Feedback provision

Number of annotations per report

Average length/duration of each annotation

Total amount of feedback (per report)

Question from UQM team meeting

Do some reports really get ~700 words of feedback in text annotations?
Max number of words in text annotations in a single report in each set of reports

##  [1] 423 392 558 296 524 431 353 696 625 709 450

For the BIOM2011Sem2Report1 with 709 words in text annoations, how many annotations and how many words per annotation?

##  [1]  84   1   1   2  11  11   2   2  22  71  39   5   1  37   6   1   7
## [18]   2   1  21   1   3   5   6   5   5   4  29   6   4  25   6  18  53
## [35]   4   6  16 186
## [1] 709

What does a text annotation with 186 words look like?

## [1] NA

How many audio annotations were used in this report?

## integer(0)

Doing stat’s to compare reports, courses and semesters

for number of annotations or amount of feedback per report for each feedback modality

MANOVA to see if there are differences between the 11 projects in any of the following dependent variables:
audio.num,txt.num,audio.total.words,txt.total.words

##                      Df  Pillai approx F num Df den Df    Pr(>F)    
## as.factor(project)   10 0.71374   62.246     40  11464 < 2.2e-16 ***
## Residuals          2866                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##  Response audio.num :
##                      Df Sum Sq Mean Sq F value    Pr(>F)    
## as.factor(project)   10  16149 1614.87  103.17 < 2.2e-16 ***
## Residuals          2866  44859   15.65                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response txt.num :
##                      Df Sum Sq Mean Sq F value    Pr(>F)    
## as.factor(project)   10   7404  740.37  19.445 < 2.2e-16 ***
## Residuals          2866 109120   38.07                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response audio.total.words :
##                      Df    Sum Sq  Mean Sq F value    Pr(>F)    
## as.factor(project)   10 309464963 30946496  175.55 < 2.2e-16 ***
## Residuals          2866 505240297   176288                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response txt.total.words :
##                      Df   Sum Sq Mean Sq F value    Pr(>F)    
## as.factor(project)   10  3283044  328304  50.578 < 2.2e-16 ***
## Residuals          2866 18603385    6491                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 3107 observations deleted due to missingness

MANCOVA to see if there are differences due to course, semester or report number in any of the following dependent variables:
audio.num,txt.num,audio.total.words,txt.total.words

##                                                      Df  Pillai approx F
## as.factor(course)                                     1 0.37272   425.29
## as.factor(sem)                                        1 0.09086    71.53
## as.factor(report)                                     3 0.20476    52.47
## as.factor(course):as.factor(sem)                      1 0.03641    27.04
## as.factor(course):as.factor(report)                   1 0.02993    22.09
## as.factor(sem):as.factor(report)                      2 0.02658     9.64
## as.factor(course):as.factor(sem):as.factor(report)    1 0.00402     2.89
## Residuals                                          2866                 
##                                                    num Df den Df    Pr(>F)
## as.factor(course)                                       4   2863 < 2.2e-16
## as.factor(sem)                                          4   2863 < 2.2e-16
## as.factor(report)                                      12   8595 < 2.2e-16
## as.factor(course):as.factor(sem)                        4   2863 < 2.2e-16
## as.factor(course):as.factor(report)                     4   2863 < 2.2e-16
## as.factor(sem):as.factor(report)                        8   5728 2.268e-13
## as.factor(course):as.factor(sem):as.factor(report)      4   2863   0.02122
## Residuals                                                                 
##                                                       
## as.factor(course)                                  ***
## as.factor(sem)                                     ***
## as.factor(report)                                  ***
## as.factor(course):as.factor(sem)                   ***
## as.factor(course):as.factor(report)                ***
## as.factor(sem):as.factor(report)                   ***
## as.factor(course):as.factor(sem):as.factor(report) *  
## Residuals                                             
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##  Response audio.num :
##                                                      Df Sum Sq Mean Sq
## as.factor(course)                                     1  11600 11599.9
## as.factor(sem)                                        1   2911  2911.2
## as.factor(report)                                     3    850   283.2
## as.factor(course):as.factor(sem)                      1     80    79.9
## as.factor(course):as.factor(report)                   1    372   372.1
## as.factor(sem):as.factor(report)                      2    333   166.6
## as.factor(course):as.factor(sem):as.factor(report)    1      3     2.7
## Residuals                                          2866  44859    15.7
##                                                     F value    Pr(>F)    
## as.factor(course)                                  741.1028 < 2.2e-16 ***
## as.factor(sem)                                     185.9946 < 2.2e-16 ***
## as.factor(report)                                   18.0947 1.246e-11 ***
## as.factor(course):as.factor(sem)                     5.1025   0.02397 *  
## as.factor(course):as.factor(report)                 23.7698 1.145e-06 ***
## as.factor(sem):as.factor(report)                    10.6443 2.479e-05 ***
## as.factor(course):as.factor(sem):as.factor(report)   0.1749   0.67580    
## Residuals                                                                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response txt.num :
##                                                      Df Sum Sq Mean Sq
## as.factor(course)                                     1    221  220.90
## as.factor(sem)                                        1    970  970.24
## as.factor(report)                                     3   4252 1417.46
## as.factor(course):as.factor(sem)                      1    866  865.55
## as.factor(course):as.factor(report)                   1    111  110.81
## as.factor(sem):as.factor(report)                      2    941  470.70
## as.factor(course):as.factor(sem):as.factor(report)    1     42   42.40
## Residuals                                          2866 109120   38.07
##                                                    F value    Pr(>F)    
## as.factor(course)                                   5.8019   0.01607 *  
## as.factor(sem)                                     25.4831 4.742e-07 ***
## as.factor(report)                                  37.2290 < 2.2e-16 ***
## as.factor(course):as.factor(sem)                   22.7333 1.954e-06 ***
## as.factor(course):as.factor(report)                 2.9105   0.08811 .  
## as.factor(sem):as.factor(report)                   12.3629 4.507e-06 ***
## as.factor(course):as.factor(sem):as.factor(report)  1.1137   0.29136    
## Residuals                                                               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response audio.total.words :
##                                                      Df    Sum Sq
## as.factor(course)                                     1 271470027
## as.factor(sem)                                        1  16711453
## as.factor(report)                                     3  11409507
## as.factor(course):as.factor(sem)                      1   1265677
## as.factor(course):as.factor(report)                   1   1379600
## as.factor(sem):as.factor(report)                      2   6862255
## as.factor(course):as.factor(sem):as.factor(report)    1    366443
## Residuals                                          2866 505240297
##                                                      Mean Sq   F value
## as.factor(course)                                  271470027 1539.9268
## as.factor(sem)                                      16711453   94.7965
## as.factor(report)                                    3803169   21.5737
## as.factor(course):as.factor(sem)                     1265677    7.1796
## as.factor(course):as.factor(report)                  1379600    7.8258
## as.factor(sem):as.factor(report)                     3431127   19.4632
## as.factor(course):as.factor(sem):as.factor(report)    366443    2.0787
## Residuals                                             176288          
##                                                       Pr(>F)    
## as.factor(course)                                  < 2.2e-16 ***
## as.factor(sem)                                     < 2.2e-16 ***
## as.factor(report)                                  8.159e-14 ***
## as.factor(course):as.factor(sem)                    0.007416 ** 
## as.factor(course):as.factor(report)                 0.005185 ** 
## as.factor(sem):as.factor(report)                   4.019e-09 ***
## as.factor(course):as.factor(sem):as.factor(report)  0.149480    
## Residuals                                                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##  Response txt.total.words :
##                                                      Df   Sum Sq Mean Sq
## as.factor(course)                                     1   334577  334577
## as.factor(sem)                                        1     3201    3201
## as.factor(report)                                     3  2670123  890041
## as.factor(course):as.factor(sem)                      1     4926    4926
## as.factor(course):as.factor(report)                   1    46487   46487
## as.factor(sem):as.factor(report)                      2   208703  104351
## as.factor(course):as.factor(sem):as.factor(report)    1    15028   15028
## Residuals                                          2866 18603385    6491
##                                                     F value    Pr(>F)    
## as.factor(course)                                   51.5443  8.88e-13 ***
## as.factor(sem)                                       0.4932   0.48257    
## as.factor(report)                                  137.1179 < 2.2e-16 ***
## as.factor(course):as.factor(sem)                     0.7588   0.38376    
## as.factor(course):as.factor(report)                  7.1616   0.00749 ** 
## as.factor(sem):as.factor(report)                    16.0762  1.14e-07 ***
## as.factor(course):as.factor(sem):as.factor(report)   2.3152   0.12823    
## Residuals                                                                
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## 3107 observations deleted due to missingness

Pairwise comparisons (t-test) to see if there are differences between semesters for any of the following dependent variables:
audio.num,txt.num,audio.total.words,txt.total.words

## $audio.num
## NULL
## 
## $txt.num
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 10]
## t = 18.7758, df = 5671.162, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  2.330869 2.874347
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           6.174953           3.572345 
## 
## 
## $audio.total.words
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 10]
## t = -10.2021, df = 5877.782, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.208358 -1.496463
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##            5.91630            7.76871 
## 
## 
## $txt.total.words
## NULL
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 10]
## t = 12.6192, df = 4631.418, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  146.7064 200.6740
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           572.9726           399.2824 
## 
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 10]
## t = -4.0553, df = 4215.772, p-value = 5.097e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -17.434578  -6.070955
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           99.06391          110.81667

as above but with “BIOL1040Sem1Report 1” removed

## $audio.num
## NULL
## 
## $txt.num
## 
##  Welch Two Sample t-test
## 
## data:  df2[, j] by df2[, 10]
## t = 17.6256, df = 4163.686, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  2.476521 3.096408
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           6.358809           3.572345 
## 
## 
## $audio.total.words
## 
##  Welch Two Sample t-test
## 
## data:  df2[, j] by df2[, 10]
## t = -12.6402, df = 5231.012, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.807823 -2.053813
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           5.337892           7.768710 
## 
## 
## $txt.total.words
## NULL
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df2[, j] by df2[, 10]
## t = 12.4684, df = 3745.657, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  161.8319 222.2226
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           591.3097           399.2824 
## 
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df2[, j] by df2[, 10]
## t = -10.5543, df = 3513.092, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -36.96661 -25.38390
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           79.64142          110.81667

Pairwise comparisons (t-test) to see if there are differences between courses for any of the following dependent variables:
audio.num,txt.num,audio.total.words,txt.total.words

## $audio.num
## NULL
## 
## $txt.num
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 9]
## t = -16.6575, df = 632.147, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.155243 -6.435203
## sample estimates:
## mean in group BIOL1040 mean in group BIOM2011 
##               4.207224              11.502447 
## 
## 
## $audio.total.words
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 9]
## t = 2.9169, df = 669.317, p-value = 0.003654
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.4081978 2.0896374
## sample estimates:
## mean in group BIOL1040 mean in group BIOM2011 
##               6.912865               5.663948 
## 
## 
## $txt.total.words
## NULL
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 9]
## t = -19.0374, df = 618.693, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -766.0988 -622.8240
## sample estimates:
## mean in group BIOL1040 mean in group BIOM2011 
##                414.276               1108.737 
## 
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 9]
## t = 5.7629, df = 392.521, p-value = 1.674e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  26.30222 53.54064
## sample estimates:
## mean in group BIOL1040 mean in group BIOM2011 
##              108.16865               68.24722

as above but with “BIOL1040Sem1Report 1” removed

## $audio.num
## NULL
## 
## $txt.num
## 
##  Welch Two Sample t-test
## 
## data:  df2[, j] by df2[, 10]
## t = 17.6256, df = 4163.686, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  2.476521 3.096408
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           6.358809           3.572345 
## 
## 
## $audio.total.words
## 
##  Welch Two Sample t-test
## 
## data:  df2[, j] by df2[, 10]
## t = -12.6402, df = 5231.012, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.807823 -2.053813
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           5.337892           7.768710 
## 
## 
## $txt.total.words
## NULL
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df2[, j] by df2[, 10]
## t = 12.4684, df = 3745.657, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  161.8319 222.2226
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           591.3097           399.2824 
## 
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df2[, j] by df2[, 10]
## t = -10.5543, df = 3513.092, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -36.96661 -25.38390
## sample estimates:
## mean in group Sem1 mean in group Sem2 
##           79.64142          110.81667

Multiple comparisons (anovas) to see if there are differences between reports for any of the follwing dependent variables:
audio.num,txt.num,audio.total.words,txt.total.words

##               Df Sum Sq Mean Sq F value Pr(>F)    
## df[, 11]       3  11837    3946   133.2 <2e-16 ***
## Residuals   5980 177197      30                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df[, j] ~ df[, 11])
## 
## $`df[, 11]`
##                           diff        lwr        upr p adj
## Report 2-Report 1 -1.336542462 -1.7918556 -0.8812293     0
## Report 3-Report 1 -3.360336989 -3.8399845 -2.8806895     0
## Report 4-Report 1 -3.359089305 -3.9858455 -2.7323331     0
## Report 3-Report 2 -2.023794526 -2.5058398 -1.5417493     0
## Report 4-Report 2 -2.022546843 -2.6511399 -1.3939538     0
## Report 4-Report 3  0.001247684 -0.6451894  0.6476847     1
## 
##               Df Sum Sq Mean Sq F value   Pr(>F)    
## df[, 11]       3   3536  1178.7   23.88 2.34e-15 ***
## Residuals   5980 295160    49.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df[, j] ~ df[, 11])
## 
## $`df[, 11]`
##                         diff        lwr        upr     p adj
## Report 2-Report 1 -0.5060252 -1.0936643  0.0816139 0.1198130
## Report 3-Report 1 -0.8579640 -1.4770097 -0.2389183 0.0021040
## Report 4-Report 1 -2.6245273 -3.4334353 -1.8156193 0.0000000
## Report 3-Report 2 -0.3519388 -0.9740791  0.2702015 0.4658540
## Report 4-Report 2 -2.1185020 -2.9297807 -1.3072234 0.0000000
## Report 4-Report 3 -1.7665632 -2.6008719 -0.9322546 0.0000003
## 
##               Df    Sum Sq  Mean Sq F value Pr(>F)    
## df[, 11]       3 7.331e+07 24436492   103.6 <2e-16 ***
## Residuals   4630 1.092e+09   235786                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1350 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df[, j] ~ df[, 11])
## 
## $`df[, 11]`
##                         diff       lwr        upr     p adj
## Report 2-Report 1 -104.29107 -148.8731  -59.70909 0.0000001
## Report 3-Report 1 -281.07153 -331.5004 -230.64269 0.0000000
## Report 4-Report 1 -337.96479 -400.9629 -274.96668 0.0000000
## Report 3-Report 2 -176.78046 -228.0557 -125.50519 0.0000000
## Report 4-Report 2 -233.67372 -297.3514 -169.99603 0.0000000
## Report 4-Report 3  -56.89326 -124.7929   11.00639 0.1366598
## 
##               Df   Sum Sq Mean Sq F value Pr(>F)    
## df[, 11]       3  2011969  670656   79.07 <2e-16 ***
## Residuals   4222 35809754    8482                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1758 observations deleted due to missingness
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = df[, j] ~ df[, 11])
## 
## $`df[, 11]`
##                        diff       lwr        upr     p adj
## Report 2-Report 1 -30.27932 -39.41023 -21.148414 0.0000000
## Report 3-Report 1 -44.69396 -54.29758 -35.090342 0.0000000
## Report 4-Report 1 -66.14620 -79.16715 -53.125252 0.0000000
## Report 3-Report 2 -14.41464 -24.05372  -4.775559 0.0007108
## Report 4-Report 2 -35.86688 -48.91401 -22.819754 0.0000000
## Report 4-Report 3 -21.45224 -34.83445  -8.070032 0.0002259

the above analysis repeated with Reports categorised as “notfinal” or “final”

## $audio.num
## NULL
## 
## $txt.num
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 12]
## t = -16.4174, df = 4889.537, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.492470 -1.960702
## sample estimates:
##    mean in group final mean in group notfinal 
##               3.411861               5.638447 
## 
## 
## $audio.total.words
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 12]
## t = -6.2026, df = 4091.043, p-value = 6.102e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -1.5157914 -0.7876997
## sample estimates:
##    mean in group final mean in group notfinal 
##               5.986942               7.138688 
## 
## 
## $txt.total.words
## NULL
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 12]
## t = -7.129, df = 2112.991, p-value = 1.382e-12
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -153.86257  -87.47406
## sample estimates:
##    mean in group final mean in group notfinal 
##               414.9412               535.6095 
## 
## 
## $<NA>
## 
##  Welch Two Sample t-test
## 
## data:  df[, j] by df[, 12]
## t = -15.8376, df = 3374.778, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -48.09512 -37.49877
## sample estimates:
##    mean in group final mean in group notfinal 
##               74.83228              117.62923

Doing stat’s to compare dependent variables ie words in each audio vs text annotation

##          Recording  Text
## Overall      78.78 10.90
## BIOL1040     74.17 11.26
## BIOM2011     93.56  7.08
##          Recording Text
## Overall       0.01 0.01
## BIOL1040      0.01 0.01
## BIOM2011      0.01 0.02

in mean +/- SEM format:
There were 78.78 +/- 0.01 words per audio annotation overall.
There were 74.17 +/- 0.01 words per audio annotation in BIOL1040.
There were 93.56 +/- 0.01 words per audio annotation in BIOM2011.

There were 10.9 +/- 0.01 words per text annotation overall. There were 11.26 +/- 0.01 words per text annotation in BIOL1040.
There were 7.08 +/- 0.02 words per text annotation in BIOM2011.

so yes, there are significantly more words per audio annotation than words per text annotations (overall)
and there are significantly more words per audio annotation than words per text annotations in BIOL1040
and there are significantly more words per audio annotation than words per text annotations in BIOM2011

## 
##  Welch Two Sample t-test
## 
## data:  value by AnnotType
## t = 157.4274, df = 30941.15, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  67.03474 68.72501
## sample estimates:
## mean in group Recording      mean in group Text 
##                78.78475                10.90488
## 
##  Welch Two Sample t-test
## 
## data:  value by AnnotType
## t = 156.0541, df = 23891.61, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  62.12150 63.70186
## sample estimates:
## mean in group Recording      mean in group Text 
##                74.17457                11.26289
## 
##  Welch Two Sample t-test
## 
## data:  value by AnnotType
## t = 68.8026, df = 7283.872, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  84.02254 88.95082
## sample estimates:
## mean in group Recording      mean in group Text 
##               93.563006                7.076325