1D CNN
# history<-read_csv("/home/gab/dga-wb-r/results/cacic2021-test-only/attv4/History/results_ctu19b_awc-batch_size=1024-lstm_size=128-embedingdim=128-dropout=0.5-history.csv" ,col_types = cols())
history<-read_csv("/home/gab/dga-wb-r/results/cacic2021-test-only/results_history_test_cnn1d-augmented-ctu19-mccv-epochs=15-endgame-batch=1024-maxlen=1000-ctu19bplus-nb_filter=256-embedingdim=128-kernel_size=4-hidden_size=128-test-only.csv" ,col_types = cols())
#history<-history %>% reshape2::melt() %>% as.data.frame() %>% tibble::rowid_to_column()
loss_plot<-ggplot(history %>% filter(metric=="loss"))+
facet_wrap(~data)+
geom_point(aes(x=epoch,y=value),col='orange',alpha=0.9)+
geom_smooth(aes(x=epoch,y=value),se=FALSE,size=0.5,alpha=0.5,color='red')+
xlim(0,60)+
ylim(0,.5)+
geom_line(aes(x=epoch,y=value),col='orange',alpha=0.9)+
ggdark::dark_theme_bw()+ labs(title="Loss values for Training and Validation sets (1DCNN)")
acc_plot<-ggplot(history %>% filter(metric=="accuracy"))+
facet_wrap(~data)+
geom_point(aes(x=epoch,y=value),col='orange',alpha=0.9)+
geom_smooth(aes(x=epoch,y=value),se=FALSE, size=0.5,alpha=0.5,color='red')+
xlim(0,60)+
ylim(0.5,1)+
geom_line(aes(x=epoch,y=value),col='orange',alpha=0.9)+
ggdark::dark_theme_bw()+ labs(title="Accuracy values for Training and Validation sets (1DCNN) ")
gridExtra::grid.arrange(loss_plot,acc_plot,ncol=1)

LSTM
history<-read_csv("/home/gab/dga-wb-r/results/cacic2021-test-only/results_history_test_lstm-augmented-ctu19-mccv-epochs=15-endgame-batch=1024-maxlen=1000-ctu19bplus-test-only-embedingdim=64-lstm_size=32-dropout=0.1-test-only.csv" ,col_types = cols())
#history<-history %>% reshape2::melt() %>% as.data.frame() %>% tibble::rowid_to_column()
loss_plot<-ggplot(history %>% filter(metric=="loss"))+
facet_wrap(~data)+
geom_point(aes(x=epoch,y=value),col='orange',alpha=0.9)+
geom_smooth(aes(x=epoch,y=value),se=FALSE,size=0.5,alpha=0.5,color='red')+
xlim(0,60)+
ylim(0,.5)+
geom_line(aes(x=epoch,y=value),col='orange',alpha=0.9)+
ggdark::dark_theme_bw()+ labs(title="Loss values for Training and Validation sets (LSTM)")
acc_plot<-ggplot(history %>% filter(metric=="accuracy"))+
facet_wrap(~data)+
geom_point(aes(x=epoch,y=value),col='orange',alpha=0.9)+
geom_smooth(aes(x=epoch,y=value),se=FALSE, size=0.5,alpha=0.5,color='red')+
xlim(0,60)+
ylim(0.5,1)+
geom_line(aes(x=epoch,y=value),col='orange',alpha=0.9)+
ggdark::dark_theme_bw()+ labs(title="Accuracy values for Training and Validation sets (LSTM) ")
gridExtra::grid.arrange(loss_plot,acc_plot,ncol=1)

ATTENTION
history<-read_csv("/home/gab/dga-wb-r/results/cacic2021-test-only/attv4/History/results_ctu19b_awc-batch_size=1024-lstm_size=128-embedingdim=128-dropout=0.5-history.csv" ,col_types = cols())
history_val<-history %>% tibble::rowid_to_column() %>% select(rowid,loss,val_loss)
history_val<-history_val %>% reshape2::melt(id.vars="rowid") %>% mutate(data=ifelse(variable=="loss","training","validation"),variable='loss') %>% rename(epoch='rowid',metric='variable')
history_acc<-history %>% tibble::rowid_to_column() %>% select(rowid,acc,val_acc)
history_acc<-history_acc %>% reshape2::melt(id.vars="rowid") %>% mutate(data=ifelse(variable=="acc","training","validation"),variable='accuracy') %>% rename(epoch='rowid',metric='variable')
history<-rbind(history_acc,history_val)
loss_plot<-ggplot(history %>% filter(metric=="loss"))+
facet_wrap(~data)+
geom_point(aes(x=epoch,y=value),col='orange',alpha=0.9)+
geom_smooth(aes(x=epoch,y=value),se=FALSE,size=0.5,alpha=0.5,color='red')+
xlim(0,60)+
ylim(0,.5)+
geom_line(aes(x=epoch,y=value),col='orange',alpha=0.9)+
ggdark::dark_theme_bw()+ labs(title="Loss values for Training and Validation sets (ATTE )")
acc_plot<-ggplot(history %>% filter(metric=="accuracy"))+
facet_wrap(~data)+
geom_point(aes(x=epoch,y=value),col='orange',alpha=0.9)+
geom_smooth(aes(x=epoch,y=value),se=FALSE, size=0.5,alpha=0.5,color='red')+
xlim(0,60)+
ylim(0.5,1)+
geom_line(aes(x=epoch,y=value),col='orange',alpha=0.9)+
ggdark::dark_theme_bw()+ labs(title="Accuracy values for Training and Validation sets (ATTE )")
gridExtra::grid.arrange(loss_plot,acc_plot,ncol=1)

LS0tCnRpdGxlOiAiS2VyYXMgTW9kZWxzIEN1cnZlcyBmb3IgU2VxdWVuY2UgQ2xhc3NpZmljYXRpb24iCm91dHB1dDogCiAgaHRtbF9ub3RlYm9vazogCiAgICBjb2RlX2ZvbGRpbmc6IGhpZGUKLS0tCgojIDFEIENOTiAKYGBge3IgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTB9CiMgIGhpc3Rvcnk8LXJlYWRfY3N2KCIvaG9tZS9nYWIvZGdhLXdiLXIvcmVzdWx0cy9jYWNpYzIwMjEtdGVzdC1vbmx5L2F0dHY0L0hpc3RvcnkvcmVzdWx0c19jdHUxOWJfYXdjLWJhdGNoX3NpemU9MTAyNC1sc3RtX3NpemU9MTI4LWVtYmVkaW5nZGltPTEyOC1kcm9wb3V0PTAuNS1oaXN0b3J5LmNzdiIgLGNvbF90eXBlcyA9IGNvbHMoKSkKCmhpc3Rvcnk8LXJlYWRfY3N2KCIvaG9tZS9nYWIvZGdhLXdiLXIvcmVzdWx0cy9jYWNpYzIwMjEtdGVzdC1vbmx5L3Jlc3VsdHNfaGlzdG9yeV90ZXN0X2NubjFkLWF1Z21lbnRlZC1jdHUxOS1tY2N2LWVwb2Nocz0xNS1lbmRnYW1lLWJhdGNoPTEwMjQtbWF4bGVuPTEwMDAtY3R1MTlicGx1cy1uYl9maWx0ZXI9MjU2LWVtYmVkaW5nZGltPTEyOC1rZXJuZWxfc2l6ZT00LWhpZGRlbl9zaXplPTEyOC10ZXN0LW9ubHkuY3N2IiAsY29sX3R5cGVzID0gY29scygpKQoKI2hpc3Rvcnk8LWhpc3RvcnkgJT4lIHJlc2hhcGUyOjptZWx0KCkgJT4lIGFzLmRhdGEuZnJhbWUoKSAlPiUgdGliYmxlOjpyb3dpZF90b19jb2x1bW4oKQoKbG9zc19wbG90PC1nZ3Bsb3QoaGlzdG9yeSAlPiUgZmlsdGVyKG1ldHJpYz09Imxvc3MiKSkrCiAgZmFjZXRfd3JhcCh+ZGF0YSkrCiAgZ2VvbV9wb2ludChhZXMoeD1lcG9jaCx5PXZhbHVlKSxjb2w9J29yYW5nZScsYWxwaGE9MC45KSsKICBnZW9tX3Ntb290aChhZXMoeD1lcG9jaCx5PXZhbHVlKSxzZT1GQUxTRSxzaXplPTAuNSxhbHBoYT0wLjUsY29sb3I9J3JlZCcpKwogICB4bGltKDAsNjApKwogIHlsaW0oMCwuNSkrCiAgZ2VvbV9saW5lKGFlcyh4PWVwb2NoLHk9dmFsdWUpLGNvbD0nb3JhbmdlJyxhbHBoYT0wLjkpKwogIGdnZGFyazo6ZGFya190aGVtZV9idygpKyBsYWJzKHRpdGxlPSJMb3NzIHZhbHVlcyBmb3IgVHJhaW5pbmcgYW5kIFZhbGlkYXRpb24gc2V0cyAoMURDTk4pIikKCgphY2NfcGxvdDwtZ2dwbG90KGhpc3RvcnkgJT4lIGZpbHRlcihtZXRyaWM9PSJhY2N1cmFjeSIpKSsKICBmYWNldF93cmFwKH5kYXRhKSsKICBnZW9tX3BvaW50KGFlcyh4PWVwb2NoLHk9dmFsdWUpLGNvbD0nb3JhbmdlJyxhbHBoYT0wLjkpKwogIGdlb21fc21vb3RoKGFlcyh4PWVwb2NoLHk9dmFsdWUpLHNlPUZBTFNFLCBzaXplPTAuNSxhbHBoYT0wLjUsY29sb3I9J3JlZCcpKwogIHhsaW0oMCw2MCkrCiAgeWxpbSgwLjUsMSkrCiAgZ2VvbV9saW5lKGFlcyh4PWVwb2NoLHk9dmFsdWUpLGNvbD0nb3JhbmdlJyxhbHBoYT0wLjkpKwogIGdnZGFyazo6ZGFya190aGVtZV9idygpKyBsYWJzKHRpdGxlPSJBY2N1cmFjeSB2YWx1ZXMgZm9yIFRyYWluaW5nIGFuZCBWYWxpZGF0aW9uIHNldHMgKDFEQ05OKSAiKQoKZ3JpZEV4dHJhOjpncmlkLmFycmFuZ2UobG9zc19wbG90LGFjY19wbG90LG5jb2w9MSkKYGBgCgojIExTVE0KCmBgYHtyIGZpZy5oZWlnaHQ9OCwgZmlnLndpZHRoPTEwfQoKaGlzdG9yeTwtcmVhZF9jc3YoIi9ob21lL2dhYi9kZ2Etd2Itci9yZXN1bHRzL2NhY2ljMjAyMS10ZXN0LW9ubHkvcmVzdWx0c19oaXN0b3J5X3Rlc3RfbHN0bS1hdWdtZW50ZWQtY3R1MTktbWNjdi1lcG9jaHM9MTUtZW5kZ2FtZS1iYXRjaD0xMDI0LW1heGxlbj0xMDAwLWN0dTE5YnBsdXMtdGVzdC1vbmx5LWVtYmVkaW5nZGltPTY0LWxzdG1fc2l6ZT0zMi1kcm9wb3V0PTAuMS10ZXN0LW9ubHkuY3N2IiAsY29sX3R5cGVzID0gY29scygpKQoKI2hpc3Rvcnk8LWhpc3RvcnkgJT4lIHJlc2hhcGUyOjptZWx0KCkgJT4lIGFzLmRhdGEuZnJhbWUoKSAlPiUgdGliYmxlOjpyb3dpZF90b19jb2x1bW4oKQoKbG9zc19wbG90PC1nZ3Bsb3QoaGlzdG9yeSAlPiUgZmlsdGVyKG1ldHJpYz09Imxvc3MiKSkrCiAgZmFjZXRfd3JhcCh+ZGF0YSkrCiAgZ2VvbV9wb2ludChhZXMoeD1lcG9jaCx5PXZhbHVlKSxjb2w9J29yYW5nZScsYWxwaGE9MC45KSsKICBnZW9tX3Ntb290aChhZXMoeD1lcG9jaCx5PXZhbHVlKSxzZT1GQUxTRSxzaXplPTAuNSxhbHBoYT0wLjUsY29sb3I9J3JlZCcpKwogICB4bGltKDAsNjApKwogIHlsaW0oMCwuNSkrCiAgZ2VvbV9saW5lKGFlcyh4PWVwb2NoLHk9dmFsdWUpLGNvbD0nb3JhbmdlJyxhbHBoYT0wLjkpKwogIGdnZGFyazo6ZGFya190aGVtZV9idygpKyBsYWJzKHRpdGxlPSJMb3NzIHZhbHVlcyBmb3IgVHJhaW5pbmcgYW5kIFZhbGlkYXRpb24gc2V0cyAoTFNUTSkiKQoKCmFjY19wbG90PC1nZ3Bsb3QoaGlzdG9yeSAlPiUgZmlsdGVyKG1ldHJpYz09ImFjY3VyYWN5IikpKwogIGZhY2V0X3dyYXAofmRhdGEpKwogIGdlb21fcG9pbnQoYWVzKHg9ZXBvY2gseT12YWx1ZSksY29sPSdvcmFuZ2UnLGFscGhhPTAuOSkrCiAgZ2VvbV9zbW9vdGgoYWVzKHg9ZXBvY2gseT12YWx1ZSksc2U9RkFMU0UsIHNpemU9MC41LGFscGhhPTAuNSxjb2xvcj0ncmVkJykrCiAgeGxpbSgwLDYwKSsKICB5bGltKDAuNSwxKSsKICBnZW9tX2xpbmUoYWVzKHg9ZXBvY2gseT12YWx1ZSksY29sPSdvcmFuZ2UnLGFscGhhPTAuOSkrCiAgZ2dkYXJrOjpkYXJrX3RoZW1lX2J3KCkrIGxhYnModGl0bGU9IkFjY3VyYWN5IHZhbHVlcyBmb3IgVHJhaW5pbmcgYW5kIFZhbGlkYXRpb24gc2V0cyAoTFNUTSkgIikKCmdyaWRFeHRyYTo6Z3JpZC5hcnJhbmdlKGxvc3NfcGxvdCxhY2NfcGxvdCxuY29sPTEpCgpgYGAKCiMgQVRURU5USU9OCgoKYGBge3IgZmlnLmhlaWdodD04LCBmaWcud2lkdGg9MTB9CiBoaXN0b3J5PC1yZWFkX2NzdigiL2hvbWUvZ2FiL2RnYS13Yi1yL3Jlc3VsdHMvY2FjaWMyMDIxLXRlc3Qtb25seS9hdHR2NC9IaXN0b3J5L3Jlc3VsdHNfY3R1MTliX2F3Yy1iYXRjaF9zaXplPTEwMjQtbHN0bV9zaXplPTEyOC1lbWJlZGluZ2RpbT0xMjgtZHJvcG91dD0wLjUtaGlzdG9yeS5jc3YiICxjb2xfdHlwZXMgPSBjb2xzKCkpCmhpc3RvcnlfdmFsPC1oaXN0b3J5ICAgJT4lIHRpYmJsZTo6cm93aWRfdG9fY29sdW1uKCkgJT4lIHNlbGVjdChyb3dpZCxsb3NzLHZhbF9sb3NzKSAKaGlzdG9yeV92YWw8LWhpc3RvcnlfdmFsICU+JSByZXNoYXBlMjo6bWVsdChpZC52YXJzPSJyb3dpZCIpICU+JSBtdXRhdGUoZGF0YT1pZmVsc2UodmFyaWFibGU9PSJsb3NzIiwidHJhaW5pbmciLCJ2YWxpZGF0aW9uIiksdmFyaWFibGU9J2xvc3MnKSAlPiUgcmVuYW1lKGVwb2NoPSdyb3dpZCcsbWV0cmljPSd2YXJpYWJsZScpCgpoaXN0b3J5X2FjYzwtaGlzdG9yeSAgICU+JSB0aWJibGU6OnJvd2lkX3RvX2NvbHVtbigpICU+JSBzZWxlY3Qocm93aWQsYWNjLHZhbF9hY2MpIApoaXN0b3J5X2FjYzwtaGlzdG9yeV9hY2MgJT4lIHJlc2hhcGUyOjptZWx0KGlkLnZhcnM9InJvd2lkIikgJT4lIG11dGF0ZShkYXRhPWlmZWxzZSh2YXJpYWJsZT09ImFjYyIsInRyYWluaW5nIiwidmFsaWRhdGlvbiIpLHZhcmlhYmxlPSdhY2N1cmFjeScpICU+JSByZW5hbWUoZXBvY2g9J3Jvd2lkJyxtZXRyaWM9J3ZhcmlhYmxlJykKCmhpc3Rvcnk8LXJiaW5kKGhpc3RvcnlfYWNjLGhpc3RvcnlfdmFsKQoKCgpsb3NzX3Bsb3Q8LWdncGxvdChoaXN0b3J5ICU+JSBmaWx0ZXIobWV0cmljPT0ibG9zcyIpKSsKICBmYWNldF93cmFwKH5kYXRhKSsKICBnZW9tX3BvaW50KGFlcyh4PWVwb2NoLHk9dmFsdWUpLGNvbD0nb3JhbmdlJyxhbHBoYT0wLjkpKwogIGdlb21fc21vb3RoKGFlcyh4PWVwb2NoLHk9dmFsdWUpLHNlPUZBTFNFLHNpemU9MC41LGFscGhhPTAuNSxjb2xvcj0ncmVkJykrCiAgeGxpbSgwLDYwKSsKICB5bGltKDAsLjUpKwogIGdlb21fbGluZShhZXMoeD1lcG9jaCx5PXZhbHVlKSxjb2w9J29yYW5nZScsYWxwaGE9MC45KSsKICBnZ2Rhcms6OmRhcmtfdGhlbWVfYncoKSsgbGFicyh0aXRsZT0iTG9zcyB2YWx1ZXMgZm9yIFRyYWluaW5nIGFuZCBWYWxpZGF0aW9uIHNldHMgKEFUVEUgKSIpCgoKYWNjX3Bsb3Q8LWdncGxvdChoaXN0b3J5ICU+JSBmaWx0ZXIobWV0cmljPT0iYWNjdXJhY3kiKSkrCiAgZmFjZXRfd3JhcCh+ZGF0YSkrCiAgZ2VvbV9wb2ludChhZXMoeD1lcG9jaCx5PXZhbHVlKSxjb2w9J29yYW5nZScsYWxwaGE9MC45KSsKICBnZW9tX3Ntb290aChhZXMoeD1lcG9jaCx5PXZhbHVlKSxzZT1GQUxTRSwgc2l6ZT0wLjUsYWxwaGE9MC41LGNvbG9yPSdyZWQnKSsKICB4bGltKDAsNjApKwogIHlsaW0oMC41LDEpKwogIGdlb21fbGluZShhZXMoeD1lcG9jaCx5PXZhbHVlKSxjb2w9J29yYW5nZScsYWxwaGE9MC45KSsKICBnZ2Rhcms6OmRhcmtfdGhlbWVfYncoKSsgbGFicyh0aXRsZT0iQWNjdXJhY3kgdmFsdWVzIGZvciBUcmFpbmluZyBhbmQgVmFsaWRhdGlvbiBzZXRzIChBVFRFICkiKQoKZ3JpZEV4dHJhOjpncmlkLmFycmFuZ2UobG9zc19wbG90LGFjY19wbG90LG5jb2w9MSkKCmBgYAoK