1 Nivel nacional URBANO (código 1)
1.1 Pregunta P19: Total hijos/as nacidos vivos
1.2 Las categorías de respuesta:
1 (0-23)
1.3 Generación de tabla de contingencia para la variable P19
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P19
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:23){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,48,2)
for (i in 1:100) {
names(comuna_corr)[III[i]] <- paste0(i-1, "_hijos/as")
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P19_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
0_hijos/as | 1_hijos/as | 2_hijos/as | 3_hijos/as | 4_hijos/as | 5_hijos/as | 6_hijos/as | 7_hijos/as | 8_hijos/as | 9_hijos/as | 10_hijos/as | 11_hijos/as | 12_hijos/as | 13_hijos/as | 14_hijos/as | 15_hijos/as | 16_hijos/as | 17_hijos/as | 18_hijos/as | 19_hijos/as | 20_hijos/as | 21_hijos/as | 22_hijos/as | 23_hijos/as | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 59.0 | Min. : 62 | Min. : 67 | Min. : 52.0 | Min. : 27.0 | Min. : 7.0 | Min. : 3.0 | Min. : 2.0 | Min. : 2.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.000 | Min. : 1.000 | Min. : 1.000 | Min. : 1.000 | Min. :1.00 | Min. :1.000 | Min. :1.000 | Min. : 1.000 | Min. :1.000 | Min. :1.00 | Min. :1.000 | Min. :7.054e+08 | |
1st Qu.: 410.5 | 1st Qu.: 418 | 1st Qu.: 513 | 1st Qu.: 367.5 | 1st Qu.: 173.5 | 1st Qu.: 84.0 | 1st Qu.: 46.5 | 1st Qu.: 28.0 | 1st Qu.: 19.00 | 1st Qu.: 13.0 | 1st Qu.: 8.00 | 1st Qu.: 6.00 | 1st Qu.: 4.00 | 1st Qu.: 2.000 | 1st Qu.: 2.000 | 1st Qu.: 1.000 | 1st Qu.: 1.000 | 1st Qu.:1.00 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.: 1.000 | 1st Qu.:1.000 | 1st Qu.:1.00 | 1st Qu.:1.000 | 1st Qu.:2.954e+09 | |
Median : 988.0 | Median : 1016 | Median : 1312 | Median : 912.0 | Median : 438.0 | Median : 218.0 | Median : 108.0 | Median : 65.0 | Median : 39.00 | Median : 31.0 | Median : 18.00 | Median : 12.00 | Median :10.00 | Median : 5.000 | Median : 4.000 | Median : 2.000 | Median : 2.000 | Median :1.00 | Median :1.000 | Median :1.000 | Median : 1.000 | Median :1.000 | Median :1.00 | Median :1.000 | Median :5.697e+09 | |
Mean : 4795.7 | Mean : 3716 | Mean : 4742 | Mean : 3250.8 | Mean : 1439.7 | Mean : 611.6 | Mean : 289.1 | Mean : 163.5 | Mean : 89.63 | Mean : 69.2 | Mean : 33.19 | Mean : 21.69 | Mean :17.31 | Mean : 8.545 | Mean : 6.044 | Mean : 3.378 | Mean : 2.373 | Mean :1.61 | Mean :1.398 | Mean :1.304 | Mean : 1.469 | Mean :1.042 | Mean :1.16 | Mean :1.154 | Mean :1.784e+10 | |
3rd Qu.: 4071.0 | 3rd Qu.: 3816 | 3rd Qu.: 4843 | 3rd Qu.: 3441.5 | 3rd Qu.: 1575.5 | 3rd Qu.: 714.0 | 3rd Qu.: 335.5 | 3rd Qu.: 187.0 | 3rd Qu.:103.50 | 3rd Qu.: 89.0 | 3rd Qu.: 39.50 | 3rd Qu.: 28.00 | 3rd Qu.:23.00 | 3rd Qu.:12.000 | 3rd Qu.: 8.000 | 3rd Qu.: 5.000 | 3rd Qu.: 3.000 | 3rd Qu.:2.00 | 3rd Qu.:2.000 | 3rd Qu.:2.000 | 3rd Qu.: 1.000 | 3rd Qu.:1.000 | 3rd Qu.:1.00 | 3rd Qu.:1.000 | 3rd Qu.:1.857e+10 | |
Max. :79657.0 | Max. :43263 | Max. :61064 | Max. :39132.0 | Max. :15675.0 | Max. :5810.0 | Max. :2495.0 | Max. :1220.0 | Max. :673.00 | Max. :479.0 | Max. :202.00 | Max. :139.00 | Max. :94.00 | Max. :50.000 | Max. :33.000 | Max. :15.000 | Max. :10.000 | Max. :5.00 | Max. :5.000 | Max. :3.000 | Max. :12.000 | Max. :2.000 | Max. :2.00 | Max. :2.000 | Max. :1.870e+11 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
2 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P19_URB.rds")
tabla %>%
rownames_to_column("Total hijos/as nacidos vivos") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Total hijos/as nacidos vivos | Correlación |
---|---|
0_hijos/as | 0.863637324892285 |
1_hijos/as | 0.865206323977793 |
2_hijos/as | 0.862658712858027 |
3_hijos/as | 0.852880073280493 |
4_hijos/as | 0.841088540251352 |
5_hijos/as | 0.827593557534961 |
6_hijos/as | 0.8063107469772 |
7_hijos/as | 0.78446453307907 |
8_hijos/as | 0.757845882241486 |
9_hijos/as | 0.750354677507411 |
10_hijos/as | 0.684394436624982 |
11_hijos/as | 0.67408189719666 |
12_hijos/as | 0.655030954769265 |
13_hijos/as | 0.627253568504428 |
14_hijos/as | 0.550108912012257 |
15_hijos/as | 0.505203039620535 |
16_hijos/as | 0.412671671354417 |
17_hijos/as | 0.285160123480234 |
18_hijos/as | 0.334934113419594 |
19_hijos/as | 0.418887080526998 |
20_hijos/as | 0.128195004723576 |
21_hijos/as | -0.238470763360932 |
22_hijos/as | 0.0881917103688197 |
23_hijos/as | 0 |
2.0.1 Kendall
i <- 1
f <- 10
for (cc in 1:2) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "21 - 23"
df_2017_2_sub_subset <- union_final_urb[,c(22:25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
2.0.2 Pearson
i <- 1
f <- 10
for (cc in 1:2) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "21 - 23"
df_2017_2_sub_subset <- union_final_urb[,c(22:25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
2.0.3 Spearman
i <- 1
f <- 10
for (cc in 1:2) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "21 - 23"
df_2017_2_sub_subset <- union_final_urb[,c(22:25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
3 Nivel nacional RURAL (código 2)
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P19
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:23){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,48,2)
for (i in 1:100) {
names(comuna_corr)[III[i]] <- paste0(i-1, "_hijos/as")
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P19_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
0_hijos/as | 1_hijos/as | 2_hijos/as | 3_hijos/as | 4_hijos/as | 5_hijos/as | 6_hijos/as | 7_hijos/as | 8_hijos/as | 9_hijos/as | 10_hijos/as | 11_hijos/as | 12_hijos/as | 13_hijos/as | 14_hijos/as | 15_hijos/as | 16_hijos/as | 17_hijos/as | 18_hijos/as | 19_hijos/as | 20_hijos/as | 21_hijos/as | 22_hijos/as | 23_hijos/as | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 3.0 | Min. : 1.0 | Min. : 4.0 | Min. : 3.0 | Min. : 1.0 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.000 | Min. : 1.00 | Min. : 1.000 | Min. : 1.000 | Min. :1.000 | Min. :1.000 | Min. :1.000 | Min. :1.000 | Min. :1.000 | Min. :1 | Min. :1 | Min. :1 | Min. :2.792e+08 | |
1st Qu.: 177.0 | 1st Qu.: 152.0 | 1st Qu.: 212.2 | 1st Qu.: 171.0 | 1st Qu.: 88.0 | 1st Qu.: 46.0 | 1st Qu.: 26.00 | 1st Qu.: 17.00 | 1st Qu.: 12.00 | 1st Qu.: 9.0 | 1st Qu.: 5.00 | 1st Qu.: 4.00 | 1st Qu.: 3.000 | 1st Qu.: 2.00 | 1st Qu.: 1.000 | 1st Qu.: 1.000 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.:1.809e+09 | |
Median : 326.0 | Median : 322.5 | Median : 436.0 | Median : 330.0 | Median : 183.0 | Median : 97.0 | Median : 55.00 | Median : 34.00 | Median : 24.50 | Median : 17.0 | Median :12.00 | Median : 8.50 | Median : 7.000 | Median : 3.00 | Median : 2.000 | Median : 1.000 | Median :1.000 | Median :1.000 | Median :1.000 | Median :1.000 | Median :1.000 | Median :1 | Median :1 | Median :1 | Median :3.546e+09 | |
Mean : 446.6 | Mean : 427.2 | Mean : 579.2 | Mean : 438.9 | Mean : 226.6 | Mean :118.3 | Mean : 68.69 | Mean : 45.02 | Mean : 31.08 | Mean : 22.9 | Mean :15.67 | Mean :10.28 | Mean : 8.485 | Mean : 4.39 | Mean : 3.277 | Mean : 2.155 | Mean :1.526 | Mean :1.227 | Mean :1.212 | Mean :1.154 | Mean :1.182 | Mean :1 | Mean :1 | Mean :1 | Mean :8.206e+09 | |
3rd Qu.: 576.5 | 3rd Qu.: 590.8 | 3rd Qu.: 773.0 | 3rd Qu.: 584.0 | 3rd Qu.: 299.0 | 3rd Qu.:160.0 | 3rd Qu.: 92.00 | 3rd Qu.: 59.50 | 3rd Qu.: 43.00 | 3rd Qu.: 29.0 | 3rd Qu.:21.00 | 3rd Qu.:13.00 | 3rd Qu.:11.000 | 3rd Qu.: 6.00 | 3rd Qu.: 4.000 | 3rd Qu.: 3.000 | 3rd Qu.:2.000 | 3rd Qu.:1.000 | 3rd Qu.:1.000 | 3rd Qu.:1.000 | 3rd Qu.:1.000 | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.:7.252e+09 | |
Max. :3646.0 | Max. :3244.0 | Max. :4362.0 | Max. :3727.0 | Max. :1834.0 | Max. :855.0 | Max. :516.00 | Max. :332.00 | Max. :218.00 | Max. :156.0 | Max. :83.00 | Max. :62.00 | Max. :66.000 | Max. :33.00 | Max. :22.000 | Max. :12.000 | Max. :6.000 | Max. :4.000 | Max. :3.000 | Max. :2.000 | Max. :3.000 | Max. :1 | Max. :1 | Max. :1 | Max. :7.585e+10 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
4 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P19_RU.rds")
tabla %>%
rownames_to_column("Total hijos/as nacidos vivos") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Total hijos/as nacidos vivos | Correlación |
---|---|
0_hijos/as | 0.382315765917811 |
1_hijos/as | 0.343678387129653 |
2_hijos/as | 0.369770957735702 |
3_hijos/as | 0.369048298073932 |
4_hijos/as | 0.333021375422105 |
5_hijos/as | 0.261930713749856 |
6_hijos/as | 0.187802399194772 |
7_hijos/as | 0.16153198158601 |
8_hijos/as | 0.139509207623508 |
9_hijos/as | 0.128695101258297 |
10_hijos/as | 0.1154243897769 |
11_hijos/as | 0.106661650417516 |
12_hijos/as | 0.104595572256451 |
13_hijos/as | 0.117140728219076 |
14_hijos/as | 0.142103271097005 |
15_hijos/as | 0.0740260620616363 |
16_hijos/as | 0.0424315593077376 |
17_hijos/as | 0.12340194646771 |
18_hijos/as | -0.205509210126226 |
19_hijos/as | 0.165567470876943 |
20_hijos/as | 0.368329462972638 |
<- mutate_all(union_final_urb, ~replace(., is.na(.), NA)) union_final_urb
4.0.1 Kendall
i <- 1
f <- 10
for (cc in 1:2) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "21"
df_2017_2_sub_subset <- union_final_urb[,c(22,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
4.0.2 Pearson
i <- 1
f <- 10
for (cc in 1:2) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "21"
df_2017_2_sub_subset <- union_final_urb[,c(22,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)
4.0.3 Spearman
i <- 1
f <- 10
for (cc in 1:2) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "21"
df_2017_2_sub_subset <- union_final_urb[,c(22,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)