This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

library(XLConnect)
package 㤼㸱XLConnect㤼㸲 was built under R version 4.0.5XLConnect 1.0.3 by Mirai Solutions GmbH [aut],
  Martin Studer [cre],
  The Apache Software Foundation [ctb, cph] (Apache POI),
  Graph Builder [ctb, cph] (Curvesapi Java library)
https://mirai-solutions.ch
https://github.com/miraisolutions/xlconnect
library(agricolae)
package 㤼㸱agricolae㤼㸲 was built under R version 4.0.5
library(readxl)
package 㤼㸱readxl㤼㸲 was built under R version 4.0.5
rendimiento_de_Arveja_en_CAM <- read_excel("rendimiento de Arveja en CAM.xlsx")
View(rendimiento_de_Arveja_en_CAM)

Se realiza cosecha y toma de datos de rendimiento del cultivo de Arveja en el Centro Agropecuario Marengo de la Universidad Nacional de Colombia. Por cada tratamiento se marcaron 6 plantas, a las cuales se les cosecho y se registro el numero de vainas cosechadas por planta en tres pases, a las vainas cosechadas se registro y saco promedio de granos por vaina, y por último se registro el peso de 100 granos por tratamiento.

Número de vainas por planta:La muestra para tomar este dato estuvo constituida por 6 plantas tomadas al azar, de los dos surcos centrales de cada parcela. Se registró el promedio.

Número de grano por vaina: Se registró el promedio de granos de las vainas cosechadas de las 6 plantas tomadas al azar,de los dos surcos centrales de cada parcela. Se registró el promedio .

Peso de 100 semillas: Finalizada la trilla de las vainas de todas las plantas de los surcos centrales de cada unidad experimental, se tomó al azar 100 granos y luego se pesaron en gramos.

Datos<- read_excel("rendimiento de Arveja en CAM.xlsx")
attach(Datos)
names(Datos)
[1] "Tratamientos" "Tratamiento"  "planta"       "Vainas"       "Granos"       "Peso"        
str(Datos)
tibble [18 x 6] (S3: tbl_df/tbl/data.frame)
 $ Tratamientos: chr [1:18] "T! C- (0 L/ha TV) 0% FC" NA NA "T2 C+ (0 L/ha TV) 100% FC" ...
 $ Tratamiento : num [1:18] 1 1 1 2 2 2 3 3 3 4 ...
 $ planta      : num [1:18] 1 2 3 1 2 3 1 2 3 1 ...
 $ Vainas      : num [1:18] 10.8 9.4 10 18.6 13.4 15.4 9.8 8.8 9.4 13.1 ...
 $ Granos      : num [1:18] 5.97 5.73 6.17 6.67 6.67 ...
 $ Peso        : num [1:18] 51.9 41.6 45.1 54.7 50.1 ...
plan<-factor(planta)
Trat<-factor(Tratamiento)
Modelo<-lm(Vainas~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
            Df Sum Sq Mean Sq F value   Pr(>F)    
Trat         5  91.57  18.314  12.804 0.000441 ***
plan         2  17.13   8.565   5.988 0.019509 *  
Residuals   10  14.30   1.430                     
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)

Study: ANOVA ~ "Trat"

LSD t Test for Vainas 

Mean Square Error:  1.430333 

Trat,  means and individual ( 95 %) CI

Alpha: 0.05 ; DF Error: 10
Critical Value of t: 2.228139 

least Significant Difference: 2.175781 

Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups, 
          ylim=c(0,20),
          main=" Comparación rendimiento Vainas por planta ",
          xlab="Tratamiento ",
          ylab="Rendimiento (# Vainas/Planta) ",
          col="grey")

Modelo<-lm(Granos~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
            Df Sum Sq Mean Sq F value  Pr(>F)   
Trat         5 2.3837  0.4767   6.335 0.00668 **
plan         2 1.2104  0.6052   8.041 0.00828 **
Residuals   10 0.7526  0.0753                   
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)

Study: ANOVA ~ "Trat"

LSD t Test for Granos 

Mean Square Error:  0.07525926 

Trat,  means and individual ( 95 %) CI

Alpha: 0.05 ; DF Error: 10
Critical Value of t: 2.228139 

least Significant Difference: 0.4990874 

Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups, 
          ylim=c(0,8),
          main=" Comparación rendimiento Granos por vaina ",
          xlab="Tratamiento ",
          ylab="Rendimiento (# granos/ vaina) ",
          col="grey")

Modelo<-lm(Peso~Trat+plan)
ANOVA<-aov(Modelo)
summary(ANOVA)
            Df Sum Sq Mean Sq F value Pr(>F)  
Trat         5 219.46   43.89   4.478 0.0211 *
plan         2  58.67   29.34   2.993 0.0958 .
Residuals   10  98.01    9.80                 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
tratam<- LSD.test(y = ANOVA, trt = "Trat",group = T, console = T)

Study: ANOVA ~ "Trat"

LSD t Test for Peso 

Mean Square Error:  9.801243 

Trat,  means and individual ( 95 %) CI

Alpha: 0.05 ; DF Error: 10
Critical Value of t: 2.228139 

least Significant Difference: 5.69557 

Treatments with the same letter are not significantly different.
bar.group(x = tratam$groups, 
          ylim=c(0,60),
          main=" Comparación rendimiento Peso de 100 granos ",
          xlab="Tratamiento ",
          ylab="Rendimiento peso en (g) ",
          col="grey")

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tDQp0aXRsZTogIiBFbnNheW8gZGUgZGlmZXJlbnRlcyB0cmF0YW1pZW50b3MgZGUgZmVydGlsaXphY2nDsm4geSBhcGxpY2FjacOzbiBkZSBCaW9mZXJ0aWxpemFudGUgdGVycmEtdml0ZSAoICpBem90b2JhY3RlciBWaW5lbGFuZGlpKiApIGVuIEFSVkVKQSAoVmFyaWVkYWQgVml6Y2F5YSkgZW4gZWwgQ0FNIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gDQoNCg0KDQpgYGB7cn0NCmxpYnJhcnkoWExDb25uZWN0KQ0KbGlicmFyeShhZ3JpY29sYWUpDQpsaWJyYXJ5KHJlYWR4bCkNCnJlbmRpbWllbnRvX2RlX0FydmVqYV9lbl9DQU0gPC0gcmVhZF9leGNlbCgicmVuZGltaWVudG8gZGUgQXJ2ZWphIGVuIENBTS54bHN4IikNClZpZXcocmVuZGltaWVudG9fZGVfQXJ2ZWphX2VuX0NBTSkNCmBgYA0KIyMjIyBTZSByZWFsaXphIGNvc2VjaGEgeSB0b21hIGRlIGRhdG9zIGRlIHJlbmRpbWllbnRvIGRlbCBjdWx0aXZvIGRlIEFydmVqYSBlbiBlbCBDZW50cm8gQWdyb3BlY3VhcmlvIE1hcmVuZ28gZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFBvciBjYWRhIHRyYXRhbWllbnRvIHNlIG1hcmNhcm9uIDYgcGxhbnRhcywgYSBsYXMgY3VhbGVzIHNlIGxlcyBjb3NlY2hvIHkgc2UgcmVnaXN0cm8gZWwgbnVtZXJvIGRlIHZhaW5hcyBjb3NlY2hhZGFzIHBvciBwbGFudGEgIGVuIHRyZXMgcGFzZXMsIGEgbGFzIHZhaW5hcyBjb3NlY2hhZGFzIHNlIHJlZ2lzdHJvIHkgc2FjbyBwcm9tZWRpbyBkZSBncmFub3MgcG9yIHZhaW5hLCB5IHBvciDDumx0aW1vIHNlIHJlZ2lzdHJvIGVsIHBlc28gZGUgMTAwIGdyYW5vcyBwb3IgdHJhdGFtaWVudG8uDQoNCg0KIyMjIyBOw7ptZXJvIGRlIHZhaW5hcyBwb3IgcGxhbnRhOkxhIG11ZXN0cmEgcGFyYSB0b21hciBlc3RlIGRhdG8gZXN0dXZvIGNvbnN0aXR1aWRhIHBvciA2IHBsYW50YXMgdG9tYWRhcyBhbCBhemFyLCBkZSBsb3MgZG9zIHN1cmNvcyBjZW50cmFsZXMgZGUgY2FkYSBwYXJjZWxhLiBTZSByZWdpc3Ryw7MgZWwgcHJvbWVkaW8uDQoNCiMjIyMgTsO6bWVybyBkZSBncmFubyBwb3IgdmFpbmE6IFNlIHJlZ2lzdHLDsyBlbCBwcm9tZWRpbyBkZSBncmFub3MgZGUgbGFzIHZhaW5hcyBjb3NlY2hhZGFzIGRlIGxhcyA2IHBsYW50YXMgdG9tYWRhcyBhbCBhemFyLGRlIGxvcyBkb3Mgc3VyY29zIGNlbnRyYWxlcyBkZSBjYWRhIHBhcmNlbGEuIFNlIHJlZ2lzdHLDsyBlbCBwcm9tZWRpbyAuDQoNCiMjIyMgUGVzbyBkZSAxMDAgc2VtaWxsYXM6IEZpbmFsaXphZGEgbGEgdHJpbGxhIGRlIGxhcyB2YWluYXMgZGUgdG9kYXMgbGFzIHBsYW50YXMgZGUgbG9zIHN1cmNvcyBjZW50cmFsZXMgZGUgY2FkYSB1bmlkYWQgZXhwZXJpbWVudGFsLCBzZSB0b23DsyBhbCBhemFyIDEwMCBncmFub3MgeSBsdWVnbyBzZSBwZXNhcm9uIGVuIGdyYW1vcy4NCg0KYGBge3J9DQpEYXRvczwtIHJlYWRfZXhjZWwoInJlbmRpbWllbnRvIGRlIEFydmVqYSBlbiBDQU0ueGxzeCIpDQphdHRhY2goRGF0b3MpDQpuYW1lcyhEYXRvcykNCnN0cihEYXRvcykNCnBsYW48LWZhY3RvcihwbGFudGEpDQpUcmF0PC1mYWN0b3IoVHJhdGFtaWVudG8pDQpgYGANCg0KYGBge3J9DQpNb2RlbG88LWxtKFZhaW5hc35UcmF0K3BsYW4pDQpBTk9WQTwtYW92KE1vZGVsbykNCnN1bW1hcnkoQU5PVkEpDQoNCnRyYXRhbTwtIExTRC50ZXN0KHkgPSBBTk9WQSwgdHJ0ID0gIlRyYXQiLGdyb3VwID0gVCwgY29uc29sZSA9IFQpDQoNCmJhci5ncm91cCh4ID0gdHJhdGFtJGdyb3VwcywgDQogICAgICAgICAgeWxpbT1jKDAsMjApLA0KICAgICAgICAgIG1haW49IiBDb21wYXJhY2nDs24gcmVuZGltaWVudG8gVmFpbmFzIHBvciBwbGFudGEgIiwNCiAgICAgICAgICB4bGFiPSJUcmF0YW1pZW50byAiLA0KICAgICAgICAgIHlsYWI9IlJlbmRpbWllbnRvICgjIFZhaW5hcy9QbGFudGEpICIsDQogICAgICAgICAgY29sPSJncmV5IikNCmBgYA0KDQpgYGB7cn0NCk1vZGVsbzwtbG0oR3Jhbm9zflRyYXQrcGxhbikNCkFOT1ZBPC1hb3YoTW9kZWxvKQ0Kc3VtbWFyeShBTk9WQSkNCg0KdHJhdGFtPC0gTFNELnRlc3QoeSA9IEFOT1ZBLCB0cnQgPSAiVHJhdCIsZ3JvdXAgPSBULCBjb25zb2xlID0gVCkNCg0KYmFyLmdyb3VwKHggPSB0cmF0YW0kZ3JvdXBzLCANCiAgICAgICAgICB5bGltPWMoMCw4KSwNCiAgICAgICAgICBtYWluPSIgQ29tcGFyYWNpw7NuIHJlbmRpbWllbnRvIEdyYW5vcyBwb3IgdmFpbmEgIiwNCiAgICAgICAgICB4bGFiPSJUcmF0YW1pZW50byAiLA0KICAgICAgICAgIHlsYWI9IlJlbmRpbWllbnRvICgjIGdyYW5vcy8gdmFpbmEpICIsDQogICAgICAgICAgY29sPSJncmV5IikNCmBgYA0KDQpgYGB7cn0NCk1vZGVsbzwtbG0oUGVzb35UcmF0K3BsYW4pDQpBTk9WQTwtYW92KE1vZGVsbykNCnN1bW1hcnkoQU5PVkEpDQoNCnRyYXRhbTwtIExTRC50ZXN0KHkgPSBBTk9WQSwgdHJ0ID0gIlRyYXQiLGdyb3VwID0gVCwgY29uc29sZSA9IFQpDQoNCmJhci5ncm91cCh4ID0gdHJhdGFtJGdyb3VwcywgDQogICAgICAgICAgeWxpbT1jKDAsNjApLA0KICAgICAgICAgIG1haW49IiBDb21wYXJhY2nDs24gcmVuZGltaWVudG8gUGVzbyBkZSAxMDAgZ3Jhbm9zICIsDQogICAgICAgICAgeGxhYj0iVHJhdGFtaWVudG8gIiwNCiAgICAgICAgICB5bGFiPSJSZW5kaW1pZW50byBwZXNvIGVuIChnKSAiLA0KICAgICAgICAgIGNvbD0iZ3JleSIpDQpgYGANCg0KDQpBZGQgYSBuZXcgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpJbnNlcnQgQ2h1bmsqIGJ1dHRvbiBvbiB0aGUgdG9vbGJhciBvciBieSBwcmVzc2luZyAqQ3RybCtBbHQrSSouDQoNCldoZW4geW91IHNhdmUgdGhlIG5vdGVib29rLCBhbiBIVE1MIGZpbGUgY29udGFpbmluZyB0aGUgY29kZSBhbmQgb3V0cHV0IHdpbGwgYmUgc2F2ZWQgYWxvbmdzaWRlIGl0IChjbGljayB0aGUgKlByZXZpZXcqIGJ1dHRvbiBvciBwcmVzcyAqQ3RybCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLg0KDQpUaGUgcHJldmlldyBzaG93cyB5b3UgYSByZW5kZXJlZCBIVE1MIGNvcHkgb2YgdGhlIGNvbnRlbnRzIG9mIHRoZSBlZGl0b3IuIENvbnNlcXVlbnRseSwgdW5saWtlICpLbml0KiwgKlByZXZpZXcqIGRvZXMgbm90IHJ1biBhbnkgUiBjb2RlIGNodW5rcy4gSW5zdGVhZCwgdGhlIG91dHB1dCBvZiB0aGUgY2h1bmsgd2hlbiBpdCB3YXMgbGFzdCBydW4gaW4gdGhlIGVkaXRvciBpcyBkaXNwbGF5ZWQuDQo=