Mahbubul Hasan(presenter), Zhenghong Li(team member) Faculty Mentors- Dale Bowman, Lih Y Deng, Ching-Chi Yang,
07/21/2021
[Image:MITS191]
theta_true, were sampled from \(N(0,Σ)\).correlation_matrix.Discrimination: \([0.25, 1.75]\), difficulty paramters:\([−3, 3]\), Q-matrix:\(Bern(0.35)\). sampled uniformly.ML2P model(McKinley and Reckase,1980).[Amini,2019]
[Rocca,2019]
Z?Z and actual weights of the encoder.Q-matrix to determine the connections between the latent traits and the output items.For example, if one student answers only questions 1 and 4 incorrect, and another student answers only questions 3 and 7 incorrect, they have the same percentage score. But it is not likely that the two students share the same latent trait values. Questions 3 and 7 may have tested a different skill than items 1 and 4, and could vary greatly in difficulty level.
bi for item i,k quantifying the level of ability k required to answer item i correctly.j with latent abilities \(𝛩_j = (𝜃_{j_1},...,𝜃_{jK})^⊤\) answering item i correctly as\(Q(zi) = \frac{1}{1+e^{-z_i}}\)
num_items and num_skills describe the assessment length and the number of abilities being evaluated by the assessment.Q_matrix is a num_skills by num_items matrix which specifies the relationship between items and abilities.models_ind <- build_vae_independent(num_items,
num_skills,
Q,
model_type = 2,
enc_hid_arch = enc_arch,
hid_enc_activation = enc_act,
output_activation = out_act)
encoder_ind <- models_ind[[1]]
decoder_ind <- models_ind[[2]]
vae_ind <- models_ind[[3]]
encoder_ind## Model
## Model: "model"
## ________________________________________________________________________________
## Layer (type) Output Shape Param # Connected to
## ================================================================================
## input (InputLayer) [(None, 30)] 0
## ________________________________________________________________________________
## hidden_1 (Dense) (None, 16) 496 input[0][0]
## ________________________________________________________________________________
## hidden_2 (Dense) (None, 8) 136 hidden_1[0][0]
## ________________________________________________________________________________
## z_mean (Dense) (None, 3) 27 hidden_2[0][0]
## ________________________________________________________________________________
## z_log_var (Dense) (None, 3) 27 hidden_2[0][0]
## ________________________________________________________________________________
## z (Concatenate) (None, 6) 0 z_mean[0][0]
## z_log_var[0][0]
## ________________________________________________________________________________
## lambda (Lambda) (None, 3) 0 z[0][0]
## ================================================================================
## Total params: 686
## Trainable params: 686
## Non-trainable params: 0
## ________________________________________________________________________________
## Model
## Model: "model_1"
## ________________________________________________________________________________
## Layer (type) Output Shape Param #
## ================================================================================
## latent_inputs (InputLayer) [(None, 3)] 0
## ________________________________________________________________________________
## vae_out (Dense) (None, 30) 120
## ================================================================================
## Total params: 120
## Trainable params: 120
## Non-trainable params: 0
## ________________________________________________________________________________
## Model
## Model: "model_2"
## ________________________________________________________________________________
## Layer (type) Output Shape Param #
## ================================================================================
## input (InputLayer) [(None, 30)] 0
## ________________________________________________________________________________
## model (Model) [(None, 3), (None, 3), (None, 3 686
## ________________________________________________________________________________
## model_1 (Model) (None, 30) 120
## ================================================================================
## Total params: 806
## Trainable params: 806
## Non-trainable params: 0
## ________________________________________________________________________________
get_item_parameter_estimates() all trainable parameters of the decoder part of the VAE and returns the values which serve as estimates to the item paramters.build_vae_independent(), and assumes that the latent traits are independent of one another.TensorFlow probability library(this is not working in my computer)Corr latent traits
.
.
! .
.