vou transformar os dados.
# PASSO 1 - IMPORTAR
library(readr)
anorexia <- read_csv("C:/Users/luuan/Desktop/UNIRIO/estatistica/Base_de_dados-master/anorexia.csv")
##
## -- Column specification --------------------------------------------------------
## cols(
## subj = col_double(),
## therapy = col_character(),
## before = col_double(),
## after = col_double()
## )
head(anorexia)
## # A tibble: 6 x 4
## subj therapy before after
## <dbl> <chr> <dbl> <dbl>
## 1 1 b 80.5 82.2
## 2 2 b 84.9 85.6
## 3 3 b 81.5 81.4
## 4 4 b 82.6 81.9
## 5 5 b 79.9 76.4
## 6 6 b 88.7 104.
load("C:/Users/luuan/Desktop/UNIRIO/estatistica/Base_de_dados-master/CARROS.RData")
# PASSO 2 - GRAFICO DE PIZZA
table(anorexia$therapy)
##
## b c f
## 29 26 17
pie(table(anorexia$therapy))
# PASSO 3 - GRAFICO DE BARRAS
barplot(table(anorexia$therapy),col = c("royalblue","darkblue","skyblue"),main = "meu gráfico de barras")
# PASSO 4 - RESUMO
summary(CARROS)
## Kmporlitro Cilindros Preco HP
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## Amperagem_circ_eletrico Peso RPM Tipodecombustivel
## Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
## Median :3.695 Median :3.325 Median :17.71 Median :0.0000
## Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
## Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
## TipodeMarcha NumdeMarchas NumdeValvulas
## Min. :0.0000 Min. :3.000 Min. :1.000
## 1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
# PASSO 5 - TRANSFOMAÇÃO DE VARIÁVEL
CARROS$Tipodecombustivel <- ifelse(CARROS$Tipodecombustivel==0,"Gas","Alc")
CARROS$TipodeMarcha <- ifelse(CARROS$TipodeMarcha==0,"Auto","Manual")
summary(CARROS)
## Kmporlitro Cilindros Preco HP
## Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
## 1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
## Median :19.20 Median :6.000 Median :196.3 Median :123.0
## Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
## Amperagem_circ_eletrico Peso RPM Tipodecombustivel
## Min. :2.760 Min. :1.513 Min. :14.50 Length:32
## 1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 Class :character
## Median :3.695 Median :3.325 Median :17.71 Mode :character
## Mean :3.597 Mean :3.217 Mean :17.85
## 3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90
## Max. :4.930 Max. :5.424 Max. :22.90
## TipodeMarcha NumdeMarchas NumdeValvulas
## Length:32 Min. :3.000 Min. :1.000
## Class :character 1st Qu.:3.000 1st Qu.:2.000
## Mode :character Median :4.000 Median :2.000
## Mean :3.688 Mean :2.812
## 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :5.000 Max. :8.000
table(CARROS$Tipodecombustivel)
##
## Alc Gas
## 14 18
table(CARROS$TipodeMarcha)
##
## Auto Manual
## 19 13
Aqui vou fazer dois histogramas de variável quantitativa.
summary(CARROS$Kmporlitro)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 10.40 15.43 19.20 20.09 22.80 33.90
hist(CARROS$Kmporlitro,col = "purple",main = "Gráfico 1 - Histograma do Km/l",
xlab = "Km/l",ylab = "Frequencia")
hist(CARROS$Preco,col = "royalblue",main = "Gráfico 2 - Histograma do preço",
xlab = "Preço",ylab = "Frequencia")
Tanto o preço do carro quanto o km/l são assimétricos.
Parece ter dois tipos de carros(popular e de luxo).
É raro ver carro econômico nessa base de dados
Abordamos dois tópicos: 1. Transformação de variável 2. Histograma