We make a first rough annotation using known markers for different celltypes.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
In order to help with the identification of we pull out the most expressed genes for each cluster. ( ignoring the mitochondrial ribosomal genes)
We compute here a pairwise differential expression between all the clusters. The results are saved in a list of dataframes, “markers_k20_02/markers_k20_02.RDS” one for each cluster. A .csv file (that can be opened with a spreadsheet program) for each cluster is available in “markers_k20_02”.
The default philosophy of findMarkers() is to identify a combination of marker genes that - together - uniquely define one cluster against the rest. To this end, we collect the top DE genes from each pairwise comparison involving a particular cluster to assemble a set of candidate markers for that cluster. Of particular interest is the Top field. The set of genes with Top \(≤X\) is the union of the top \(X\) genes (ranked by p-value) from each pairwise comparison involving the cluster of interest. For example, the set of all genes with Top values of 1 contains the gene with the lowest p-value from each comparison. Similarly, the set of genes with Top values less than or equal to 10 contains the top 10 genes from each comparison.
With the help of the known markers plotted above, the DE between clusters and the top expressed genes the celltype identity of every cluster has benn identified.
Renaming the clusters accordingly:
1 mNeurons
2 Endothelial
3 fEndothelia
4 Gran & Mono
5 OligoAstro
6 Microglia
7 Mural_cells
8 Lymphocytes
9 ChP_epithelial
10 OPCs
11 Astrocyte_1
12 Oligo_2
13 Astrocyte_2
14 Astrocyte_3
15 Oligo_1
16 DCs
17 Microglia
18 iNeuron & NRPs
19 BAMs
20 Ependymocytes
21 Microglia
22 OEG
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
Exploring the shiny app and the DE between clusters specific markers for each one of the subtypes is identified.
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## R version 4.0.4 (2021-02-15)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19041)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United Kingdom.1252
## [2] LC_CTYPE=English_United Kingdom.1252
## [3] LC_MONETARY=English_United Kingdom.1252
## [4] LC_NUMERIC=C
## [5] LC_TIME=English_United Kingdom.1252
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] pals_1.7 scran_1.18.7
## [3] patchwork_1.1.1 scater_1.18.6
## [5] ggplot2_3.3.5 SingleCellExperiment_1.12.0
## [7] SummarizedExperiment_1.20.0 Biobase_2.50.0
## [9] GenomicRanges_1.42.0 GenomeInfoDb_1.26.7
## [11] IRanges_2.24.1 S4Vectors_0.28.1
## [13] BiocGenerics_0.36.1 MatrixGenerics_1.2.1
## [15] matrixStats_0.59.0 here_1.0.1
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 rprojroot_2.0.2
## [3] tools_4.0.4 bslib_0.2.5.1
## [5] utf8_1.2.1 R6_2.5.0
## [7] irlba_2.3.3 vipor_0.4.5
## [9] DBI_1.1.1 colorspace_2.0-2
## [11] withr_2.4.2 tidyselect_1.1.1
## [13] gridExtra_2.3 compiler_4.0.4
## [15] BiocNeighbors_1.8.2 DelayedArray_0.16.3
## [17] labeling_0.4.2 sass_0.4.0
## [19] scales_1.1.1 stringr_1.4.0
## [21] digest_0.6.27 rmarkdown_2.9
## [23] XVector_0.30.0 dichromat_2.0-0
## [25] pkgconfig_2.0.3 htmltools_0.5.1.1
## [27] sparseMatrixStats_1.2.1 highr_0.9
## [29] limma_3.46.0 maps_3.3.0
## [31] rlang_0.4.10 DelayedMatrixStats_1.12.3
## [33] farver_2.1.0 jquerylib_0.1.4
## [35] generics_0.1.0 jsonlite_1.7.2
## [37] BiocParallel_1.24.1 dplyr_1.0.7
## [39] RCurl_1.98-1.3 magrittr_2.0.1
## [41] BiocSingular_1.6.0 GenomeInfoDbData_1.2.4
## [43] scuttle_1.0.4 Matrix_1.3-4
## [45] Rcpp_1.0.6 ggbeeswarm_0.6.0
## [47] munsell_0.5.0 fansi_0.5.0
## [49] viridis_0.6.1 lifecycle_1.0.0
## [51] stringi_1.7.3 yaml_2.2.1
## [53] edgeR_3.32.1 zlibbioc_1.36.0
## [55] grid_4.0.4 dqrng_0.3.0
## [57] crayon_1.4.1 lattice_0.20-44
## [59] cowplot_1.1.1 beachmat_2.6.4
## [61] mapproj_1.2.7 locfit_1.5-9.4
## [63] knitr_1.33 pillar_1.6.1
## [65] igraph_1.2.6 codetools_0.2-18
## [67] glue_1.4.2 evaluate_0.14
## [69] vctrs_0.3.8 gtable_0.3.0
## [71] purrr_0.3.4 assertthat_0.2.1
## [73] xfun_0.21 rsvd_1.0.5
## [75] viridisLite_0.4.0 tibble_3.1.2
## [77] beeswarm_0.4.0 bluster_1.0.0
## [79] statmod_1.4.36 ellipsis_0.3.2