] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy"
## [1660] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear"  "Clear" 
## [1667] "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Clear"  "Cloudy"
## [1674] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1681] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1688] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1695] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1702] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1709] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1716] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1723] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1730] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1737] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1744] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear" 
## [1751] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1758] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1765] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1772] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear" 
## [1779] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1786] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1793] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1800] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1807] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1814] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1821] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1828] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Clear"  "Cloudy" "Clear" 
## [1835] "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy" "Clear"  "Clear" 
## [1842] "Clear"  "Cloudy" "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1849] "Cloudy" "Cloudy" "Clear"  "Clear"  "Cloudy" "Cloudy" "Cloudy"
## [1856] "Cloudy" "Cloudy" "Clear"  "Clear"  "Cloudy" "Clear"  "Clear" 
## [1863] "Clear"  "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1870] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1877] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1884] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1891] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1898] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1905] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1912] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1919] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1926] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1933] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1940] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1947] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1954] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1961] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1968] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1975] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1982] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1989] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
## [1996] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"

Observations

Park mobility observations are taken from the Google Mobility data. The data compares mobility for the report date to the baseline day. Calculated for the report date (unless there are gaps) and reported as a positive or negative percentage. The baseline day is the median value from the 5‑week period Jan 3 – Feb 6, 2020.

Bin the mobility data to create 3 types of observations:

plot(spring$Parks_Percent)
abline(h=-10,col="red")
abline(h=35,col="red")

Bin mobilty data as low, moderate, high mobility

spring$park_obs <- ifelse(spring$Parks_Percent < -10, "L", ifelse(spring$Parks_Percent >= -4 & spring$Parks_Percent < 35, "M","H"))

spring$park_obs[1:250]
##   [1] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
##  [18] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
##  [35] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
##  [52] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
##  [69] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
##  [86] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
## [103] "M" "H" "H" "L" "L" "H" "M" "M" "M" "M" "H" "L" "H" "M" "M" "M" "M"
## [120] "H" "L" "H" "M" "M" "M" "M" "M" "H" "L" "M" "M" "M" "M" "M" "M" "M"
## [137] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
## [154] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "H" "M" "M" "M" "M" "M"
## [171] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "H" "M"
## [188] "M" "M" "M" "M" "M" "H" "H" "H" "H" "M" "M" "H" "H" "M" "H" "M" "M"
## [205] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
## [222] "M" "M" "M" "M" "M" "M" "M" "H" "H" "M" "M" "M" "M" "M" "M" "M" "M"
## [239] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "H"

Part 1: Define Structure of HMM (sequence of hidden states known)

Hidden States

Thus, SM= {clear, rainy, warm}

S <- c('Clear','Cloudy','Partly Cloudy')

Transition Probabbility Matrix

The transition matrix is the probability of changing from one state to another state. It is represented as a M×M matrix where the rows sum to 1. aij is simply the probability of state ii changing to state j at t+1.

aij=p(s(t+a)=j|s(t)=i

A simple example of a transition matrix with two states time step to 10

spring$markov_states[1:10]
##  [1] "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy" "Cloudy"
##  [8] "Cloudy" "Cloudy" "Cloudy"

Compare to output using markovchainFit function.

simple_A <- markovchainFit(spring$markov_states[1:2000])
simple_A$estimate
## MLE Fit 
##  A  2 - dimensional discrete Markov Chain defined by the following states: 
##  Clear, Cloudy 
##  The transition matrix  (by rows)  is defined as follows: 
##             Clear    Cloudy
## Clear  0.70779221 0.2922078
## Cloudy 0.05322295 0.9467771

Repeat the same process on all 90 states for the estimated transition matrix.

transition <- markovchainFit(data = spring$markov_states)
transition$estimate
## MLE Fit 
##  A  2 - dimensional discrete Markov Chain defined by the following states: 
##  Clear, Cloudy 
##  The transition matrix  (by rows)  is defined as follows: 
##             Clear    Cloudy
## Clear  0.70779221 0.2922078
## Cloudy 0.05322295 0.9467771

```