library(readxl)
Temp1 <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TempM1")
Temp2 <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TempM2")
Temp3 <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TempM3")
Temp4 <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TempM4")
TRC<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TRC")
TRC1<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "TRC1")
AFE<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "AFE")
PFE<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "PFE")
TAN <- read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx",
    sheet = "TAN")
IAF<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "IAF")
RAF<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "RAF")
RAF1<-read_excel("C:/Users/Sofia Hernandez/Downloads/Anegamiento/Muestreos.xlsx", 
    sheet = "RAF1")

####TASA RELATIVA DE CRECIMIENTO

library(agricolae)
M2TRC <- aov(TRC~Trat, data = Temp2)
anova(M2TRC)
## Analysis of Variance Table
## 
## Response: TRC
##           Df  Sum Sq  Mean Sq F value    Pr(>F)    
## Trat       3 0.19423 0.064744   136.3 1.556e-09 ***
## Residuals 12 0.00570 0.000475                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3TRC <- aov(TRC~Trat, data = Temp3)
anova(M3TRC)
## Analysis of Variance Table
## 
## Response: TRC
##           Df   Sum Sq  Mean Sq F value    Pr(>F)    
## Trat       3 0.279250 0.093083  1764.4 3.924e-16 ***
## Residuals 12 0.000633 0.000053                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4TRC <- aov(TRC~Trat, data = Temp4)
anova(M4TRC)
## Analysis of Variance Table
## 
## Response: TRC
##           Df   Sum Sq  Mean Sq F value    Pr(>F)    
## Trat       3 0.120543 0.040181  1429.1 1.385e-15 ***
## Residuals 12 0.000337 0.000028                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#####PRUEBAS

#Pruebas de normalidad
shapiro.test(resid(M2TRC))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2TRC)
## W = 0.87151, p-value = 0.02868
shapiro.test(resid(M3TRC))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3TRC)
## W = 0.97967, p-value = 0.9609
shapiro.test(resid(M4TRC))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4TRC)
## W = 0.94014, p-value = 0.3507
#**Homogeneidad de varianzas**
library(carData)
bartlett.test(TRC~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  TRC by Trat
## Bartlett's K-squared = 12.076, df = 3, p-value = 0.007128
bartlett.test(TRC~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  TRC by Trat
## Bartlett's K-squared = 8.3487, df = 3, p-value = 0.03933
bartlett.test(TRC~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  TRC by Trat
## Bartlett's K-squared = 7.2926, df = 3, p-value = 0.06313
#Pueba de tukey
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
M2TRC_tukey <-HSD.test(Temp2$TRC,Temp2$Trat, 12, 0.000475, alpha = 0.05);M2TRC_tukey
## $statistics
##    MSerror Df      Mean       CV        MSD
##   0.000475 12 0.4314961 5.050914 0.04575384
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$TRC         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.3300501 0.007841572 4 0.3240441 0.3415767 0.3261892 0.3272898 0.3311508
## MT0W1 0.5956166 0.038910992 4 0.5516937 0.6463289 0.5798277 0.5922219 0.6080108
## MT1W0 0.3317217 0.004269788 4 0.3276111 0.3358635 0.3282729 0.3317061 0.3351548
## MT1W1 0.4685958 0.017501439 4 0.4498021 0.4909662 0.4584872 0.4668075 0.4769161
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$TRC groups
## MT0W1 0.5956166      a
## MT1W1 0.4685958      b
## MT1W0 0.3317217      c
## MT0W0 0.3300501      c
## 
## attr(,"class")
## [1] "group"
M3TRC_tukey <-HSD.test(Temp3$TRC,Temp3$Trat, 12, 0.000053, alpha = 0.05);M3TRC_tukey
## $statistics
##   MSerror Df      Mean       CV        MSD
##   5.3e-05 12 0.3497591 2.081464 0.01528335
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$TRC         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.2304926 0.004420437 4 0.2241219 0.2336449 0.2292006 0.2321018 0.2333937
## MT0W1 0.5515230 0.011828910 4 0.5391666 0.5649262 0.5430978 0.5509997 0.5594249
## MT1W0 0.2327592 0.001556660 4 0.2314356 0.2349466 0.2317863 0.2323274 0.2333002
## MT1W1 0.3842614 0.007010022 4 0.3786035 0.3943218 0.3800700 0.3820603 0.3862517
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$TRC groups
## MT0W1 0.5515230      a
## MT1W1 0.3842614      b
## MT1W0 0.2327592      c
## MT0W0 0.2304926      c
## 
## attr(,"class")
## [1] "group"
M4TRC_tukey <-HSD.test(Temp4$TRC,Temp4$Trat, 12, 0.000028, alpha = 0.05);M4TRC_tukey
## $statistics
##   MSerror Df      Mean      CV        MSD
##   2.8e-05 12 0.2536845 2.08586 0.01110861
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$TRC         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.1772236 0.002760727 4 0.1749563 0.1809768 0.1752554 0.1764807 0.1784490
## MT0W1 0.3906776 0.009129056 4 0.3788289 0.3979308 0.3858240 0.3929754 0.3978290
## MT1W0 0.1804639 0.001847421 4 0.1777372 0.1817946 0.1801774 0.1811619 0.1814484
## MT1W1 0.2663728 0.004253403 4 0.2613305 0.2700096 0.2636105 0.2670756 0.2698379
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$TRC groups
## MT0W1 0.3906776      a
## MT1W1 0.2663728      b
## MT1W0 0.1804639      c
## MT0W0 0.1772236      c
## 
## attr(,"class")
## [1] "group"
TRCT<-bind_rows(M2TRC_tukey$groups, M3TRC_tukey$groups, M4TRC_tukey$groups, id=NULL)
TRC12 <- data.frame(TRC, TRCT$groups)
TRC12$TRCT.groups
##  [1] "a" "b" "c" "c" "a" "b" "c" "c" "a" "b" "c" "c"
gTRC<-c("c" ,"c", "a" ,"b", "c", "c", "a", "b", "c", "c", "a", "b")
levels(TRC12$Trat)
## NULL
TRC12$Trat=factor(TRC12$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

TRCTT<- data.frame(gTRC,TRC1$Trat)

TRCg<-ggplot(data = TRC12, aes(x = factor(Dias), y = TRC, group = Trat, colour=Trat)) +   geom_line(size=1.2)+geom_point(size=3, aes(shape=Trat))+scale_shape_manual(values=c(15, 16, 17, 18))+ylab("TRC(g/g*días)") + xlab("DDT")+ylim(0,0.9)

TRCg0<-TRCg+scale_colour_grey() + theme_bw(base_family= "serif") + geom_errorbar(aes(ymin=TRC-sd, ymax=TRC+sd), width=.5,  position=position_dodge(0))+scale_x_discrete(limit=c("30-35","35-42","42-49"), labels=c("1-5","5-13","13-20"))+theme(legend.position = "bottom")+theme(legend.text=element_text(size=7));TRCg0

TRCg1<-TRCg0+theme(legend.position = "right",legend.spacing.y = unit(0, "mm"),panel.border = element_rect(colour = "black", fill=NA), aspect.ratio = 1, axis.text = element_text(colour = 1, size = 12), legend.background = element_blank(), legend.box.background = element_rect(colour = "black")) + theme(legend.text=element_text(size=7))+theme(legend.title =element_text(size=0));TRCg1   

TASA DE ASIMILACIÓN NETA

library(agricolae)
M2TAN <- aov(TAN~Trat, data = Temp2)
anova(M2TAN)
## Analysis of Variance Table
## 
## Response: TAN
##           Df     Sum Sq    Mean Sq F value    Pr(>F)    
## Trat       3 0.00211293 0.00070431  23.293 2.718e-05 ***
## Residuals 12 0.00036285 0.00003024                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3TAN <- aov(TAN~Trat, data = Temp3)
anova(M3TAN)
## Analysis of Variance Table
## 
## Response: TAN
##           Df    Sum Sq    Mean Sq F value    Pr(>F)    
## Trat       3 0.0060102 0.00200340  495.08 7.746e-13 ***
## Residuals 12 0.0000486 0.00000405                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4TAN <- aov(TAN~Trat, data = Temp4)
anova(M4TAN)
## Analysis of Variance Table
## 
## Response: TAN
##           Df     Sum Sq    Mean Sq F value    Pr(>F)    
## Trat       3 0.00281968 0.00093989  705.61 9.386e-14 ***
## Residuals 12 0.00001598 0.00000133                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#####PRUEBAS

#Pruebas de normalidad
shapiro.test(resid(M2TAN))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2TAN)
## W = 0.82201, p-value = 0.005421
shapiro.test(resid(M3TAN))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3TAN)
## W = 0.77384, p-value = 0.001249
shapiro.test(resid(M4TAN))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4TAN)
## W = 0.96083, p-value = 0.6769
#**Homogeneidad de varianzas**
library(carData)
bartlett.test(TAN~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  TAN by Trat
## Bartlett's K-squared = 23.178, df = 3, p-value = 3.708e-05
bartlett.test(TAN~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  TAN by Trat
## Bartlett's K-squared = 20.155, df = 3, p-value = 0.0001577
bartlett.test(TAN~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  TAN by Trat
## Bartlett's K-squared = 11.672, df = 3, p-value = 0.008595
#Pueba de tukey
library(agricolae)
library(dplyr)
library(ggplot2)
M2TAN_tukey <-HSD.test(Temp2$TAN,Temp2$Trat, 12, 0.00003024, alpha = 0.05);M2TAN_tukey
## $statistics
##     MSerror Df       Mean       CV        MSD
##   3.024e-05 12 0.05888381 9.338883 0.01154441
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##        Temp2$TAN          std r        Min        Max        Q25        Q50
## MT0W0 0.04852684 0.0004278957 4 0.04813339 0.04907108 0.04821559 0.04845145
## MT0W1 0.07638635 0.0102567383 4 0.06787760 0.09130085 0.07159511 0.07318346
## MT1W0 0.04863656 0.0006578466 4 0.04822856 0.04961597 0.04826908 0.04835085
## MT1W1 0.06198551 0.0038901797 4 0.05711153 0.06554454 0.05974951 0.06264298
##              Q75
## MT0W0 0.04876270
## MT0W1 0.07797471
## MT1W0 0.04871833
## MT1W1 0.06487898
## 
## $comparison
## NULL
## 
## $groups
##        Temp2$TAN groups
## MT0W1 0.07638635      a
## MT1W1 0.06198551      b
## MT1W0 0.04863656      c
## MT0W0 0.04852684      c
## 
## attr(,"class")
## [1] "group"
M3TAN_tukey <-HSD.test(Temp3$TAN,Temp3$Trat, 12, 0.00000405, alpha = 0.05);M3TAN_tukey
## $statistics
##    MSerror Df       Mean       CV        MSD
##   4.05e-06 12 0.06170916 3.261203 0.00422482
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##        Temp3$TAN          std r        Min        Max        Q25        Q50
## MT0W0 0.04364437 0.0002743925 4 0.04328496 0.04395218 0.04356069 0.04367017
## MT0W1 0.08978478 0.0038556828 4 0.08411642 0.09253996 0.08903781 0.09124138
## MT1W0 0.04370629 0.0003153233 4 0.04338422 0.04409060 0.04349003 0.04367518
## MT1W1 0.06970121 0.0010702720 4 0.06872717 0.07122797 0.06921712 0.06942484
##              Q75
## MT0W0 0.04375385
## MT0W1 0.09198835
## MT1W0 0.04389144
## MT1W1 0.06990893
## 
## $comparison
## NULL
## 
## $groups
##        Temp3$TAN groups
## MT0W1 0.08978478      a
## MT1W1 0.06970121      b
## MT1W0 0.04370629      c
## MT0W0 0.04364437      c
## 
## attr(,"class")
## [1] "group"
M4TAN_tukey <-HSD.test(Temp4$TAN,Temp4$Trat, 12, 0.00000133, alpha = 0.05);M4TAN_tukey
## $statistics
##    MSerror Df       Mean       CV         MSD
##   1.33e-06 12 0.04790083 2.407591 0.002421066
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##        Temp4$TAN          std r        Min        Max        Q25        Q50
## MT0W0 0.03674414 0.0001597832 4 0.03654360 0.03691380 0.03666086 0.03675959
## MT0W1 0.06938017 0.0012312322 4 0.06818425 0.07107104 0.06869997 0.06913269
## MT1W0 0.03700332 0.0005251171 4 0.03656422 0.03775987 0.03671719 0.03684459
## MT1W1 0.04847569 0.0018737478 4 0.04645545 0.05060070 0.04719454 0.04842331
##              Q75
## MT0W0 0.03684288
## MT0W1 0.06981289
## MT1W0 0.03713072
## MT1W1 0.04970447
## 
## $comparison
## NULL
## 
## $groups
##        Temp4$TAN groups
## MT0W1 0.06938017      a
## MT1W1 0.04847569      b
## MT1W0 0.03700332      c
## MT0W0 0.03674414      c
## 
## attr(,"class")
## [1] "group"
TANT<-bind_rows(M2TAN_tukey$groups, M3TAN_tukey$groups, M4TAN_tukey$groups, id=NULL)
TAN1 <- data.frame(TAN, TANT$groups)
TAN1$TANT.groups
##  [1] "a" "b" "c" "c" "a" "b" "c" "c" "a" "b" "c" "c"
levels(TAN1$Trat)
## NULL
TAN1$Trat=factor(TAN1$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

TANg<-ggplot(data = TAN1, aes(x = factor(Dias), y = TAN, group = Trat, colour=Trat)) +   geom_line(size=1.2)+geom_point(size=3, aes(shape=Trat))+scale_shape_manual(values=c(15, 16, 17, 18))+ylab("TAN (g/cm²*días)") + xlab("DDT")+ylim(0.02,0.1);TANg

TANg0<-TANg+scale_colour_grey() + theme_bw(base_family= "serif") + geom_errorbar(aes(ymin=TAN-sd, ymax=TAN+sd), width=.5,  position=position_dodge(0))+guides(guide_legend("Tratamientos"))+scale_x_discrete(limit=c("30-35","35-42","42-49"), labels=c("1-5","5-13","13-20"));TANg0

TANg1<-TANg0+theme(legend.position = "right",legend.spacing.y = unit(0, "mm"),panel.border = element_rect(colour = "black", fill=NA), aspect.ratio = 1, axis.text = element_text(colour = 1, size = 12), legend.background = element_blank(), legend.box.background = element_rect(colour = "black")) + theme(legend.text=element_text(size=7))+theme(legend.title =element_text(size=0));TANg1

AREA FOLIAR

library(agricolae)
M1RAF <- aov(RAF~Trat, data = Temp1)
anova(M1RAF)
## Analysis of Variance Table
## 
## Response: RAF
##           Df    Sum Sq    Mean Sq F value    Pr(>F)    
## Trat       3 0.0085473 0.00284910  30.004 7.368e-06 ***
## Residuals 12 0.0011395 0.00009496                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2RAF <- aov(RAF~Trat, data = Temp2)
anova(M2RAF)
## Analysis of Variance Table
## 
## Response: RAF
##           Df    Sum Sq    Mean Sq F value    Pr(>F)    
## Trat       3 0.0062684 0.00208948  27.482 1.165e-05 ***
## Residuals 12 0.0009124 0.00007603                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3RAF <- aov(RAF~Trat, data = Temp3)
anova(M3RAF)
## Analysis of Variance Table
## 
## Response: RAF
##           Df    Sum Sq   Mean Sq F value    Pr(>F)    
## Trat       3 0.0050075 0.0016692   130.4 2.012e-09 ***
## Residuals 12 0.0001536 0.0000128                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4RAF <- aov(RAF~Trat, data = Temp4)
anova(M4RAF)
## Analysis of Variance Table
## 
## Response: RAF
##           Df    Sum Sq    Mean Sq F value    Pr(>F)    
## Trat       3 0.0070592 0.00235308  77.857 3.908e-08 ***
## Residuals 12 0.0003627 0.00003022                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#####PRUEBAS

#Pruebas de normalidad
shapiro.test(resid(M1RAF))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1RAF)
## W = 0.94999, p-value = 0.4896
shapiro.test(resid(M2RAF))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2RAF)
## W = 0.97444, p-value = 0.9044
shapiro.test(resid(M3RAF))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3RAF)
## W = 0.85806, p-value = 0.01794
#**Homogeneidad de varianzas**
library(carData)
bartlett.test(RAF~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  RAF by Trat
## Bartlett's K-squared = 7.3096, df = 3, p-value = 0.06266
bartlett.test(RAF~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  RAF by Trat
## Bartlett's K-squared = 9.1323, df = 3, p-value = 0.02758
bartlett.test(RAF~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  RAF by Trat
## Bartlett's K-squared = 5.8067, df = 3, p-value = 0.1214
#Pueba de tukey
library(agricolae)
library(dplyr)
M1RAF_tukey <-HSD.test(Temp1$RAF,Temp2$Trat, 12, 0.00009496, alpha = 0.05);M1RAF_tukey
## $statistics
##     MSerror Df      Mean       CV        MSD
##   9.496e-05 12 0.8396236 1.160608 0.02045743
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$RAF         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.8155841 0.006085008 4 0.8087353 0.8232160 0.8123207 0.8151927 0.8184562
## MT0W1 0.8633250 0.006959266 4 0.8550925 0.8718770 0.8600433 0.8631653 0.8664470
## MT1W0 0.8174643 0.008647870 4 0.8050562 0.8243297 0.8149500 0.8202356 0.8227499
## MT1W1 0.8621211 0.014818451 4 0.8497663 0.8836593 0.8554578 0.8575295 0.8641928
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$RAF groups
## MT0W1 0.8633250      a
## MT1W1 0.8621211      a
## MT1W0 0.8174643      b
## MT0W0 0.8155841      b
## 
## attr(,"class")
## [1] "group"
M2RAF_tukey <-HSD.test(Temp2$RAF,Temp2$Trat, 12, 0.00007603, alpha = 0.05);M2RAF_tukey
## $statistics
##     MSerror Df      Mean       CV        MSD
##   7.603e-05 12 0.8246378 1.057376 0.01830515
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$RAF         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.8055475 0.002870041 4 0.8033053 0.8095007 0.8034915 0.8046920 0.8067481
## MT0W1 0.8464024 0.014799190 4 0.8283268 0.8616245 0.8377970 0.8478291 0.8564344
## MT1W0 0.8042560 0.004525771 4 0.7992608 0.8102075 0.8022317 0.8037779 0.8058023
## MT1W1 0.8423453 0.007509086 4 0.8341081 0.8507405 0.8372828 0.8422664 0.8473289
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$RAF groups
## MT0W1 0.8464024      a
## MT1W1 0.8423453      a
## MT0W0 0.8055475      b
## MT1W0 0.8042560      b
## 
## attr(,"class")
## [1] "group"
M3RAF_tukey <-HSD.test(Temp3$RAF,Temp3$Trat, 12,  0.0000128, alpha = 0.05);M3RAF_tukey
## $statistics
##    MSerror Df      Mean        CV         MSD
##   1.28e-05 12 0.8280091 0.4320857 0.007510792
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$RAF          std r       Min       Max       Q25       Q50
## MT0W0 0.8157697 0.0008322429 4 0.8151750 0.8169979 0.8153187 0.8154528
## MT0W1 0.8579633 0.0062617617 4 0.8532884 0.8671432 0.8544876 0.8557108
## MT1W0 0.8142570 0.0021494511 4 0.8123248 0.8171389 0.8127969 0.8137822
## MT1W1 0.8240464 0.0025842145 4 0.8224021 0.8278941 0.8226428 0.8229446
##             Q75
## MT0W0 0.8159038
## MT0W1 0.8591864
## MT1W0 0.8152423
## MT1W1 0.8243482
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$RAF groups
## MT0W1 0.8579633      a
## MT1W1 0.8240464      b
## MT0W0 0.8157697      c
## MT1W0 0.8142570      c
## 
## attr(,"class")
## [1] "group"
M4RAF_tukey <-HSD.test(Temp4$RAF,Temp4$Trat, 12, 0.00003022, alpha = 0.05);M4RAF_tukey
## $statistics
##     MSerror Df      Mean        CV        MSD
##   3.022e-05 12 0.8180453 0.6720009 0.01154059
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$RAF         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.7974604 0.002390197 4 0.7951773 0.8007059 0.7960172 0.7969793 0.7984225
## MT0W1 0.8429969 0.005682941 4 0.8380029 0.8508262 0.8393196 0.8415792 0.8452565
## MT1W0 0.7970344 0.002556204 4 0.7936825 0.7991685 0.7957237 0.7976433 0.7989540
## MT1W1 0.8346896 0.008737842 4 0.8269945 0.8444475 0.8274770 0.8336582 0.8408708
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$RAF groups
## MT0W1 0.8429969      a
## MT1W1 0.8346896      a
## MT0W0 0.7974604      b
## MT1W0 0.7970344      b
## 
## attr(,"class")
## [1] "group"
library(dplyr)
library(extrafont)
## Warning: package 'extrafont' was built under R version 4.0.3
## Registering fonts with R
loadfonts(device = "win")

RAFE<-bind_rows(M1RAF_tukey$groups, M2RAF_tukey$groups, M3RAF_tukey$groups, M4RAF_tukey$groups, id=NULL)
RAF12 <- data.frame(RAF, RAFE$groups)
RAF12$RAFE.groups
##  [1] "a" "a" "b" "b" "a" "a" "b" "b" "a" "b" "c" "c" "a" "a" "b" "b"
levels(RAF12$Trat)
## NULL
RAF12$Trat=factor(RAF12$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

RAF22<- data.frame(RAF12$RAFE.groups,RAF12$Trat)

RAFg<-ggplot(data = RAF12, aes(x = factor(Dias), y = RAF, group = Trat, colour=Trat)) +   geom_line(size=1.2)+geom_point(size=3, aes(shape=Trat))+scale_shape_manual(values=c(15, 16, 17, 18))+ylab("RAF (cm²/g)") + xlab("DDT");RAFg

RAFg0<-RAFg+scale_color_grey() + theme_bw(base_family= "serif") + geom_errorbar(aes(ymin=RAF-sd, ymax=RAF+sd), width=.5,  position=position_dodge(0.1))+guides(guide_legend("Tratamientos"));RAFg0

RAFg1<-RAFg0+theme(legend.position = "right",legend.spacing.y = unit(0, "mm"),panel.border = element_rect(colour = "black", fill=NA), aspect.ratio = 1, axis.text = element_text(colour = 1, size = 12), legend.background = element_blank(), legend.box.background = element_rect(colour = "black")) + theme(legend.text=element_text(size=7))+theme(legend.title =element_text(size=0));RAFg1

IAF

M1IAF <- aov(IAF~Trat, data = Temp1)
anova(M1IAF)
## Analysis of Variance Table
## 
## Response: IAF
##           Df  Sum Sq  Mean Sq F value    Pr(>F)    
## Trat       3 0.22407 0.074690  121.78 2.992e-09 ***
## Residuals 12 0.00736 0.000613                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2IAF <- aov(IAF~Trat, data = Temp2)
anova(M2IAF)
## Analysis of Variance Table
## 
## Response: IAF
##           Df  Sum Sq  Mean Sq F value    Pr(>F)    
## Trat       3 0.38725 0.129082  54.447 2.923e-07 ***
## Residuals 12 0.02845 0.002371                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3IAF <- aov(IAF~Trat, data = Temp3)
anova(M3IAF)
## Analysis of Variance Table
## 
## Response: IAF
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2.11750 0.70583  1676.8 5.323e-16 ***
## Residuals 12 0.00505 0.00042                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4IAF <- aov(IAF~Trat, data = Temp4)
anova(M4IAF)
## Analysis of Variance Table
## 
## Response: IAF
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 2.18309 0.72770  692.55 1.049e-13 ***
## Residuals 12 0.01261 0.00105                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#####PRUEBAS

#Pruebas de normalidad
shapiro.test(resid(M1IAF))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M1IAF)
## W = 0.92292, p-value = 0.1879
shapiro.test(resid(M2IAF))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M2IAF)
## W = 0.90305, p-value = 0.08995
shapiro.test(resid(M3IAF))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M3IAF)
## W = 0.89995, p-value = 0.08021
shapiro.test(resid(M4IAF))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(M4IAF)
## W = 0.97215, p-value = 0.8721
#**Homogeneidad de varianzas**
library(carData)
bartlett.test(IAF~Trat, Temp1)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  IAF by Trat
## Bartlett's K-squared = 8.1514, df = 3, p-value = 0.04298
bartlett.test(IAF~Trat, Temp2)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  IAF by Trat
## Bartlett's K-squared = 12.53, df = 3, p-value = 0.00577
bartlett.test(IAF~Trat, Temp3)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  IAF by Trat
## Bartlett's K-squared = 5.5305, df = 3, p-value = 0.1368
bartlett.test(IAF~Trat, Temp4)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  IAF by Trat
## Bartlett's K-squared = 8.544, df = 3, p-value = 0.03601
#Pueba de tukey
library(agricolae)
library(dplyr)
M1IAF_tukey <-HSD.test(Temp1$IAF,Temp2$Trat, 12, 0.000613, alpha = 0.05);M1IAF_tukey
## $statistics
##    MSerror Df     Mean       CV        MSD
##   0.000613 12 0.538315 4.599321 0.05197697
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$IAF         std r     Min     Max      Q25     Q50       Q75
## MT0W0 0.6549425 0.027237470 4 0.61734 0.68247 0.648375 0.65998 0.6665475
## MT0W1 0.3855925 0.009848138 4 0.37176 0.39469 0.382650 0.38796 0.3909025
## MT1W0 0.6523825 0.007563515 4 0.64287 0.66138 0.650085 0.65264 0.6549375
## MT1W1 0.4603425 0.039461947 4 0.42796 0.51649 0.436060 0.44846 0.4727425
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$IAF groups
## MT0W0 0.6549425      a
## MT1W0 0.6523825      a
## MT1W1 0.4603425      b
## MT0W1 0.3855925      c
## 
## attr(,"class")
## [1] "group"
M2IAF_tukey <-HSD.test(Temp2$IAF,Temp2$Trat, 12, 0.002371, alpha = 0.05);M2IAF_tukey
## $statistics
##    MSerror Df      Mean       CV       MSD
##   0.002371 12 0.8825875 5.517064 0.1022225
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$IAF        std r     Min     Max       Q25     Q50       Q75
## MT0W0  1.030417 0.00905914 4 1.01893 1.03878 1.0253875 1.03198 1.0370100
## MT0W1  0.662680 0.08076135 4 0.54764 0.73662 0.6468875 0.68323 0.6990225
## MT1W0  1.028173 0.01372940 4 1.00774 1.03673 1.0264225 1.03411 1.0358600
## MT1W1  0.809080 0.05186605 4 0.76284 0.87548 0.7706925 0.79900 0.8373875
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$IAF groups
## MT0W0  1.030417      a
## MT1W0  1.028173      a
## MT1W1  0.809080      b
## MT0W1  0.662680      c
## 
## attr(,"class")
## [1] "group"
M3IAF_tukey <-HSD.test(Temp3$IAF,Temp3$Trat, 12, 0.00042, alpha = 0.05);M3IAF_tukey
## $statistics
##   MSerror Df     Mean       CV        MSD
##   0.00042 12 1.247702 1.642531 0.04302346
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$IAF        std r     Min     Max      Q25      Q50      Q75
## MT0W0  1.603920 0.01010187 4 1.59264 1.61719 1.599870 1.602925 1.606975
## MT0W1  0.780765 0.03486736 4 0.75643 0.83218 0.760975 0.767225 0.787015
## MT1W0  1.601662 0.01153876 4 1.58764 1.61349 1.594855 1.602760 1.609568
## MT1W1  1.004463 0.01526070 4 0.98276 1.01852 1.001420 1.008285 1.011328
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$IAF groups
## MT0W0  1.603920      a
## MT1W0  1.601662      a
## MT1W1  1.004463      b
## MT0W1  0.780765      c
## 
## attr(,"class")
## [1] "group"
M4IAF_tukey <-HSD.test(Temp4$IAF,Temp4$Trat, 12, 0.00105, alpha = 0.05);M4IAF_tukey
## $statistics
##   MSerror Df     Mean       CV        MSD
##   0.00105 12 1.562977 2.073204 0.06802607
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$IAF         std r     Min     Max      Q25     Q50      Q75
## MT0W0  1.905092 0.008292854 4 1.89631 1.91552 1.899962 1.90427 1.909400
## MT0W1  1.009170 0.017744466 4 0.98493 1.02663 1.002787 1.01256 1.018943
## MT1W0  1.892005 0.026561262 4 1.85382 1.91444 1.885410 1.89988 1.906475
## MT1W1  1.445640 0.055801895 4 1.38338 1.50682 1.408475 1.44618 1.483345
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$IAF groups
## MT0W0  1.905092      a
## MT1W0  1.892005      a
## MT1W1  1.445640      b
## MT0W1  1.009170      c
## 
## attr(,"class")
## [1] "group"
library(dplyr)
library(extrafont)
loadfonts(device = "win")

IAFE<-bind_rows(M1IAF_tukey$groups, M2IAF_tukey$groups, M3IAF_tukey$groups, M4IAF_tukey$groups, id=NULL)
IAFE1 <- data.frame(IAF, IAFE$groups)
IAFE1$IAFEE.groups
## NULL
gIAFE<-c("b" ,"c", "a" ,"d", "b", "a", "b", "c", "c", "ab", "b", "a","c", "b", "a", "a")
levels(IAFE1$Trat)
## NULL
IAFE1$Trat=factor(IAFE1$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

IAFE2<- data.frame(IAFE1$IAFE.groups,IAFE1$Trat)

IAFTT<- data.frame(gIAFE,IAFE1$Trat)

IAFg<-ggplot(data = IAFE1, aes(x = factor(Dias), y = IAF, group = Trat, colour=Trat)) +   geom_line(size=1.2)+geom_point(size=3, aes(shape=Trat))+scale_shape_manual(values=c(15, 16, 17, 18))+ylab("IAF") + xlab("DDT");IAFg

IAFg0<-IAFg+scale_colour_grey() + theme_bw(base_family= "serif") + geom_errorbar(aes(ymin=IAF-sd, ymax=IAF+sd), width=.5,  position=position_dodge(0))+guides(fill = guide_legend(title = "LEFT"));IAFg0

IAFg1<-IAFg0+theme(legend.position = "right",legend.spacing.y = unit(0, "mm"),panel.border = element_rect(colour = "black", fill=NA), aspect.ratio = 1, axis.text = element_text(colour = 1, size = 12), legend.background = element_blank(), legend.box.background = element_rect(colour = "black")) +theme(legend.text=element_text(size=7))+theme(legend.title =element_text(size=0));IAFg1

#########TRC1
library(agricolae)
M2TRC1 <- aov(TRC1~Trat, data = Temp2)
anova(M2TRC1)
## Analysis of Variance Table
## 
## Response: TRC1
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 22.0787  7.3596  92.459 1.465e-08 ***
## Residuals 12  0.9552  0.0796                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3TRC1 <- aov(TRC1~Trat, data = Temp3)
anova(M3TRC1)
## Analysis of Variance Table
## 
## Response: TRC1
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 52.874 17.6246  647.98 1.56e-13 ***
## Residuals 12  0.326  0.0272                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4TRC1 <- aov(TRC1~Trat, data = Temp4)
anova(M4TRC1)
## Analysis of Variance Table
## 
## Response: TRC1
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 11.2255  3.7418  207.18 1.343e-10 ***
## Residuals 12  0.2167  0.0181                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pueba de tukey

M2TRC_tukey1 <-HSD.test(Temp2$TRC1,Temp2$Trat, 12, 0.0796, alpha = 0.05);M2TRC_tukey1
## $statistics
##   MSerror Df     Mean       CV       MSD
##    0.0796 12 4.856743 5.809134 0.5922939
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$TRC1        std r      Min      Max      Q25      Q50      Q75
## MT0W0   3.814834 0.09295926 4 3.731343 3.940110 3.752385 3.793941 3.856391
## MT0W1   6.634004 0.49864046 4 6.172840 7.342144 6.407023 6.510516 6.737497
## MT1W0   3.780171 0.10793816 4 3.684598 3.888025 3.688677 3.774031 3.865525
## MT1W1   5.197964 0.22238943 4 4.930966 5.411255 5.059272 5.224817 5.363509
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$TRC1 groups
## MT0W1   6.634004      a
## MT1W1   5.197964      b
## MT0W0   3.814834      c
## MT1W0   3.780171      c
## 
## attr(,"class")
## [1] "group"
M3TRC_tukey1 <-HSD.test(Temp3$TRC1,Temp3$Trat, 12, 0.0272, alpha = 0.05);M3TRC_tukey1
## $statistics
##   MSerror Df     Mean       CV       MSD
##    0.0272 12 4.534843 3.636823 0.3462304
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$TRC1        std r      Min      Max      Q25      Q50      Q75
## MT0W0   2.898370 0.09399626 4 2.843217 3.038194 2.843217 2.856035 2.911188
## MT0W1   7.324078 0.27786982 4 7.150153 7.734807 7.155636 7.205675 7.374116
## MT1W0   2.934701 0.10431688 4 2.816901 3.067485 2.882649 2.927208 2.979261
## MT1W1   4.982225 0.10894357 4 4.861111 5.076142 4.904666 4.995824 5.073383
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$TRC1 groups
## MT0W1   7.324078      a
## MT1W1   4.982225      b
## MT1W0   2.934701      c
## MT0W0   2.898370      c
## 
## attr(,"class")
## [1] "group"
M4TRC_tukey1 <-HSD.test(Temp4$TRC1,Temp4$Trat, 12, 0.0181, alpha = 0.05);M4TRC_tukey1
## $statistics
##   MSerror Df     Mean       CV      MSD
##    0.0181 12 2.514171 5.351118 0.282436
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$TRC1        std r      Min      Max      Q25      Q50      Q75
## MT0W0   1.786796 0.05114944 4 1.741294 1.856272 1.752764 1.774810 1.808842
## MT0W1   3.835770 0.22287691 4 3.595275 4.120071 3.707807 3.813868 3.941831
## MT1W0   1.796274 0.09188181 4 1.712748 1.912046 1.728014 1.780151 1.848411
## MT1W1   2.637843 0.10728183 4 2.516175 2.732240 2.563458 2.651477 2.725862
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$TRC1 groups
## MT0W1   3.835770      a
## MT1W1   2.637843      b
## MT1W0   1.796274      c
## MT0W0   1.786796      c
## 
## attr(,"class")
## [1] "group"
TRC2<-data.frame(TRC1)

levels(TRC2$Trat)
## NULL
TRC2$Trat=factor(TRC2$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

TRCg1<-ggplot(data = TRC2, aes(x = factor(Dias), y = TRC1, group = Trat, colour=Trat)) + geom_line(size=1.2)+geom_point(size=3, aes(shape=Trat))+scale_shape_manual(values=c(15, 16, 17,18))+ylab("TRC(g/g*días)") + xlab("DDT")

TRCg00<-TRCg1+scale_colour_grey() + theme_bw(base_family= "serif") + geom_errorbar(aes(ymin=TRC1-sd, ymax=TRC1+sd), width=.5, position=position_dodge(0))+scale_x_discrete(limit=c("30-35","35-42","42-49"), labels=c("1-5","5-13","13-20"))+theme(legend.text=element_text(size=7));TRCg00

TRCg2<-TRCg00+theme(legend.position = "right",legend.spacing.y = unit(0, "mm"),panel.border = element_rect(colour = "black", fill=NA), aspect.ratio = 1, axis.text = element_text(colour = 1, size = 12), legend.background = element_blank(), legend.box.background = element_rect(colour = "black")) + theme(legend.text=element_text(size=7))+theme(legend.title =element_text(size=0));TRCg2 

AREA FOLIAR

library(agricolae)
M1RAF1 <- aov(RAF1~Trat, data = Temp1)
anova(M1RAF1)
## Analysis of Variance Table
## 
## Response: RAF1
##           Df Sum Sq Mean Sq F value   Pr(>F)   
## Trat       3 449.67  149.89  9.2124 0.001942 **
## Residuals 12 195.24   16.27                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M2RAF1 <- aov(RAF1~Trat, data = Temp2)
anova(M2RAF1)
## Analysis of Variance Table
## 
## Response: RAF1
##           Df  Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 247.466  82.489  10.945 0.000946 ***
## Residuals 12  90.438   7.536                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M3RAF1 <- aov(RAF1~Trat, data = Temp3)
anova(M3RAF1)
## Analysis of Variance Table
## 
## Response: RAF1
##           Df Sum Sq Mean Sq F value   Pr(>F)    
## Trat       3 591.53 197.177  28.036 1.05e-05 ***
## Residuals 12  84.40   7.033                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
M4RAF1 <- aov(RAF1~Trat, data = Temp4)
anova(M4RAF1)
## Analysis of Variance Table
## 
## Response: RAF1
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       3 158.297  52.766   13.12 0.0004265 ***
## Residuals 12  48.261   4.022                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Pueba de tukey
library(agricolae)
library(dplyr)
M1RAF_tukey1 <-HSD.test(Temp1$RAF,Temp2$Trat, 12, 16.27, alpha = 0.05);M1RAF_tukey1
## $statistics
##   MSerror Df      Mean       CV      MSD
##     16.27 12 0.8396236 480.4068 8.467876
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp1$RAF         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.8155841 0.006085008 4 0.8087353 0.8232160 0.8123207 0.8151927 0.8184562
## MT0W1 0.8633250 0.006959266 4 0.8550925 0.8718770 0.8600433 0.8631653 0.8664470
## MT1W0 0.8174643 0.008647870 4 0.8050562 0.8243297 0.8149500 0.8202356 0.8227499
## MT1W1 0.8621211 0.014818451 4 0.8497663 0.8836593 0.8554578 0.8575295 0.8641928
## 
## $comparison
## NULL
## 
## $groups
##       Temp1$RAF groups
## MT0W1 0.8633250      a
## MT1W1 0.8621211      a
## MT1W0 0.8174643      a
## MT0W0 0.8155841      a
## 
## attr(,"class")
## [1] "group"
M2RAF_tukey1 <-HSD.test(Temp2$RAF,Temp2$Trat, 12, 7.536, alpha = 0.05);M2RAF_tukey1
## $statistics
##   MSerror Df      Mean       CV      MSD
##     7.536 12 0.8246378 332.8949 5.763034
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp2$Trat   4          4.19866  0.05
## 
## $means
##       Temp2$RAF         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.8055475 0.002870041 4 0.8033053 0.8095007 0.8034915 0.8046920 0.8067481
## MT0W1 0.8464024 0.014799190 4 0.8283268 0.8616245 0.8377970 0.8478291 0.8564344
## MT1W0 0.8042560 0.004525771 4 0.7992608 0.8102075 0.8022317 0.8037779 0.8058023
## MT1W1 0.8423453 0.007509086 4 0.8341081 0.8507405 0.8372828 0.8422664 0.8473289
## 
## $comparison
## NULL
## 
## $groups
##       Temp2$RAF groups
## MT0W1 0.8464024      a
## MT1W1 0.8423453      a
## MT0W0 0.8055475      a
## MT1W0 0.8042560      a
## 
## attr(,"class")
## [1] "group"
M3RAF_tukey1 <-HSD.test(Temp3$RAF,Temp3$Trat, 12,  7.033 , alpha = 0.05);M3RAF_tukey1
## $statistics
##   MSerror Df      Mean      CV      MSD
##     7.033 12 0.8280091 320.284 5.567382
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp3$Trat   4          4.19866  0.05
## 
## $means
##       Temp3$RAF          std r       Min       Max       Q25       Q50
## MT0W0 0.8157697 0.0008322429 4 0.8151750 0.8169979 0.8153187 0.8154528
## MT0W1 0.8579633 0.0062617617 4 0.8532884 0.8671432 0.8544876 0.8557108
## MT1W0 0.8142570 0.0021494511 4 0.8123248 0.8171389 0.8127969 0.8137822
## MT1W1 0.8240464 0.0025842145 4 0.8224021 0.8278941 0.8226428 0.8229446
##             Q75
## MT0W0 0.8159038
## MT0W1 0.8591864
## MT1W0 0.8152423
## MT1W1 0.8243482
## 
## $comparison
## NULL
## 
## $groups
##       Temp3$RAF groups
## MT0W1 0.8579633      a
## MT1W1 0.8240464      a
## MT0W0 0.8157697      a
## MT1W0 0.8142570      a
## 
## attr(,"class")
## [1] "group"
M4RAF_tukey1 <-HSD.test(Temp4$RAF,Temp4$Trat, 12, 4.022, alpha = 0.05);M4RAF_tukey1
## $statistics
##   MSerror Df      Mean       CV      MSD
##     4.022 12 0.8180453 245.1566 4.210191
## 
## $parameters
##    test     name.t ntr StudentizedRange alpha
##   Tukey Temp4$Trat   4          4.19866  0.05
## 
## $means
##       Temp4$RAF         std r       Min       Max       Q25       Q50       Q75
## MT0W0 0.7974604 0.002390197 4 0.7951773 0.8007059 0.7960172 0.7969793 0.7984225
## MT0W1 0.8429969 0.005682941 4 0.8380029 0.8508262 0.8393196 0.8415792 0.8452565
## MT1W0 0.7970344 0.002556204 4 0.7936825 0.7991685 0.7957237 0.7976433 0.7989540
## MT1W1 0.8346896 0.008737842 4 0.8269945 0.8444475 0.8274770 0.8336582 0.8408708
## 
## $comparison
## NULL
## 
## $groups
##       Temp4$RAF groups
## MT0W1 0.8429969      a
## MT1W1 0.8346896      a
## MT0W0 0.7974604      a
## MT1W0 0.7970344      a
## 
## attr(,"class")
## [1] "group"
library(dplyr)
library(extrafont)
loadfonts(device = "win")
RAF5 <- data.frame(RAF1)

levels(RAF5$Trat)
## NULL
RAF5$Trat=factor(RAF5$Trat,levels=c("MT0W0","MT1W0","MT0W1","MT1W1"))

RAFg5<-ggplot(data = RAF5, aes(x = factor(Dias), y = RAF1, group = Trat, colour=Trat)) +   geom_line(size=1.2)+geom_point(size=3, aes(shape=Trat))+scale_shape_manual(values=c(15, 16, 17, 18))+ylab("RAF (cm²/g)") + xlab("DDT");RAFg5

RAFg05<-RAFg5+scale_color_grey() + theme_bw(base_family= "serif") + geom_errorbar(aes(ymin=RAF1-sd, ymax=RAF1+sd), width=.5,  position=position_dodge(0.1))+guides(guide_legend("Tratamientos"));RAFg05

RAFg15<-RAFg05+theme(legend.position = "right",legend.spacing.y = unit(0, "mm"),panel.border = element_rect(colour = "black", fill=NA), aspect.ratio = 1, axis.text = element_text(colour = 1, size = 12), legend.background = element_blank(), legend.box.background = element_rect(colour = "black")) + theme(legend.text=element_text(size=7))+theme(legend.title =element_text(size=0));RAFg15

library(ggpubr)
ggarrange(RAFg15, IAFg1, TRCg2, TANg1, labels=c("A","B","C","D"))