1 Nivel nacional URBANO (código 1)
1.1 Pregunta P20: Total hijos/as actualmente vivos
1.2 Las categorías de respuesta:
1 (0-23)
1.3 Generación de tabla de contingencia para la variable P20
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P20
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:23){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,48,2)
for (i in 1:100) {
names(comuna_corr)[III[i]] <- paste0(i-1, "_hijos/as")
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P20_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
0_hijos/as | 1_hijos/as | 2_hijos/as | 3_hijos/as | 4_hijos/as | 5_hijos/as | 6_hijos/as | 7_hijos/as | 8_hijos/as | 9_hijos/as | 10_hijos/as | 11_hijos/as | 12_hijos/as | 13_hijos/as | 14_hijos/as | 15_hijos/as | 16_hijos/as | 17_hijos/as | 18_hijos/as | 19_hijos/as | 20_hijos/as | 21_hijos/as | 22_hijos/as | 23_hijos/as | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 1.00 | Min. : 62.0 | Min. : 69 | Min. : 51.0 | Min. : 28.0 | Min. : 17.0 | Min. : 5.0 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.000 | Min. : 1.00 | Min. : 1.00 | Min. :1.000 | Min. :1.000 | Min. :1 | Min. :1 | Min. :1 | Min. : 1.00 | Min. :1 | Min. :1 | Min. :1 | Min. :7.054e+08 | |
1st Qu.: 6.00 | 1st Qu.: 477.2 | 1st Qu.: 586 | 1st Qu.: 401.8 | 1st Qu.: 178.2 | 1st Qu.: 82.5 | 1st Qu.: 46.0 | 1st Qu.: 27.0 | 1st Qu.: 15.00 | 1st Qu.: 11.00 | 1st Qu.: 5.00 | 1st Qu.: 3.00 | 1st Qu.: 2.000 | 1st Qu.: 1.00 | 1st Qu.: 1.00 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.: 1.00 | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.:3.082e+09 | |
Median : 16.00 | Median : 1127.5 | Median : 1442 | Median : 990.0 | Median : 439.0 | Median : 211.5 | Median : 99.0 | Median : 56.5 | Median : 32.00 | Median : 22.00 | Median : 11.00 | Median : 7.00 | Median : 4.000 | Median : 2.00 | Median : 2.00 | Median :1.000 | Median :1.000 | Median :1 | Median :1 | Median :1 | Median : 1.00 | Median :1 | Median :1 | Median :1 | Median :6.098e+09 | |
Mean : 49.44 | Mean : 3927.7 | Mean : 4997 | Mean : 3332.0 | Mean : 1406.6 | Mean : 563.6 | Mean : 251.7 | Mean :130.8 | Mean : 66.31 | Mean : 43.94 | Mean : 18.96 | Mean :11.53 | Mean : 6.928 | Mean : 3.58 | Mean : 2.36 | Mean :1.494 | Mean :1.111 | Mean :1 | Mean :1 | Mean :1 | Mean : 3.00 | Mean :1 | Mean :1 | Mean :1 | Mean :1.822e+10 | |
3rd Qu.: 53.25 | 3rd Qu.: 4043.8 | 3rd Qu.: 5344 | 3rd Qu.: 3559.2 | 3rd Qu.: 1560.0 | 3rd Qu.: 672.0 | 3rd Qu.: 295.2 | 3rd Qu.:151.5 | 3rd Qu.: 82.00 | 3rd Qu.: 55.00 | 3rd Qu.: 24.00 | 3rd Qu.:14.00 | 3rd Qu.: 9.000 | 3rd Qu.: 5.00 | 3rd Qu.: 3.00 | 3rd Qu.:2.000 | 3rd Qu.:1.000 | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.: 1.75 | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.:2.178e+10 | |
Max. :479.00 | Max. :44399.0 | Max. :62197 | Max. :38780.0 | Max. :14754.0 | Max. :5214.0 | Max. :2094.0 | Max. :927.0 | Max. :496.00 | Max. :267.00 | Max. :111.00 | Max. :72.00 | Max. :37.000 | Max. :17.00 | Max. :12.00 | Max. :5.000 | Max. :2.000 | Max. :1 | Max. :1 | Max. :1 | Max. :12.00 | Max. :1 | Max. :1 | Max. :1 | Max. :1.870e+11 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
2 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P20_URB.rds")
tabla %>%
rownames_to_column("Total hijos/as actualmente vivos") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Total hijos/as actualmente vivos | Correlación |
---|---|
0_hijos/as | 0.781776693675254 |
1_hijos/as | 0.862117208042931 |
2_hijos/as | 0.859300548295549 |
3_hijos/as | 0.847908548847571 |
4_hijos/as | 0.834663452694691 |
5_hijos/as | 0.818948425327788 |
6_hijos/as | 0.795084770360571 |
7_hijos/as | 0.775899499345233 |
8_hijos/as | 0.721532924236297 |
9_hijos/as | 0.7252513687953 |
10_hijos/as | 0.658836899904957 |
11_hijos/as | 0.652862243076966 |
12_hijos/as | 0.606257095648438 |
13_hijos/as | 0.561270426995415 |
14_hijos/as | 0.434901682105022 |
15_hijos/as | 0.346407927231743 |
16_hijos/as | 0.0251617118698799 |
20_hijos/as | 0.086066296582387 |
2.0.1 Kendall
i <- 1
f <- 10
for (cc in 1:1) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10 - 16"
df_2017_2_sub_subset <- union_final_urb[,c(11:17,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
2.0.2 Pearson
i <- 1
f <- 10
for (cc in 1:1) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10 - 16"
df_2017_2_sub_subset <- union_final_urb[,c(11:17,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
2.0.3 Spearman
i <- 1
f <- 10
for (cc in 1:1) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10 - 16"
df_2017_2_sub_subset <- union_final_urb[,c(11:17,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
3 Nivel nacional RURAL (código 2)
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P20
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:23){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,48,2)
for (i in 1:100) {
names(comuna_corr)[III[i]] <- paste0(i-1, "_hijos/as")
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P20_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
0_hijos/as | 1_hijos/as | 2_hijos/as | 3_hijos/as | 4_hijos/as | 5_hijos/as | 6_hijos/as | 7_hijos/as | 8_hijos/as | 9_hijos/as | 10_hijos/as | 11_hijos/as | 12_hijos/as | 13_hijos/as | 14_hijos/as | 15_hijos/as | 16_hijos/as | 17_hijos/as | 18_hijos/as | 19_hijos/as | 20_hijos/as | 21_hijos/as | 22_hijos/as | 23_hijos/as | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 1.000 | Min. : 19.0 | Min. : 34.0 | Min. : 20.0 | Min. : 11.0 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.000 | Min. : 1.000 | Min. :1.000 | Min. :1.000 | Min. :1.000 | Min. :1 | Min. :1 | Min. :1 | Min. :1.0 | Min. : NA | Min. :1 | Min. :1 | Min. :5.372e+08 | |
1st Qu.: 3.000 | 1st Qu.: 236.0 | 1st Qu.: 305.5 | 1st Qu.: 223.5 | 1st Qu.: 118.0 | 1st Qu.: 60.5 | 1st Qu.: 32.25 | 1st Qu.: 21.00 | 1st Qu.: 11.00 | 1st Qu.: 8.00 | 1st Qu.: 4.00 | 1st Qu.: 3.00 | 1st Qu.: 2.000 | 1st Qu.: 1.000 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.:1.0 | 1st Qu.: NA | 1st Qu.:1 | 1st Qu.:1 | 1st Qu.:1.819e+09 | |
Median : 6.000 | Median : 371.0 | Median : 513.0 | Median : 394.0 | Median : 194.0 | Median : 99.0 | Median : 57.00 | Median : 35.00 | Median : 21.00 | Median : 15.00 | Median : 9.00 | Median : 5.00 | Median : 3.000 | Median : 2.000 | Median :1.000 | Median :1.000 | Median :1.000 | Median :1 | Median :1 | Median :1 | Median :1.0 | Median : NA | Median :1 | Median :1 | Median :3.645e+09 | |
Mean : 7.996 | Mean : 493.6 | Mean : 671.7 | Mean : 493.9 | Mean : 247.8 | Mean :125.3 | Mean : 70.48 | Mean : 43.66 | Mean : 27.22 | Mean : 18.81 | Mean :11.03 | Mean : 6.48 | Mean : 3.855 | Mean : 2.283 | Mean :1.686 | Mean :1.333 | Mean :1.042 | Mean :1 | Mean :1 | Mean :1 | Mean :1.5 | Mean :NaN | Mean :1 | Mean :1 | Mean :8.153e+09 | |
3rd Qu.:10.000 | 3rd Qu.: 641.0 | 3rd Qu.: 881.0 | 3rd Qu.: 633.0 | 3rd Qu.: 315.5 | 3rd Qu.:159.5 | 3rd Qu.: 89.75 | 3rd Qu.: 55.00 | 3rd Qu.: 37.00 | 3rd Qu.: 24.00 | 3rd Qu.:14.00 | 3rd Qu.: 8.75 | 3rd Qu.: 5.000 | 3rd Qu.: 3.000 | 3rd Qu.:2.000 | 3rd Qu.:1.500 | 3rd Qu.:1.000 | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.:1.5 | 3rd Qu.: NA | 3rd Qu.:1 | 3rd Qu.:1 | 3rd Qu.:7.252e+09 | |
Max. :61.000 | Max. :3325.0 | Max. :4571.0 | Max. :3769.0 | Max. :1770.0 | Max. :813.0 | Max. :484.00 | Max. :283.00 | Max. :173.00 | Max. :126.00 | Max. :54.00 | Max. :34.00 | Max. :23.000 | Max. :15.000 | Max. :6.000 | Max. :3.000 | Max. :2.000 | Max. :1 | Max. :1 | Max. :1 | Max. :3.0 | Max. : NA | Max. :1 | Max. :1 | Max. :7.585e+10 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
4 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P20_ru.rds")
tabla %>%
rownames_to_column("Total hijos/as actualmente vivos") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Total hijos/as actualmente vivos | Correlación |
---|---|
0_hijos/as | 0.215010384319159 |
1_hijos/as | 0.367456142923111 |
2_hijos/as | 0.395840778015413 |
3_hijos/as | 0.39340321789039 |
4_hijos/as | 0.341395431625329 |
5_hijos/as | 0.267905668609641 |
6_hijos/as | 0.182702608210855 |
7_hijos/as | 0.126802346748515 |
8_hijos/as | 0.124514153999968 |
9_hijos/as | 0.116907957761341 |
10_hijos/as | 0.0771368930397384 |
11_hijos/as | 0.0953993203267268 |
12_hijos/as | 0.161613166670031 |
13_hijos/as | 0.0899186404050551 |
14_hijos/as | 0.114128186762903 |
15_hijos/as | -0.00238964487748497 |
16_hijos/as | -0.188266392127052 |
20_hijos/as | 0.707106781186548 |
4.0.1 Kendall
i <- 1
f <- 10
for (cc in 1:1) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "21 - 23"
df_2017_2_sub_subset <- union_final_urb[,c(11:16,21,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
4.0.2 Pearson
i <- 1
f <- 10
for (cc in 1:1) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "21 - 23"
df_2017_2_sub_subset <- union_final_urb[,c(11:16,21,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)
4.0.3 Spearman
i <- 1
f <- 10
for (cc in 1:1) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "21 - 23"
df_2017_2_sub_subset <- union_final_urb[,c(11:16,21,25)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)