Service as a Freelancer

If you want hire me as a freelancer please use the following links.

Reading and Construction Graph

#Set working directory
setwd("G:\\Upwork\\Celeste")

#read graph from csv files
cbi98 = read.csv("cbi_only_edges_1998.csv",header = TRUE)
cbi99 = read.csv("cbi_only_edges_1999.csv",header = TRUE)
cbi00 = read.csv("cbi_only_edges_2000.csv",header = TRUE)
co98 = read.csv("co-occurrence_edges_1998.csv",header = TRUE)
co99 = read.csv("co-occurrence_edges_1999.csv",header = TRUE)
co00 = read.csv("co-occurrence_edges_2000.csv",header = TRUE)

#Merge graphs
Year98 = rbind(cbi98,co98[c(1,2,4)])
Year99 = rbind(cbi99,co99[c(1,2,4)])
Year00 = rbind(cbi00,co00[c(1,2,4)])
g98 = graph.data.frame(Year98,directed = FALSE)
g98 = simplify(g98,remove.multiple = TRUE,remove.loops = TRUE)

g99 = graph.data.frame(Year99,directed = FALSE)
g99 = simplify(g99,remove.multiple = TRUE,remove.loops = TRUE)

g00 = graph.data.frame(Year00,directed = FALSE)
g00 = simplify(g00,remove.multiple = TRUE,remove.loops = TRUE)

Network Visualization Year 1998

Stats About the Network

#Top 10 Nodes, using Degree Centrality
sort(degree(g98),decreasing = TRUE)[1:10]
##  609  771  461 1455   61  337  199  185  857  939 
##   33   24   22   21   20   20   19   18   16   15
#Top 10 Nodes, using Betweenness Centrality
sort(betweenness(g98),decreasing = TRUE)[1:10]
##       609      1455       771       337       857       185        61       680 
## 2106.9828 1012.8326  972.9360  940.6570  897.4367  866.2037  864.3019  851.5789 
##       461       199 
##  846.4334  729.1046
#Top 10 Nodes, using Closeness Centrality
sort(closeness(g98),decreasing = TRUE)[1:10]
## Warning in closeness(g98): At centrality.c:2784 :closeness centrality is not
## well-defined for disconnected graphs
##          609          771          337          185         1455          461 
## 0.0001544640 0.0001541545 0.0001539172 0.0001536807 0.0001536807 0.0001536334 
##           61          199          430          680 
## 0.0001536098 0.0001533742 0.0001532802 0.0001532802
#Density of the Network
graph.density(g98)
## [1] 0.02774378
#Degree Distribution of the network
degree.distribution(g98)
##  [1] 0.000000000 0.377906977 0.116279070 0.058139535 0.052325581 0.075581395
##  [7] 0.087209302 0.052325581 0.034883721 0.017441860 0.017441860 0.005813953
## [13] 0.017441860 0.017441860 0.011627907 0.005813953 0.005813953 0.000000000
## [19] 0.005813953 0.005813953 0.011627907 0.005813953 0.005813953 0.000000000
## [25] 0.005813953 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
## [31] 0.000000000 0.000000000 0.000000000 0.005813953
#Assortativity of the network
assortativity.degree(g98)
## [1] 0.01170191
#Diameter of the network
diameter(g98)
## [1] 8

Network Visualization of Year 1999

Coloring with communities.

Coloring with joing new Nodes, Where, yellow color represents the new nodes in the graph, while, blue color shows the old nodes. It means, old nodes are still some importance the network.

Stats About the Network

#Top 10 Nodes, using Degree Centrality
sort(degree(g99),decreasing = TRUE)[1:10]
## 185 808 461 609 821 430 198 170 680 446 
##  29  26  21  20  20  19  16  14  14  13
#Top 10 Nodes, using Betweenness Centrality
sort(betweenness(g99),decreasing = TRUE)[1:10]
##       185       808       766       198      1319       481       461       609 
## 1673.6295 1556.2568 1020.4479  912.4383  739.6970  738.0976  688.7137  663.8551 
##       430       337 
##  663.2190  647.0095
#Top 10 Nodes, using Closeness Centrality
sort(closeness(g99),decreasing = TRUE)[1:10]
## Warning in closeness(g99): At centrality.c:2784 :closeness centrality is not
## well-defined for disconnected graphs
##          808          185          609          821          461          680 
## 0.0001413028 0.0001412828 0.0001410636 0.0001408649 0.0001407856 0.0001405877 
##          481          815          198          170 
## 0.0001405284 0.0001404889 0.0001404692 0.0001403903
#Density of the Network
graph.density(g99)
## [1] 0.02650602
#Degree Distribution of the network
degree.distribution(g99)
##  [1] 0.000000000 0.331325301 0.150602410 0.090361446 0.102409639 0.114457831
##  [7] 0.018072289 0.030120482 0.036144578 0.012048193 0.018072289 0.012048193
## [13] 0.012048193 0.018072289 0.012048193 0.000000000 0.006024096 0.000000000
## [19] 0.000000000 0.006024096 0.012048193 0.006024096 0.000000000 0.000000000
## [25] 0.000000000 0.000000000 0.006024096 0.000000000 0.000000000 0.006024096
#Assortativity of the network
assortativity.degree(g99)
## [1] 0.1199538
#Diameter of the network
diameter(g99)
## [1] 8

Network Visualization of Year 2000

Coloring with communities

Coloring with joining new nodes. Where, new nodes represented by the yellow color, while, old nodes are shown by the blue color.

Stats About the Network of 2000

#Top 10 Nodes, using Degree Centrality
sort(degree(g00),decreasing = TRUE)[1:10]
##  680  461  857   61 1455  411 1319 1545  808 1078 
##   39   34   31   30   29   28   27   27   25   25
#Top 10 Nodes, using Betweenness Centrality
sort(betweenness(g00),decreasing = TRUE)[1:10]
##       680       857       461      1319      1078      2000       609      1455 
## 2353.3523 2014.1286 1976.2214 1372.2272 1369.4223 1213.0000 1141.2204 1013.6211 
##      1545      1534 
##  948.0960  868.5746
#Top 10 Nodes, using Closeness Centrality
sort(closeness(g00),decreasing = TRUE)[1:10]
## Warning in closeness(g00): At centrality.c:2784 :closeness centrality is not
## well-defined for disconnected graphs
##          680          461          857         1545         1319         1078 
## 4.239444e-05 4.238006e-05 4.236211e-05 4.236032e-05 4.235135e-05 4.234597e-05 
##         1455          411          427          609 
## 4.234417e-05 4.233163e-05 4.232804e-05 4.232088e-05
#Density of the Network
graph.density(g00)
## [1] 0.02041621
#Degree Distribution of the network
degree.distribution(g00)
##  [1] 0.000000000 0.415730337 0.093632959 0.123595506 0.059925094 0.033707865
##  [7] 0.029962547 0.018726592 0.014981273 0.018726592 0.022471910 0.003745318
## [13] 0.022471910 0.029962547 0.003745318 0.011235955 0.007490637 0.014981273
## [19] 0.000000000 0.007490637 0.000000000 0.003745318 0.014981273 0.000000000
## [25] 0.007490637 0.011235955 0.000000000 0.007490637 0.003745318 0.003745318
## [31] 0.003745318 0.003745318 0.000000000 0.000000000 0.003745318 0.000000000
## [37] 0.000000000 0.000000000 0.000000000 0.003745318
#Assortativity of the network
assortativity.degree(g00)
## [1] 0.06758523
#Diameter of the network
diameter(g00)
## [1] 7
#computes broakrage