1 Nivel nacional URBANO (código 1)
1.1 Pregunta P14: Curso o año más alto aprobado
Categorías de respuesta:
0 0 grado
1 1 grado
2 2 grado
3 3 grado
4 4 grado
5 5 grado
6 6 grado
7 7 grado
8 8 grado
1.2 Generación de tabla de contingencia para la variable P14
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P14
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:8){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,100,2)
for (i in 1:9) {
names(comuna_corr)[III[i]] <- paste0(i-1," grado")
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P14_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
0 grado | 1 grado | 2 grado | 3 grado | 4 grado | 5 grado | 6 grado | 7 grado | 8 grado | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|
Min. : 50 | Min. : 63.0 | Min. : 103.0 | Min. : 90 | Min. : 294 | Min. : 56.0 | Min. : 61.0 | Min. : 29.0 | Min. : 90 | Min. :7.054e+08 | |
1st Qu.: 358 | 1st Qu.: 376.5 | 1st Qu.: 597.5 | 1st Qu.: 548 | 1st Qu.: 1642 | 1st Qu.: 387.5 | 1st Qu.: 370.5 | 1st Qu.: 190.5 | 1st Qu.: 575 | 1st Qu.:2.954e+09 | |
Median : 888 | Median : 958.0 | Median : 1473.0 | Median : 1309 | Median : 4118 | Median : 1058.0 | Median : 863.0 | Median : 427.0 | Median : 1260 | Median :5.697e+09 | |
Mean : 3065 | Mean : 3616.5 | Mean : 5984.1 | Mean : 5102 | Mean : 14511 | Mean : 4835.9 | Mean : 3003.2 | Mean : 1294.3 | Mean : 3408 | Mean :1.784e+10 | |
3rd Qu.: 3458 | 3rd Qu.: 3756.0 | 3rd Qu.: 5710.0 | 3rd Qu.: 5016 | 3rd Qu.: 14821 | 3rd Qu.: 4285.5 | 3rd Qu.: 3020.5 | 3rd Qu.: 1467.5 | 3rd Qu.: 3877 | 3rd Qu.:1.857e+10 | |
Max. :36912 | Max. :45147.0 | Max. :71358.0 | Max. :59672 | Max. :180923 | Max. :77539.0 | Max. :30260.0 | Max. :14894.0 | Max. :39280 | Max. :1.870e+11 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
2 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
2.1 Kendall
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla %>%
rownames_to_column("model") %>%
mutate(V1 = cell_spec(V1, background=ifelse(V1 == max(V1), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
model | V1 |
---|---|
0 grado | 0.853918047538878 |
1 grado | 0.857241307999914 |
2 grado | 0.863702815775964 |
3 grado | 0.860337649051323 |
4 grado | 0.859645460420074 |
5 grado | 0.856948962235713 |
6 grado | 0.845654277141951 |
7 grado | 0.852622714298996 |
8 grado | 0.832315389815683 |
3 Nivel nacional RURAL (código 2)
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P14
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:8){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,100,2)
for (i in 1:9) {
names(comuna_corr)[III[i]] <- paste0(i-1," grado")
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P14_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
0 grado | 1 grado | 2 grado | 3 grado | 4 grado | 5 grado | 6 grado | 7 grado | 8 grado | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|
Min. : 2.0 | Min. : 1.0 | Min. : 10.0 | Min. : 2.0 | Min. : 5 | Min. : 4.0 | Min. : 3.0 | Min. : 1.0 | Min. : 1.0 | Min. :2.792e+08 | |
1st Qu.: 122.0 | 1st Qu.: 190.0 | 1st Qu.: 299.2 | 1st Qu.: 279.0 | 1st Qu.: 729 | 1st Qu.: 203.0 | 1st Qu.: 226.5 | 1st Qu.: 90.5 | 1st Qu.: 317.5 | 1st Qu.:1.809e+09 | |
Median : 247.0 | Median : 356.0 | Median : 551.0 | Median : 515.0 | Median : 1306 | Median : 393.0 | Median : 461.5 | Median : 183.0 | Median : 635.0 | Median :3.546e+09 | |
Mean : 348.9 | Mean : 470.2 | Mean : 718.0 | Mean : 649.4 | Mean : 1739 | Mean : 522.5 | Mean : 553.9 | Mean : 257.2 | Mean : 829.6 | Mean :8.206e+09 | |
3rd Qu.: 457.5 | 3rd Qu.: 613.0 | 3rd Qu.: 897.0 | 3rd Qu.: 873.0 | 3rd Qu.: 2288 | 3rd Qu.: 649.2 | 3rd Qu.: 761.2 | 3rd Qu.: 350.5 | 3rd Qu.:1101.0 | 3rd Qu.:7.252e+09 | |
Max. :2830.0 | Max. :3742.0 | Max. :5728.0 | Max. :4876.0 | Max. :13952 | Max. :4024.0 | Max. :3755.0 | Max. :2070.0 | Max. :5539.0 | Max. :7.585e+10 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
4 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
4.1 Kendall
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla %>%
rownames_to_column("model") %>%
mutate(V1 = cell_spec(V1, background=ifelse(V1 == max(V1), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
model | V1 |
---|---|
0 grado | 0.394209928943015 |
1 grado | 0.376102463631748 |
2 grado | 0.409871137725314 |
3 grado | 0.375939078929754 |
4 grado | 0.405745160987278 |
5 grado | 0.412095051006078 |
6 grado | 0.265174606919571 |
7 grado | 0.304643216235821 |
8 grado | 0.270298775490883 |