Temp1 <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TempM1")
Temp2 <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TempM2")
Temp3 <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TempM3")
Temp4 <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TempM4")
TEMP<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TEMP")
EA<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "EA")
CRC<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "CRC")
CRA<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "CRA")
PE<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "PE")
PSRT<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "PSRT")
diametro<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "diametro")
IAF<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "IAF")
RAF<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "RAF")
# *Temperatura*

# ANOVA

ggplot(data = TEMP, aes( x = factor( Dia ), y = TEMP, fill = Trat ) ) +  
  geom_bar( stat = 'identity', position = 'dodge' )+  labs(title = "Temperatura")+ylab("Temp") + xlab("Tiempo (dds)") + theme(plot.title = element_text(size = rel(2), colour = "black"))+ scale_fill_grey() + theme_classic() + geom_errorbar(aes(ymin=TEMP-sd, ymax=TEMP+sd), width=.2,  position=position_dodge(.9))

ggplot(data = CRC, aes( x = factor( Dia ), y = CRC, fill = Trat ) ) +  
  geom_bar( stat = 'identity', position = 'dodge' )+labs(title = "CRC")+ylab("CRC") + xlab("Tiempo (dds)") + theme(plot.title = element_text(size = rel(2), color = "black"))+ scale_fill_grey() + theme_classic() + geom_errorbar(aes(ymin=CRC-sd, ymax=CRC+sd), width=.2,
                 position=position_dodge(.9))

ggplot(data = PE, aes( x = factor( Dia ), y = PE, fill = Trat ) ) +  
  geom_bar( stat = 'identity', position = 'dodge' )+  labs(title = "Perdida de electrolitos")+ylab("PE (%)") + xlab("Tiempo (dds)") + theme(plot.title = element_text(size = rel(2), colour = "black"))+ scale_fill_grey() + theme_classic() + geom_errorbar(aes(ymin=PE-sd, ymax=PE+sd), width=.2,  position=position_dodge(.9))

ggplot(data = PSRT, aes( x = factor( Dia ), y = PSRT, fill = Trat ) ) +  
  geom_bar( stat = 'identity', position = 'dodge' )+  labs(title = "Peso fresco de la raĆ­z tuberosa")+ylab("PSRT") + xlab("Tiempo (dds)") + theme(plot.title = element_text(size = rel(2), colour = "black"))+ scale_fill_grey() + theme_classic() + geom_errorbar(aes(ymin=PSRT-sd, ymax=PSRT+sd), width=.2,  position=position_dodge(.9))

ggplot(data = CRA, aes( x = factor( Dia ), y = CRA, fill = Trat ) ) +  
  geom_bar( stat = 'identity', position = 'dodge' )+  labs(title = "Contenido Relativa de agua")+ylab("CRA") + xlab("Tiempo (dds)") + theme(plot.title = element_text(size = rel(2), colour = "black"))+ scale_fill_grey() + theme_classic() + geom_errorbar(aes(ymin=CRA-sd, ymax=CRA+sd), width=.2,  position=position_dodge(.9))

M1T <- aov(Temp~Trat, data = Temp1)
anova(M1T)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 27.305  9.1017  20.396 5.282e-05 ***
## Residuals 12  5.355  0.4462                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2T <- aov(Temp~Trat, data = Temp2)
anova(M2T)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 15.592  5.1975  41.442 1.312e-06 ***
## Residuals 12  1.505  0.1254                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3T <- aov(Temp~Trat, data = Temp3)
anova(M3T)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 10.152  3.3842  35.467 3.037e-06 ***
## Residuals 12  1.145  0.0954                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4T <- aov(Temp~Trat, data = Temp4)
anova(M4T)
## Analysis of Variance Table
## 
## Response: Temp
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 37.565 12.5217  30.572 6.677e-06 ***
## Residuals 12  4.915  0.4096                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pruebas de normalidad
shapiro.test(resid(M1T))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1T)
## W = 0.94527, p-value = 0.4186
shapiro.test(resid(M2T))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2T)
## W = 0.98351, p-value = 0.9853
shapiro.test(resid(M3T))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3T)
## W = 0.94101, p-value = 0.3616
shapiro.test(resid(M4T))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4T)
## W = 0.94208, p-value = 0.3753
#En todos los muestreos se puede observar normalidad en los datos de temperatura.

#**Homogeneidad de varianzas**
library(carData)
bartlett.test(Temp~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Temp by Trat
## Bartlett's K-squared = 2.6518, df = 3, p-value = 0.4485
bartlett.test(Temp~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Temp by Trat
## Bartlett's K-squared = 1.6543, df = 3, p-value = 0.6471
bartlett.test(Temp~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Temp by Trat
## Bartlett's K-squared = 0.58553, df = 3, p-value = 0.8997
bartlett.test(Temp~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  Temp by Trat
## Bartlett's K-squared = 0.64407, df = 3, p-value = 0.8863

En temperatura, todos los datos representan varianzas homogeneas

Se cumplen todos los supuestos

#Pueba de tukey
library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
M1T_tukey <-HSD.test(Temp1$Temp,Temp1$Trat, 12, 0.4462, alpha = 0.05);M1T_tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##    0.4462 12 19.15 3.488157 1.402315
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp1$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$Temp       std r  Min  Max    Q25   Q50    Q75
## MT0W0     17.900 0.4082483 4 17.5 18.3 17.575 17.90 18.225
## MT0W1     20.625 0.5852350 4 19.9 21.3 20.350 20.65 20.925
## MT1W0     17.800 0.4966555 4 17.2 18.3 17.500 17.85 18.150
## MT1W1     20.275 1.0144785 4 19.5 21.7 19.575 19.95 20.650
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$Temp groups
## MT0W1     20.625      a
## MT1W1     20.275      a
## MT0W0     17.900      b
## MT1W0     17.800      b
## 
## attr(,"class")
## [1] "group"
M2T_tukey <-HSD.test(Temp2$Temp,Temp2$Trat, 12, 0.1254, alpha = 0.05);M2T_tukey
## $statistics
##   MSerror Df    Mean       CV       MSD
##    0.1254 12 18.7125 1.892417 0.7434119
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$Temp       std r  Min  Max    Q25   Q50    Q75
## MT0W0     17.875 0.2500000 4 17.6 18.2 17.750 17.85 17.975
## MT0W1     20.350 0.4654747 4 19.7 20.8 20.225 20.45 20.575
## MT1W0     18.000 0.2449490 4 17.8 18.3 17.800 17.95 18.150
## MT1W1     18.625 0.4031129 4 18.3 19.2 18.375 18.50 18.750
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$Temp groups
## MT0W1     20.350      a
## MT1W1     18.625      b
## MT1W0     18.000     bc
## MT0W0     17.875      c
## 
## attr(,"class")
## [1] "group"
M3T_tukey <-HSD.test(Temp3$Temp,Temp3$Trat, 12, 0.0954, alpha = 0.05);M3T_tukey
## $statistics
##   MSerror Df    Mean      CV       MSD
##    0.0954 12 18.6875 1.65281 0.6484178
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$Temp       std r  Min  Max    Q25   Q50    Q75
## MT0W0     18.000 0.3651484 4 17.6 18.4 17.750 18.00 18.250
## MT0W1     19.975 0.2753785 4 19.7 20.3 19.775 19.95 20.150
## MT1W0     18.050 0.2380476 4 17.8 18.3 17.875 18.05 18.225
## MT1W1     18.725 0.3403430 4 18.4 19.2 18.550 18.65 18.825
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$Temp groups
## MT0W1     19.975      a
## MT1W1     18.725      b
## MT1W0     18.050      c
## MT0W0     18.000      c
## 
## attr(,"class")
## [1] "group"
M4T_tukey <-HSD.test(Temp4$Temp,Temp4$Trat, 12, 0.4096, alpha = 0.05);M4T_tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##    0.4096 12 19.55 3.273657 1.343571
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$Temp       std r  Min  Max    Q25   Q50    Q75
## MT0W0     18.200 0.5773503 4 17.5 18.9 17.950 18.20 18.450
## MT0W1     21.925 0.5560276 4 21.3 22.6 21.600 21.90 22.225
## MT1W0     18.200 0.5597619 4 17.7 18.9 17.775 18.10 18.525
## MT1W1     19.875 0.8261356 4 18.9 20.7 19.350 19.95 20.475
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$Temp groups
## MT0W1     21.925      a
## MT1W1     19.875      b
## MT0W0     18.200      c
## MT1W0     18.200      c
## 
## attr(,"class")
## [1] "group"
library(dplyr)
library(extrafont)
## Warning: package 'extrafont' was built under R version 4.0.3
## Registering fonts with R
loadfonts(device = "win")

GrƔfica con grupos

M<-bind_rows(M1T_tukey$groups, M2T_tukey$groups, M3T_tukey$groups, M4T_tukey$groups, id=NULL)
M$groups
##  [1] "a"  "a"  "b"  "b"  "a"  "b"  "bc" "c"  "a"  "b"  "c"  "c"  "a"  "b"  "c" 
## [16] "c"
TEMP1 <- data.frame(TEMP, M$groups)

ggT<-c("b" ,"b", "a" ,"a", "c", "bc", "a", "b", "c", "c", "a", "b", "c", "c", "a", "b")
levels(TEMP1$Trat)
## NULL
TEMP1$Trat=factor(TEMP1$Trat, levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

TG<- data.frame(ggT,TEMP1$Trat)

a1<-ggplot(data = TEMP1, aes(x = factor(Dia), y = TEMP, fill = Trat) ) +   geom_bar( stat = 'identity', position = 'dodge', color = "black")+ ylab("Temperatura (°C)") + xlab("DDT")+ylim(0,25)+guides(fill=guide_legend("Tratamientos"))
a3<-a1+scale_fill_grey() + theme_classic(base_family= "serif") + geom_errorbar(aes(ymin=TEMP-sd, ymax=TEMP+sd), width=.5,  position=position_dodge(.9)) +  geom_text(aes(label=TG$ggT), position=position_dodge(width=1), vjust=-1.6);a3

###### Estomas abiertos

M1EA <- aov(EA~Trat, data = Temp1)
anova(M1EA)
## Analysis of Variance Table
## 
## Response: EA
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 1496.19  498.73  55.286 2.685e-07 ***
## Residuals 12  108.25    9.02                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2EA <- aov(EA~Trat, data = Temp2)
anova(M2EA)
## Analysis of Variance Table
## 
## Response: EA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 517.69 172.562  51.447 4.004e-07 ***
## Residuals 12  40.25   3.354                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3EA <- aov(EA~Trat, data = Temp3)
anova(M3EA)
## Analysis of Variance Table
## 
## Response: EA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 130.25  43.417   13.19 0.0004165 ***
## Residuals 12  39.50   3.292                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4EA <- aov(EA~Trat, data = Temp4)
anova(M4EA)
## Analysis of Variance Table
## 
## Response: EA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 467.19 155.729     115 4.169e-09 ***
## Residuals 12  16.25   1.354                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pruebas de normalidad
shapiro.test(resid(M1EA))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1EA)
## W = 0.98378, p-value = 0.9865
shapiro.test(resid(M2EA))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2EA)
## W = 0.93603, p-value = 0.3032
shapiro.test(resid(M3EA))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3EA)
## W = 0.91394, p-value = 0.1347
shapiro.test(resid(M4EA))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4EA)
## W = 0.91651, p-value = 0.1482
#**Homogeneidad de varianzas**
library(carData)
bartlett.test(EA~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  EA by Trat
## Bartlett's K-squared = 3.8666, df = 3, p-value = 0.2762
bartlett.test(EA~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  EA by Trat
## Bartlett's K-squared = 1.9079, df = 3, p-value = 0.5917
bartlett.test(EA~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  EA by Trat
## Bartlett's K-squared = 9.0715, df = 3, p-value = 0.02835
bartlett.test(EA~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  EA by Trat
## Bartlett's K-squared = 1.1452, df = 3, p-value = 0.7662

En temperatura, todos los datos representan varianzas homogeneas

Se cumplen todos los supuestos

#Pueba de tukey
library(agricolae)
library(dplyr)
M1EA_tukey <-HSD.test(Temp1$EA,Temp1$Trat, 12, 9.02, alpha = 0.05);M1EA_tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##      9.02 12 22.1875 13.53614 6.304984
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp1$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$EA      std r Min Max   Q25  Q50   Q75
## MT0W0    31.00 4.242641 4  28  37 28.00 29.5 32.50
## MT0W1     8.75 1.500000 4   7  10  7.75  9.0 10.00
## MT1W0    31.75 3.593976 4  27  35 30.00 32.5 34.25
## MT1W1    17.25 1.707825 4  15  19 16.50 17.5 18.25
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$EA groups
## MT1W0    31.75      a
## MT0W0    31.00      a
## MT1W1    17.25      b
## MT0W1     8.75      c
## 
## attr(,"class")
## [1] "group"
M2EA_tukey <-HSD.test(Temp2$EA,Temp2$Trat, 12, 3.354, alpha = 0.05);M2EA_tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     3.354 12 25.4375 7.199579 3.844698
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$EA       std r Min Max   Q25  Q50   Q75
## MT0W0    31.75 1.7078251 4  30  34 30.75 31.5 32.50
## MT0W1    16.75 0.9574271 4  16  18 16.00 16.5 17.25
## MT1W0    29.00 2.1602469 4  27  32 27.75 28.5 29.75
## MT1W1    24.25 2.2173558 4  22  27 22.75 24.0 25.50
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$EA groups
## MT0W0    31.75      a
## MT1W0    29.00      a
## MT1W1    24.25      b
## MT0W1    16.75      c
## 
## attr(,"class")
## [1] "group"
M3EA_tukey <-HSD.test(Temp3$EA,Temp3$Trat, 12, 3.292, alpha = 0.05);M3EA_tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     3.292 12 27.625 6.567917 3.808997
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$EA       std r Min Max   Q25  Q50   Q75
## MT0W0    30.00 0.8164966 4  29  31 29.75 30.0 30.25
## MT0W1    22.75 0.5000000 4  22  23 22.75 23.0 23.00
## MT1W0    29.00 3.1622777 4  25  32 27.25 29.5 31.25
## MT1W1    28.75 1.5000000 4  28  31 28.00 28.0 28.75
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$EA groups
## MT0W0    30.00      a
## MT1W0    29.00      a
## MT1W1    28.75      a
## MT0W1    22.75      b
## 
## attr(,"class")
## [1] "group"
M4EA_tukey <-HSD.test(Temp4$EA,Temp4$Trat, 12, 1.354, alpha = 0.05);M4EA_tukey
## $statistics
##   MSerror Df    Mean       CV      MSD
##     1.354 12 23.6875 4.912359 2.442812
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$EA       std r Min Max   Q25  Q50   Q75
## MT0W0    29.00 0.8164966 4  28  30 28.75 29.0 29.25
## MT0W1    15.25 0.9574271 4  14  16 14.75 15.5 16.00
## MT1W0    27.75 1.5000000 4  26  29 26.75 28.0 29.00
## MT1W1    22.75 1.2583057 4  21  24 22.50 23.0 23.25
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$EA groups
## MT0W0    29.00      a
## MT1W0    27.75      a
## MT1W1    22.75      b
## MT0W1    15.25      c
## 
## attr(,"class")
## [1] "group"
loadfonts(device = "win")

## GrƔfica con grupos

EE<-bind_rows(M1EA_tukey$groups, M2EA_tukey$groups, M3EA_tukey$groups, M4EA_tukey$groups, id=NULL)
EE1 <- data.frame(EA, EE$groups)
EE1$EE.groups
##  [1] "a" "a" "b" "c" "a" "a" "b" "c" "a" "a" "a" "b" "a" "a" "b" "c"
gg<-c("a" ,"a", "c" ,"b", "a", "a", "c", "b", "a", "a", "b", "a", "a", "a", "c", "b")
levels(EE1$Trat)
## NULL
EE1$Trat=factor(EE1$Trat, levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

TT<- data.frame(gg,EE1$Trat)

EE_1<-ggplot(data = EE1, aes(x = factor( Dia ), y = EA, fill = Trat) ) +   geom_bar( stat = 'identity', position = 'dodge', color = "black")+ ylab("NĆŗmero de Estomas Abiertos") + ylim(0,37)+xlab("DDT")
EE_2<-EE_1+scale_fill_grey() + theme_classic(base_family= "serif") + geom_errorbar(aes(ymin=EA-sd, ymax=EA+sd), width=.5,  position=position_dodge(0.95)) +  geom_text(aes(label=TT$gg), position=position_dodge(width=1), vjust=-3)
EE2<-EE_2;EE2

Numero de hojas

# ANOVA

M1nh <- aov(nh~Trat, data = Temp1)
anova(M1nh)
## Analysis of Variance Table
## 
## Response: nh
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3    7.5 2.50000  8.5714 0.002594 **
## Residuals 12    3.5 0.29167                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2nh <- aov(nh~Trat, data = Temp2)
anova(M2nh)
## Analysis of Variance Table
## 
## Response: nh
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3    9.5  3.1667  8.4444 0.002752 **
## Residuals 12    4.5  0.3750                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3nh <- aov(nh~Trat, data = Temp3)
anova(M3nh)
## Analysis of Variance Table
## 
## Response: nh
##           Df Sum Sq Mean Sq F value  Pr(>F)  
## Trat       3 5.6875 1.89583  4.7895 0.02033 *
## Residuals 12 4.7500 0.39583                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4nh <- aov(nh~Trat, data = Temp4)
anova(M4nh)
## Analysis of Variance Table
## 
## Response: nh
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3   9.25  3.0833  8.2222 0.003055 **
## Residuals 12   4.50  0.3750                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pruebas de normalidad
shapiro.test(resid(M1nh))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1nh)
## W = 0.92616, p-value = 0.2118
shapiro.test(resid(M2nh))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2nh)
## W = 0.91698, p-value = 0.1508
shapiro.test(resid(M3nh))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3nh)
## W = 0.93588, p-value = 0.3016
shapiro.test(resid(M4nh))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4nh)
## W = 0.98293, p-value = 0.9825
#En todos los muestreos se puede observar normalidad en los datos de Numero de hojas.

#**Homogeneidad de varianzas**

bartlett.test(nh~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  nh by Trat
## Bartlett's K-squared = Inf, df = 3, p-value < 2.2e-16
bartlett.test(nh~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  nh by Trat
## Bartlett's K-squared = 0.93077, df = 3, p-value = 0.818
bartlett.test(nh~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  nh by Trat
## Bartlett's K-squared = 0.74266, df = 3, p-value = 0.8631
bartlett.test(nh~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  nh by Trat
## Bartlett's K-squared = 0.93077, df = 3, p-value = 0.818
M1nh_tukey <-HSD.test(Temp1$nh,Temp1$Trat, 12, 0.29167, alpha = 0.05);M1nh_tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##   0.29167 12 3.25 16.61738 1.133774
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp1$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$nh       std r Min Max  Q25 Q50  Q75
## MT0W0     3.75 0.5000000 4   3   4 3.75   4 4.00
## MT0W1     2.25 0.5000000 4   2   3 2.00   2 2.25
## MT1W0     4.00 0.0000000 4   4   4 4.00   4 4.00
## MT1W1     3.00 0.8164966 4   2   4 2.75   3 3.25
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$nh groups
## MT1W0     4.00      a
## MT0W0     3.75      a
## MT1W1     3.00     ab
## MT0W1     2.25      b
## 
## attr(,"class")
## [1] "group"
M2nh_tukey <-HSD.test(Temp2$nh,Temp2$Trat, 12, 0.3750, alpha = 0.05);M2nh_tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##     0.375 12    4 15.30931 1.285572
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$nh       std r Min Max  Q25 Q50  Q75
## MT0W0     4.75 0.5000000 4   4   5 4.75 5.0 5.00
## MT0W1     3.00 0.8164966 4   2   4 2.75 3.0 3.25
## MT1W0     4.75 0.5000000 4   4   5 4.75 5.0 5.00
## MT1W1     3.50 0.5773503 4   3   4 3.00 3.5 4.00
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$nh groups
## MT0W0     4.75      a
## MT1W0     4.75      a
## MT1W1     3.50     ab
## MT0W1     3.00      b
## 
## attr(,"class")
## [1] "group"
M3nh_tukey <-HSD.test(Temp3$nh,Temp3$Trat, 12, 0.39583, alpha = 0.05);M3nh_tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##   0.39583 12 4.8125 13.07325 1.320794
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$nh       std r Min Max  Q25 Q50  Q75
## MT0W0     5.50 0.5773503 4   5   6 5.00 5.5 6.00
## MT0W1     4.00 0.8164966 4   3   5 3.75 4.0 4.25
## MT1W0     5.25 0.5000000 4   5   6 5.00 5.0 5.25
## MT1W1     4.50 0.5773503 4   4   5 4.00 4.5 5.00
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$nh groups
## MT0W0     5.50      a
## MT1W0     5.25     ab
## MT1W1     4.50     ab
## MT0W1     4.00      b
## 
## attr(,"class")
## [1] "group"
M4nh_tukey <-HSD.test(Temp4$nh,Temp4$Trat, 12, 0.3750, alpha = 0.05);M4nh_tukey
## $statistics
##   MSerror Df  Mean       CV      MSD
##     0.375 12 5.625 10.88662 1.285572
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$nh       std r Min Max  Q25 Q50  Q75
## MT0W0     6.50 0.5773503 4   6   7 6.00 6.5 7.00
## MT0W1     4.75 0.5000000 4   4   5 4.75 5.0 5.00
## MT1W0     6.25 0.5000000 4   6   7 6.00 6.0 6.25
## MT1W1     5.00 0.8164966 4   4   6 4.75 5.0 5.25
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$nh groups
## MT0W0     6.50      a
## MT1W0     6.25     ab
## MT1W1     5.00     bc
## MT0W1     4.75      c
## 
## attr(,"class")
## [1] "group"

Contenido relativo de Clorofila (CRC)

# ANOVA

M1CRC <- aov(CRC~Trat, data = Temp1)
anova(M1CRC)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 688.69 229.565  75.236 4.747e-08 ***
## Residuals 12  36.62   3.051                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2CRC <- aov(CRC~Trat, data = Temp2)
anova(M2CRC)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 923.73 307.911  258.07 3.683e-11 ***
## Residuals 12  14.32   1.193                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3CRC <- aov(CRC~Trat, data = Temp3)
anova(M3CRC)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 242.59  80.863  125.86 2.472e-09 ***
## Residuals 12   7.71   0.642                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4CRC <- aov(CRC~Trat, data = Temp4)
anova(M4CRC)
## Analysis of Variance Table
## 
## Response: CRC
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 346.77 115.589  287.92 1.929e-11 ***
## Residuals 12   4.82   0.401                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pruebas de normalidad
shapiro.test(resid(M1CRC))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1CRC)
## W = 0.93027, p-value = 0.2462
shapiro.test(resid(M2CRC))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2CRC)
## W = 0.96432, p-value = 0.7404
shapiro.test(resid(M3CRC))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3CRC)
## W = 0.93619, p-value = 0.3049
shapiro.test(resid(M4CRC))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4CRC)
## W = 0.89691, p-value = 0.07173
#En todos los muestreos se puede observar normalidad en los datos de Contenido relativo de Clorofila

#**Homogeneidad de varianzas**

bartlett.test(CRC~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  CRC by Trat
## Bartlett's K-squared = 6.5517, df = 3, p-value = 0.08764
bartlett.test(CRC~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  CRC by Trat
## Bartlett's K-squared = 1.3954, df = 3, p-value = 0.7066
bartlett.test(CRC~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  CRC by Trat
## Bartlett's K-squared = 7.6802, df = 3, p-value = 0.0531
bartlett.test(CRC~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  CRC by Trat
## Bartlett's K-squared = 0.10113, df = 3, p-value = 0.9917
M1CRC_tukey <-HSD.test(Temp1$CRC,Temp1$Trat, 12, 3.051, alpha = 0.05);M1CRC_tukey
## $statistics
##   MSerror Df   Mean       CV      MSD
##     3.051 12 30.625 5.703547 3.666923
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp1$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$CRC       std r  Min  Max    Q25  Q50    Q75
## MT0W0    36.750 0.7047458 4 36.1 37.5 36.175 36.7 37.275
## MT0W1    21.175 2.0966243 4 18.6 23.7 20.325 21.2 22.050
## MT1W0    36.750 0.6952218 4 35.8 37.4 36.475 36.9 37.175
## MT1W1    27.825 2.6132674 4 25.4 31.5 26.450 27.2 28.575
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$CRC groups
## MT0W0    36.750      a
## MT1W0    36.750      a
## MT1W1    27.825      b
## MT0W1    21.175      c
## 
## attr(,"class")
## [1] "group"
M2CRC_tukey <-HSD.test(Temp2$CRC,Temp2$Trat, 12, 1.193, alpha = 0.05);M2CRC_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     1.193 12 33.00625 3.309208 2.292984
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$CRC       std r  Min  Max    Q25   Q50    Q75
## MT0W0    40.275 0.9464847 4 39.5 41.6 39.650 40.00 40.625
## MT0W1    21.850 0.6855655 4 20.9 22.4 21.575 22.05 22.325
## MT1W0    39.750 1.4011900 4 38.2 41.6 39.175 39.60 40.175
## MT1W1    30.150 1.2013881 4 28.9 31.7 29.425 30.00 30.725
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$CRC groups
## MT0W0    40.275      a
## MT1W0    39.750      a
## MT1W1    30.150      b
## MT0W1    21.850      c
## 
## attr(,"class")
## [1] "group"
M3CRC_tukey <-HSD.test(Temp3$CRC,Temp3$Trat, 12, 0.642, alpha = 0.05);M3CRC_tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##     0.642 12 34.2 2.342833 1.682086
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$CRC       std r  Min  Max    Q25   Q50    Q75
## MT0W0    37.975 0.2986079 4 37.6 38.3 37.825 38.00 38.150
## MT0W1    29.075 1.3647344 4 27.6 30.8 28.275 28.95 29.750
## MT1W0    37.975 0.3304038 4 37.6 38.3 37.750 38.00 38.225
## MT1W1    31.775 0.7135592 4 31.2 32.8 31.350 31.55 31.975
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$CRC groups
## MT0W0    37.975      a
## MT1W0    37.975      a
## MT1W1    31.775      b
## MT0W1    29.075      c
## 
## attr(,"class")
## [1] "group"
M4CRC_tukey <-HSD.test(Temp4$CRC,Temp4$Trat, 12, 0.401, alpha = 0.05);M4CRC_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.401 12 33.51875 1.889228 1.329392
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$CRC       std r  Min  Max    Q25   Q50    Q75
## MT0W0    36.750 0.6658328 4 35.8 37.3 36.550 36.95 37.150
## MT0W1    26.800 0.5597619 4 26.1 27.3 26.475 26.90 27.225
## MT1W0    38.800 0.6377042 4 37.9 39.3 38.575 39.00 39.225
## MT1W1    31.725 0.6652067 4 30.9 32.5 31.425 31.75 32.050
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$CRC groups
## MT1W0    38.800      a
## MT0W0    36.750      b
## MT1W1    31.725      c
## MT0W1    26.800      d
## 
## attr(,"class")
## [1] "group"
CRCg<-bind_rows(M1CRC_tukey$groups, M2CRC_tukey$groups, M3CRC_tukey$groups, M4CRC_tukey$groups, id=NULL)
CRCg$groups
##  [1] "a" "a" "b" "c" "a" "a" "b" "c" "a" "a" "b" "c" "a" "b" "c" "d"
CRC_g<-data.frame(CRC,CRCg$groups)
CRCT<-c("a" ,"a", "b" ,"c", "a", "a", "b", "c", "a", "a", "b", "c", "a", "b", "c", "d")
levels(CRC$Trat)
## NULL
CRC_g$Trat=factor(CRC_g$Trat, levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

CRCGT<- data.frame(CRCT,CRC_g$Trat)

CRCg1<-ggplot(data = CRC_g, aes(x = factor( Dia ), y = CRC, fill = Trat) ) +   geom_bar( stat = 'identity', position = 'dodge', color = "black")+ ylab("Contenido Relativo de Clorofila (SPAD)") +ylim(0,48)+ xlab("DDT")+ guides(fill=guide_legend("Tratamientos"))

CRCg3<-CRCg1+scale_fill_grey()+theme_classic(base_family= "serif") + geom_errorbar(aes(ymin=CRC-sd, ymax=CRC+sd), width=.5,  position=position_dodge(.9)) +  geom_text(aes(label=CRCGT$CRCT), position=position_dodge(width=1), vjust=-1);CRCg3

Contenido relativo de Agua (CRA)

# ANOVA

M1CRA <- aov(CRA~Trat, data = Temp1)
anova(M1CRA)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 3660.3 1220.08  51.572 3.95e-07 ***
## Residuals 12  283.9   23.66                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2CRA <- aov(CRA~Trat, data = Temp2)
anova(M2CRA)
## Analysis of Variance Table
## 
## Response: CRA
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2869.62  956.54  86.347 2.166e-08 ***
## Residuals 12  132.93   11.08                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3CRA <- aov(CRA~Trat, data = Temp3)
anova(M3CRA)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 920.30 306.765  64.228 1.161e-07 ***
## Residuals 12  57.31   4.776                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4CRA <- aov(CRA~Trat, data = Temp4)
anova(M4CRA)
## Analysis of Variance Table
## 
## Response: CRA
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 1003.0  334.35  61.071 1.54e-07 ***
## Residuals 12   65.7    5.47                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pruebas de normalidad
shapiro.test(resid(M1CRA))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1CRA)
## W = 0.94608, p-value = 0.4303
shapiro.test(resid(M2CRA))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2CRA)
## W = 0.96394, p-value = 0.7335
shapiro.test(resid(M3CRA))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3CRA)
## W = 0.88901, p-value = 0.05373
shapiro.test(resid(M4CRA))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4CRA)
## W = 0.94878, p-value = 0.4706
#En todos los muestreos se puede observar normalidad en los datos de Contenido relativo de Agua

#**Homogeneidad de varianzas**

bartlett.test(CRA~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  CRA by Trat
## Bartlett's K-squared = 4.6317, df = 3, p-value = 0.2008
bartlett.test(CRA~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  CRA by Trat
## Bartlett's K-squared = 5.9575, df = 3, p-value = 0.1137
bartlett.test(CRA~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  CRA by Trat
## Bartlett's K-squared = 5.9197, df = 3, p-value = 0.1156
bartlett.test(CRA~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  CRA by Trat
## Bartlett's K-squared = 6.0597, df = 3, p-value = 0.1087
M1CRA_tukey <-HSD.test(Temp1$CRA,Temp1$Trat, 12, 23.66, alpha = 0.05);M1CRA_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     23.66 12 73.34523 6.631863 10.21147
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp1$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$CRA      std r      Min      Max      Q25      Q50      Q75
## MT0W0  88.83759 1.773784 4 86.33880 90.24390 88.20481 89.38382 90.01660
## MT0W1  53.06593 3.307962 4 48.57143 56.00000 51.63990 53.84615 55.27219
## MT1W0  86.97131 5.739036 4 81.76101 92.39130 82.14238 86.86646 91.69539
## MT1W1  64.50608 6.899712 4 57.05521 70.92199 59.45014 65.02355 70.07949
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$CRA groups
## MT0W0  88.83759      a
## MT1W0  86.97131      a
## MT1W1  64.50608      b
## MT0W1  53.06593      c
## 
## attr(,"class")
## [1] "group"
M2CRA_tukey <-HSD.test(Temp2$CRA,Temp2$Trat, 12, 11.08, alpha = 0.05);M2CRA_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     11.08 12 78.03175 4.265781 6.987963
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$CRA      std r      Min      Max      Q25      Q50      Q75
## MT0W0  91.05101 1.768157 4 88.42105 92.17877 90.82447 91.80211 92.02865
## MT0W1  59.41063 1.582033 4 57.60870 61.46341 58.79873 59.28520 59.89710
## MT1W0  90.46251 2.483222 4 86.91099 92.69663 89.98172 91.12120 91.60199
## MT1W1  71.20286 5.702258 4 64.11765 76.83616 67.95249 71.92882 75.17919
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$CRA groups
## MT0W0  91.05101      a
## MT1W0  90.46251      a
## MT1W1  71.20286      b
## MT0W1  59.41063      c
## 
## attr(,"class")
## [1] "group"
M3CRA_tukey <-HSD.test(Temp3$CRA,Temp3$Trat, 12, 4.776, alpha = 0.05);M3CRA_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     4.776 12 82.15703 2.660035 4.587889
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$CRA      std r      Min      Max      Q25      Q50      Q75
## MT0W0  89.21130 1.164334 4 87.57062 90.19608 88.81573 89.53924 89.93481
## MT0W1  70.69442 1.116503 4 69.47368 72.02073 69.98036 70.64164 71.35570
## MT1W0  88.78857 1.513220 4 87.83069 91.01124 87.83069 88.15618 89.11407
## MT1W1  79.93385 3.769986 4 77.15736 85.48387 77.91878 78.54708 80.56214
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$CRA groups
## MT0W0  89.21130      a
## MT1W0  88.78857      a
## MT1W1  79.93385      b
## MT0W1  70.69442      c
## 
## attr(,"class")
## [1] "group"
M4CRA_tukey <-HSD.test(Temp4$CRA,Temp4$Trat, 12, 5.47, alpha = 0.05);M4CRA_tukey
## $statistics
##   MSerror Df     Mean       CV     MSD
##      5.47 12 83.51618 2.800419 4.90992
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$CRA       std r      Min      Max      Q25      Q50      Q75
## MT0W0  90.16407 2.3263429 4 87.39130 92.09486 88.66601 90.58506 92.08312
## MT0W1  70.40700 2.7815961 4 67.71930 73.89831 68.44498 70.00520 71.96722
## MT1W0  89.37775 0.5030428 4 88.67187 89.74359 89.18925 89.54777 89.73628
## MT1W1  84.11589 2.9149807 4 81.28655 87.95812 82.24024 83.60945 85.48510
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$CRA groups
## MT0W0  90.16407      a
## MT1W0  89.37775      a
## MT1W1  84.11589      b
## MT0W1  70.40700      c
## 
## attr(,"class")
## [1] "group"
CRAg<-bind_rows(M1CRA_tukey$groups, M2CRA_tukey$groups, M3CRA_tukey$groups, M4CRA_tukey$groups, id=NULL)
CRAg$groups
##  [1] "a" "a" "b" "c" "a" "a" "b" "c" "a" "a" "b" "c" "a" "a" "b" "c"
CRA_g<-data.frame(CRA,CRAg$groups)
CRAT<-c("a" ,"a", "c" ,"b", "a", "a", "c", "b", "a", "a", "c", "b", "a", "a", "c", "b")
levels(CRA$Trat)
## NULL
CRA_g$Trat=factor(CRA_g$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

CRAT1<- data.frame(CRAT,CRA_g$Trat)

CRAg1<-ggplot(data = CRA_g, aes(x = factor( Dia ), y = CRA, fill = Trat) ) +   geom_bar( stat = 'identity', position = 'dodge', color = "black")+ ylim(0,100)+ylab("Contenido Relativo de Agua (%)")+ xlab("DDT")+guides(fill=guide_legend("Tratamientos"))

CRAg2<-CRAg1+scale_fill_grey()+theme_classic(base_family= "serif") + geom_errorbar(aes(ymin=CRA-sd, ymax=CRA+sd), width=.5,  position=position_dodge(.9)) +  geom_text(aes(label=CRAT1$CRAT),position=position_dodge(width=1), vjust=-2.2)
CRAg3<-CRAg2+ theme(legend.position = "none");CRAg3

Diametro de la raĆ­z tuberosa

# ANOVA

M1D <- aov(diametro~Trat, data = Temp1)
anova(M1D)
## Analysis of Variance Table
## 
## Response: diametro
##           Df  Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 257.505  85.835   247.9 4.67e-11 ***
## Residuals 12   4.155   0.346                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2D <- aov(diametro~Trat, data = Temp2)
anova(M2D)
## Analysis of Variance Table
## 
## Response: diametro
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 542.77 180.922  757.57 6.143e-14 ***
## Residuals 12   2.87   0.239                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3D <- aov(diametro~Trat, data = Temp3)
anova(M3D)
## Analysis of Variance Table
## 
## Response: diametro
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 1620.60  540.20  3003.4 < 2.2e-16 ***
## Residuals 12    2.16    0.18                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4D <- aov(diametro~Trat, data = Temp4)
anova(M4D)
## Analysis of Variance Table
## 
## Response: diametro
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2609.81  869.94  1488.7 1.085e-15 ***
## Residuals 12    7.01    0.58                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pruebas de normalidad
shapiro.test(resid(M1D))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1D)
## W = 0.96575, p-value = 0.766
shapiro.test(resid(M2D))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2D)
## W = 0.95869, p-value = 0.6382
shapiro.test(resid(M3D))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3D)
## W = 0.87852, p-value = 0.0368
shapiro.test(resid(M4D))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4D)
## W = 0.93175, p-value = 0.2598
#En todos los muestreos se puede observar normalidad en los datos de Diametro de la raĆ­z tuberosa.

#**Homogeneidad de varianzas**

bartlett.test(diametro~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  diametro by Trat
## Bartlett's K-squared = 4.3232, df = 3, p-value = 0.2286
bartlett.test(diametro~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  diametro by Trat
## Bartlett's K-squared = 1.93, df = 3, p-value = 0.5871
bartlett.test(diametro~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  diametro by Trat
## Bartlett's K-squared = 5.3191, df = 3, p-value = 0.1499
bartlett.test(diametro~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  diametro by Trat
## Bartlett's K-squared = 2.2095, df = 3, p-value = 0.5301
M1D_tukey <-HSD.test(Temp1$diametro,Temp1$Trat, 12, 0.346, alpha = 0.05);M1D_tukey
## $statistics
##   MSerror Df Mean       CV      MSD
##     0.346 12 10.7 5.497361 1.234863
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp1$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$diametro       std r  Min  Max    Q25   Q50    Q75
## MT0W0         14.800 0.4966555 4 14.2 15.3 14.500 14.85 15.150
## MT0W1          6.100 0.2160247 4  5.8  6.3  6.025  6.15  6.225
## MT1W0         14.575 0.8845903 4 13.7 15.8 14.150 14.40 14.825
## MT1W1          7.325 0.5560276 4  6.8  8.1  7.025  7.20  7.500
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$diametro groups
## MT0W0         14.800      a
## MT1W0         14.575      a
## MT1W1          7.325      b
## MT0W1          6.100      b
## 
## attr(,"class")
## [1] "group"
M2D_tukey <-HSD.test(Temp2$diametro,Temp2$Trat, 12, 0.239, alpha = 0.05);M2D_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     0.239 12 19.23313 2.541845 1.026313
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$diametro       std r   Min   Max     Q25    Q50     Q75
## MT0W0        24.8725 0.3374784 4 24.39 25.16 24.7800 24.970 25.0625
## MT0W1        11.9275 0.6529102 4 11.35 12.86 11.5900 11.750 12.0875
## MT1W0        25.0225 0.5584129 4 24.19 25.37 24.9625 25.265 25.3250
## MT1W1        15.1100 0.3213513 4 14.71 15.38 14.9200 15.175 15.3650
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$diametro groups
## MT1W0        25.0225      a
## MT0W0        24.8725      a
## MT1W1        15.1100      b
## MT0W1        11.9275      c
## 
## attr(,"class")
## [1] "group"
M3D_tukey <-HSD.test(Temp3$diametro,Temp3$Trat, 12, 0.18, alpha = 0.05);M3D_tukey
## $statistics
##   MSerror Df     Mean       CV       MSD
##      0.18 12 26.77938 1.584294 0.8906703
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$diametro       std r   Min   Max     Q25    Q50     Q75
## MT0W0        36.2225 0.3073950 4 35.89 36.62 36.0550 36.190 36.3575
## MT0W1        12.9075 0.1537043 4 12.75 13.11 12.8175 12.885 12.9750
## MT1W0        36.5350 0.3644631 4 35.99 36.75 36.5075 36.700 36.7275
## MT1W1        21.4525 0.6844645 4 20.43 21.88 21.4125 21.750 21.7900
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$diametro groups
## MT1W0        36.5350      a
## MT0W0        36.2225      a
## MT1W1        21.4525      b
## MT0W1        12.9075      c
## 
## attr(,"class")
## [1] "group"
M4D_tukey <-HSD.test(Temp4$diametro,Temp4$Trat, 12, 0.58, alpha = 0.05);M4D_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      0.58 12 35.98938 2.116117 1.598802
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$diametro       std r   Min   Max     Q25    Q50     Q75
## MT0W0        48.3875 0.7630804 4 47.32 49.13 48.2125 48.550 48.7250
## MT0W1        18.7950 0.7409228 4 17.82 19.59 18.5025 18.885 19.1775
## MT1W0        48.1750 0.3862210 4 47.73 48.67 48.0150 48.150 48.3100
## MT1W1        28.6000 1.0281051 4 27.18 29.64 28.3725 28.790 29.0175
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$diametro groups
## MT0W0        48.3875      a
## MT1W0        48.1750      a
## MT1W1        28.6000      b
## MT0W1        18.7950      c
## 
## attr(,"class")
## [1] "group"
Dg<-bind_rows(M1D_tukey$groups, M2D_tukey$groups, M3D_tukey$groups, M4D_tukey$groups, id=NULL)
Dg$groups
##  [1] "a" "a" "b" "b" "a" "a" "b" "c" "a" "a" "b" "c" "a" "a" "b" "c"
D_g<-data.frame(diametro,Dg$groups)
DT<-c("a" ,"a", "b" ,"c", "a", "a", "b", "c", "a", "a", "b", "c", "a", "a", "b", "c")
levels(diametro$Trat)
## NULL
D_g$Trat=factor(D_g$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

DT1<- data.frame(DT,D_g$Trat)

Dg1<-ggplot(data = D_g, aes(x = factor( Dia ), y = diametro, fill = Trat) ) +   geom_bar( stat = 'identity', position = 'dodge', color = "black")+ ylim(0,52)+ylab("DiƔmetro de la raƭz tuberosa (mm)")+ xlab("DDT")+guides(fill=guide_legend("Tratamientos"))

Dg1+scale_fill_grey()+theme_classic(base_family= "serif") + geom_errorbar(aes(ymin=diametro-sd, ymax=diametro+sd), width=.2,  position=position_dodge(.9)) +geom_text(aes(label=DT1$DT),position=position_dodge(width=1), vjust=-.7)

Peso fresco de la raĆ­z tuberosa

# ANOVA

M1pfrt <- aov(pfrt~Trat, data = Temp1)
anova(M1pfrt)
## Analysis of Variance Table
## 
## Response: pfrt
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 14.283  4.7609   380.8 3.683e-12 ***
## Residuals 12  0.150  0.0125                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2pfrt <- aov(pfrt~Trat, data = Temp2)
anova(M2pfrt)
## Analysis of Variance Table
## 
## Response: pfrt
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 57.128 19.0427  869.81 2.693e-14 ***
## Residuals 12  0.263  0.0219                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3pfrt <- aov(pfrt~Trat, data = Temp3)
anova(M3pfrt)
## Analysis of Variance Table
## 
## Response: pfrt
##           Df  Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 256.993  85.664  1164.2 4.72e-15 ***
## Residuals 12   0.883   0.074                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4pfrt <- aov(pfrt~Trat, data = Temp4)
anova(M4pfrt)
## Analysis of Variance Table
## 
## Response: pfrt
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 401.47 133.824   646.3 1.584e-13 ***
## Residuals 12   2.48   0.207                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pruebas de normalidad
shapiro.test(resid(M1pfrt))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1pfrt)
## W = 0.96592, p-value = 0.7691
shapiro.test(resid(M2pfrt))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2pfrt)
## W = 0.95428, p-value = 0.5603
shapiro.test(resid(M3pfrt))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3pfrt)
## W = 0.96657, p-value = 0.7805
shapiro.test(resid(M4pfrt))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4pfrt)
## W = 0.93187, p-value = 0.261
#En todos los muestreos se puede observar normalidad en los datos de Peso fresco de la raĆ­z tuberosa

#**Homogeneidad de varianzas**

bartlett.test(pfrt~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  pfrt by Trat
## Bartlett's K-squared = 5.5417, df = 3, p-value = 0.1362
bartlett.test(pfrt~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  pfrt by Trat
## Bartlett's K-squared = 1.1095, df = 3, p-value = 0.7748
bartlett.test(pfrt~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  pfrt by Trat
## Bartlett's K-squared = 4.4726, df = 3, p-value = 0.2147
bartlett.test(pfrt~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  pfrt by Trat
## Bartlett's K-squared = 0.56314, df = 3, p-value = 0.9048
library(agricolae)
M1pfrt_tukey <-HSD.test(Temp1$pfrt,Temp1$Trat, 12, 0.0125, alpha = 0.05);M1pfrt_tukey
## $statistics
##   MSerror Df   Mean       CV       MSD
##    0.0125 12 2.5575 4.371589 0.2347122
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp1$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$pfrt        std r   Min   Max     Q25    Q50     Q75
## MT0W0    3.52575 0.04871943 4 3.496 3.598 3.49675 3.5045 3.53350
## MT0W1    1.44825 0.05010905 4 1.394 1.512 1.41950 1.4435 1.47225
## MT1W0    3.46250 0.15985931 4 3.279 3.648 3.36675 3.4615 3.55725
## MT1W1    1.79350 0.13989162 4 1.633 1.946 1.70425 1.7975 1.88675
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$pfrt groups
## MT0W0    3.52575      a
## MT1W0    3.46250      a
## MT1W1    1.79350      b
## MT0W1    1.44825      c
## 
## attr(,"class")
## [1] "group"
M2pfrt_tukey <-HSD.test(Temp2$pfrt,Temp2$Trat, 12, 0.0219, alpha = 0.05);M2pfrt_tukey
## $statistics
##   MSerror Df     Mean       CV       MSD
##    0.0219 12 6.268562 2.360772 0.3106725
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$pfrt       std r   Min   Max     Q25    Q50     Q75
## MT0W0    8.11600 0.1087443 4 7.991 8.237 8.04800 8.1180 8.18600
## MT0W1    3.87125 0.1992007 4 3.716 4.159 3.75200 3.8050 3.92425
## MT1W0    8.12000 0.1267307 4 7.934 8.219 8.10575 8.1635 8.17775
## MT1W1    4.96700 0.1414379 4 4.768 5.069 4.91500 5.0155 5.06750
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$pfrt groups
## MT1W0    8.12000      a
## MT0W0    8.11600      a
## MT1W1    4.96700      b
## MT0W1    3.87125      c
## 
## attr(,"class")
## [1] "group"
M3pfrt_tukey <-HSD.test(Temp3$pfrt,Temp3$Trat, 12, 0.074, alpha = 0.05);M3pfrt_tukey
## $statistics
##   MSerror Df     Mean       CV       MSD
##     0.074 12 10.54794 2.578982 0.5710795
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$pfrt        std r    Min    Max      Q25     Q50     Q75
## MT0W0   14.38050 0.40248023 4 13.996 14.864 14.08000 14.3310 14.6315
## MT0W1    5.03425 0.09717467 4  4.962  5.174  4.97175  5.0005  5.0630
## MT1W0   14.36725 0.27894728 4 14.096 14.754 14.22425 14.3095 14.4525
## MT1W1    8.40975 0.21234779 4  8.119  8.627  8.34925  8.4465  8.5070
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$pfrt groups
## MT0W0   14.38050      a
## MT1W0   14.36725      a
## MT1W1    8.40975      b
## MT0W1    5.03425      c
## 
## attr(,"class")
## [1] "group"
M4pfrt_tukey <-HSD.test(Temp4$pfrt,Temp4$Trat, 12, 0.207, alpha = 0.05);M4pfrt_tukey
## $statistics
##   MSerror Df     Mean      CV       MSD
##     0.207 12 14.02137 3.24485 0.9551375
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$pfrt       std r    Min    Max      Q25     Q50      Q75
## MT0W0   19.03100 0.5205555 4 18.427 19.588 18.70150 19.0545 19.38400
## MT0W1    7.27975 0.3595677 4  6.861  7.729  7.11000  7.2645  7.43425
## MT1W0   18.65050 0.5220016 4 17.932 19.068 18.43225 18.8010 19.01925
## MT1W1   11.12425 0.3943293 4 10.575 11.438 10.97100 11.2420 11.39525
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$pfrt groups
## MT0W0   19.03100      a
## MT1W0   18.65050      a
## MT1W1   11.12425      b
## MT0W1    7.27975      c
## 
## attr(,"class")
## [1] "group"
PFRTg<-bind_rows(M1pfrt_tukey$groups, M2pfrt_tukey$groups, M3pfrt_tukey$groups, M4pfrt_tukey$groups, id=NULL)
PFRTg$groups
##  [1] "a" "a" "b" "c" "a" "a" "b" "c" "a" "a" "b" "c" "a" "a" "b" "c"
PFRT_g<-data.frame(PSRT,PFRTg$groups)
PFRTT<-c("a" ,"a", "b" ,"c", "a", "a", "b", "c", "a", "a", "b", "c", "a", "a", "b", "c")
levels(PSRT$Trat)
## NULL
PFRT_g$Trat=factor(PFRT_g$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

PFRT1<- data.frame(PFRTT,PFRT_g$Trat)

PFRg1<-ggplot(data = PFRT_g, aes(x = factor( Dia ), y = PSRT, fill = Trat) ) +   geom_bar( stat = 'identity', position = 'dodge', color = "black")+ ylim(0,21)+ylab("Peso fresco de la raĆ­z tuberosa (g)")+ xlab("DDT")+guides(fill=guide_legend("Tratamientos"))

PFRg1+scale_fill_grey()+theme_classic(base_family= "serif") + geom_errorbar(aes(ymin=PSRT-sd, ymax=PSRT+sd), width=.2,  position=position_dodge(.9)) +geom_text(aes(label=PFRT1$PFRTT),position=position_dodge(width=1), vjust=-0.8)

Perdida de electrolitos

# ANOVA

M1PE <- aov(PE~Trat, data = Temp1)
anova(M1PE)
## Analysis of Variance Table
## 
## Response: PE
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 4623.9 1541.31  96.031 1.178e-08 ***
## Residuals 12  192.6   16.05                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2PE <- aov(PE~Trat, data = Temp2)
anova(M2PE)
## Analysis of Variance Table
## 
## Response: PE
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 4186.0 1395.35  778.05 5.239e-14 ***
## Residuals 12   21.5    1.79                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3PE <- aov(PE~Trat, data = Temp3)
anova(M3PE)
## Analysis of Variance Table
## 
## Response: PE
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 1902.53  634.18  364.71 4.759e-12 ***
## Residuals 12   20.87    1.74                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4PE <- aov(PE~Trat, data = Temp4)
anova(M4PE)
## Analysis of Variance Table
## 
## Response: PE
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 3360.8 1120.27  237.74 5.976e-11 ***
## Residuals 12   56.5    4.71                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pruebas de normalidad
shapiro.test(resid(M1PE))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1PE)
## W = 0.85499, p-value = 0.01615
shapiro.test(resid(M2PE))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2PE)
## W = 0.95073, p-value = 0.5014
shapiro.test(resid(M3PE))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3PE)
## W = 0.97827, p-value = 0.9484
shapiro.test(resid(M4PE))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4PE)
## W = 0.93334, p-value = 0.2752
#En todos los muestreos se puede observar normalidad en los datos de PE.

#**Homogeneidad de varianzas**

bartlett.test(PE~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  PE by Trat
## Bartlett's K-squared = 12.123, df = 3, p-value = 0.006973
bartlett.test(PE~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  PE by Trat
## Bartlett's K-squared = 2.1669, df = 3, p-value = 0.5385
bartlett.test(PE~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  PE by Trat
## Bartlett's K-squared = 4.8537, df = 3, p-value = 0.1828
bartlett.test(PE~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  PE by Trat
## Bartlett's K-squared = 8.5314, df = 3, p-value = 0.03622
M1PE_tukey <-HSD.test(Temp1$PE,Temp1$Trat, 12, 16.05, alpha = 0.05);M1PE_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     16.05 12 22.84372 17.53762 8.410431
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp1$Trat   4          4.19866  0.05
## 
## $means
##        Temp1$PE       std r       Min       Max       Q25       Q50       Q75
## MT0W0  5.611760 0.9592854 4  4.728370  6.906339  4.988063  5.406166  6.029863
## MT0W1 43.489185 6.7823337 4 36.780576 52.923077 40.508021 42.126544 45.107708
## MT1W0  6.525624 0.9815999 4  5.550582  7.886435  6.075145  6.332739  6.783218
## MT1W1 35.748317 4.0394049 4 31.727749 41.361789 34.105897 34.951865 36.594285
## 
## $comparison
## NULL
## 
## $groups
##        Temp1$PE groups
## MT0W1 43.489185      a
## MT1W1 35.748317      a
## MT1W0  6.525624      b
## MT0W0  5.611760      b
## 
## attr(,"class")
## [1] "group"
M2PE_tukey <-HSD.test(Temp2$PE,Temp2$Trat, 12, 1.79, alpha = 0.05);M2PE_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      1.79 12 23.13266 5.783635 2.808712
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##        Temp2$PE       std r       Min       Max       Q25       Q50       Q75
## MT0W0  7.278877 1.2132281 4  5.610860  8.409321  6.819805  7.547664  8.006735
## MT0W1 44.752361 1.9812773 4 42.078708 46.311111 43.836107 45.309813 46.226067
## MT1W0  7.777074 0.9168115 4  6.962664  8.847737  7.040308  7.648948  8.385715
## MT1W1 32.722346 0.9672954 4 31.659836 33.998006 32.288000 32.615770 33.050116
## 
## $comparison
## NULL
## 
## $groups
##        Temp2$PE groups
## MT0W1 44.752361      a
## MT1W1 32.722346      b
## MT1W0  7.777074      c
## MT0W0  7.278877      c
## 
## attr(,"class")
## [1] "group"
M3PE_tukey <-HSD.test(Temp3$PE,Temp3$Trat, 12, 1.74, alpha = 0.05);M3PE_tukey
## $statistics
##   MSerror Df     Mean      CV      MSD
##      1.74 12 16.49284 7.99796 2.769207
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##        Temp3$PE       std r       Min       Max       Q25       Q50       Q75
## MT0W0  6.549404 0.5592162 4  5.968586  7.312049  6.308660  6.458490  6.699233
## MT0W1 32.873860 1.1652557 4 31.841302 34.378265 32.016929 32.637935 33.494865
## MT1W0  6.652035 0.8674533 4  5.866426  7.754280  6.012061  6.493718  7.133692
## MT1W1 19.896054 2.1289465 4 17.652330 22.492401 18.499377 19.719743 21.116420
## 
## $comparison
## NULL
## 
## $groups
##        Temp3$PE groups
## MT0W1 32.873860      a
## MT1W1 19.896054      b
## MT1W0  6.652035      c
## MT0W0  6.549404      c
## 
## attr(,"class")
## [1] "group"
M4PE_tukey <-HSD.test(Temp4$PE,Temp4$Trat, 12, 4.71, alpha = 0.05);M4PE_tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      4.71 12 19.79408 10.96416 4.556078
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##        Temp4$PE       std r       Min       Max       Q25       Q50       Q75
## MT0W0  6.091213 0.6490043 4  5.166375  6.619860  5.889584  6.289309  6.490938
## MT0W1 40.243388 3.4012024 4 37.106918 43.658810 37.430576 40.103912 42.916725
## MT1W0  6.137384 0.7985746 4  4.954955  6.712173  6.066708  6.441204  6.511880
## MT1W1 26.704318 2.4942713 4 24.099485 30.074389 25.512449 26.321698 27.513567
## 
## $comparison
## NULL
## 
## $groups
##        Temp4$PE groups
## MT0W1 40.243388      a
## MT1W1 26.704318      b
## MT1W0  6.137384      c
## MT0W0  6.091213      c
## 
## attr(,"class")
## [1] "group"
PEg<-bind_rows(M1PE_tukey$groups, M2PE_tukey$groups, M3PE_tukey$groups, M4PE_tukey$groups, id=NULL)
PEg$groups
##  [1] "a" "a" "b" "b" "a" "b" "c" "c" "a" "b" "c" "c" "a" "b" "c" "c"
PE_g<-data.frame(PE,PEg$groups)
PET<-c("b" ,"b", "a" ,"a", "c", "c", "a", "b", "c", "c", "a", "b", "c", "c", "a", "b")
levels(PE$Trat)
## NULL
PE_g$Trat=factor(PE_g$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

PET1<- data.frame(PET,PE_g$Trat)

PEg1<-ggplot(data = PE_g, aes(x = factor( Dia ), y = PE, fill = Trat) ) +   geom_bar( stat = 'identity', position = 'dodge', color = "black")+ ylim(0,52)+ylab("Perdida de Electrolitos (%)")+ xlab("DDT")+guides(fill=guide_legend("Tratamientos"))

PEg1+scale_fill_grey()+theme_classic(base_family= "serif") + geom_errorbar(aes(ymin=PE-sd, ymax=PE+sd), width=.2,  position=position_dodge(.9)) +geom_text(aes(label=PET1$PET),position=position_dodge(width=1), vjust=-2.8)