Correlaciones entre variables del CENSO de Viviendas, Hogares y Personas e Ingresos promedios comunales de la CASEN 2017.

VE-CC-AJ

DataIntelligence

Martes 13-07-2021


1 Nivel nacional URBANO (código 1)

1.1 Pregunta P16A_OTRO: Pueblo indígena u originario listado

Categorías de respuesta:

3 Lafquenche
4 Pehuenche
5 Huilliche
6 Picunche
21 Changos
22 Chonos
23 Ona
28 Tehuelches
33 Pueblos de América Latina
34 Pueblos del resto del mundo
35 Afrodescendiente
37 Otros pueblos presentes en el territorio nacional
97 Pueblo no declarado

1.2 Generación de tabla de contingencia para la variable P16A_OTRO

tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P16A_OTRO
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017" 
d_t <- filter(d,d$unlist.c. == 3)
lista <- c(4,5,6,21,22,23,28,33,34,35,37,97)
for(i in lista){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}

codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
 
names(comuna_corr)[2] <- "Lafquenche"
names(comuna_corr)[4] <- "Pehuenche"
names(comuna_corr)[6] <- "Huilliche"
names(comuna_corr)[8] <- "Picunche"
names(comuna_corr)[10] <- "Changos"
names(comuna_corr)[12] <- "Chonos"
names(comuna_corr)[14] <- "Ona"
names(comuna_corr)[16] <- "Tehuelches"
names(comuna_corr)[18] <- "Pueblos de América Latina"
names(comuna_corr)[20] <- "Pueblos del resto del mundo"
names(comuna_corr)[22] <- "Afrodescendiente"
names(comuna_corr)[24] <- "Otros pueblos presentes en el territorio nacional"
names(comuna_corr)[26] <- "Pueblo no declarado"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P16A_OTRO_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "500px")
Lafquenche Pehuenche Huilliche Picunche Changos Chonos Ona Tehuelches Pueblos de América Latina Pueblos del resto del mundo Afrodescendiente Otros pueblos presentes en el territorio nacional Pueblo no declarado ingresos_expandidos
Min. : 1.000 Min. : 1.00 Min. : 1.0 Min. : 1.000 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. :1.000 Min. : 3.0 Min. :1.301e+09
1st Qu.: 1.000 1st Qu.: 3.00 1st Qu.: 7.0 1st Qu.: 1.000 1st Qu.: 2.00 1st Qu.: 2.00 1st Qu.: 6.00 1st Qu.: 2.00 1st Qu.: 4.00 1st Qu.: 3.75 1st Qu.: 5.25 1st Qu.:1.000 1st Qu.: 84.0 1st Qu.:6.534e+09
Median : 2.000 Median : 9.00 Median : 42.0 Median : 4.000 Median : 4.00 Median : 4.00 Median :11.00 Median : 4.00 Median : 20.00 Median : 10.00 Median : 17.00 Median :2.000 Median : 261.0 Median :2.253e+10
Mean : 3.102 Mean : 17.02 Mean : 267.3 Mean : 5.233 Mean : 25.62 Mean : 5.88 Mean :15.92 Mean : 4.75 Mean : 77.47 Mean : 23.27 Mean : 59.12 Mean :2.364 Mean : 428.1 Mean :4.041e+10
3rd Qu.: 4.500 3rd Qu.: 17.00 3rd Qu.: 110.0 3rd Qu.: 7.500 3rd Qu.: 13.00 3rd Qu.: 6.00 3rd Qu.:19.00 3rd Qu.: 6.00 3rd Qu.: 73.50 3rd Qu.: 37.25 3rd Qu.: 62.75 3rd Qu.:2.000 3rd Qu.: 680.0 3rd Qu.:6.044e+10
Max. :17.000 Max. :218.00 Max. :3655.0 Max. :22.000 Max. :313.00 Max. :26.00 Max. :82.00 Max. :16.00 Max. :1345.00 Max. :124.00 Max. :533.00 Max. :7.000 Max. :1836.0 Max. :1.870e+11

Graficas:

library(plotly)

df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]

fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
                 width=7000, height=400) 

grafica_fn <- function(g){
  fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
                 width=7000, height=400) 
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)

}

fig <- fig %>% layout(autosize = T )
fig 

2 Correlaciones

La distribución es asimétrica, poseyendo un sesgo positivo.

df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación" 
saveRDS(tabla,"tablas_de_corr/C_P16A_OTRO_URB.rds")

tabla %>%
  rownames_to_column("Pueblo indígena u originario (Otro)") %>%  
  mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>% 
  kbl(booktabs = T, linesep = "", escape=FALSE) %>% 
    kable_paper(full_width = F) %>%
    column_spec(1, color = "black")%>%
    column_spec(2, color = "white")
Pueblo indígena u originario (Otro) Correlación
Lafquenche 0.321905238860228
Pehuenche 0.693597003878864
Huilliche 0.491711500595977
Picunche 0.621455466265865
Changos 0.390071993700843
Chonos 0.275202335356541
Ona 0.58452973264127
Tehuelches 0.28605152325019
Pueblos de América Latina 0.689196977713458
Pueblos del resto del mundo 0.757826366012736
Afrodescendiente 0.665043190361854
Otros pueblos presentes en el territorio nacional -0.194325082689389
Pueblo no declarado 0.851050862627375

## Kendall

# union_final_urb <- mutate_all(union_final_urb, ~replace(., is.na(.), -99)) --------------------------------------------  QUITAR
chart.Correlation(union_final_urb, histogram=TRUE, method = c( "kendall"), pch=20)

2.1 Pearson

chart.Correlation(union_final_urb, histogram=TRUE, method = c( "pearson"), pch=20)

2.2 Spearman

chart.Correlation(union_final_urb, histogram=TRUE, method = c( "spearman"), pch=20)

3 Nivel nacional RURAL (código 2)

tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P16A_OTRO
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017" 
d_t <- filter(d,d$unlist.c. == 3)
lista <- c(4,5,6,21,22,23,28,33,34,35,37,97)
for(i in lista){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
 
names(comuna_corr)[2] <- "Lafquenche"
names(comuna_corr)[4] <- "Pehuenche"
names(comuna_corr)[6] <- "Huilliche"
names(comuna_corr)[8] <- "Picunche"
names(comuna_corr)[10] <- "Changos"
names(comuna_corr)[12] <- "Chonos"
names(comuna_corr)[14] <- "Ona"
names(comuna_corr)[16] <- "Tehuelches"
names(comuna_corr)[18] <- "Pueblos de América Latina"
names(comuna_corr)[20] <- "Pueblos del resto del mundo"
names(comuna_corr)[22] <- "Afrodescendiente"
names(comuna_corr)[24] <- "Otros pueblos presentes en el territorio nacional"
names(comuna_corr)[26] <- "Pueblo no declarado"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P16A_OTRO_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "500px")
Lafquenche Pehuenche Huilliche Picunche Changos Chonos Ona Tehuelches Pueblos de América Latina Pueblos del resto del mundo Afrodescendiente Otros pueblos presentes en el territorio nacional Pueblo no declarado ingresos_expandidos
Min. : 1.000 Min. : 1.00 Min. : 1.00 Min. :1.000 Min. : NA Min. :1.0 Min. :1.000 Min. :2.0 Min. :1.000 Min. :1.000 Min. :1.000 Min. :1 Min. : 1.00 Min. :7.732e+08
1st Qu.: 1.000 1st Qu.: 1.25 1st Qu.: 6.25 1st Qu.:1.000 1st Qu.: NA 1st Qu.:1.0 1st Qu.:1.000 1st Qu.:2.5 1st Qu.:1.000 1st Qu.:2.500 1st Qu.:1.000 1st Qu.:1 1st Qu.: 16.25 1st Qu.:1.690e+09
Median : 2.000 Median : 2.50 Median : 11.00 Median :1.000 Median : NA Median :1.0 Median :1.000 Median :3.0 Median :1.000 Median :4.000 Median :1.000 Median :1 Median : 44.00 Median :4.232e+09
Mean : 3.773 Mean : 405.50 Mean : 269.83 Mean :1.333 Mean :NaN Mean :1.4 Mean :1.333 Mean :3.0 Mean :2.375 Mean :3.333 Mean :1.333 Mean :1 Mean : 57.05 Mean :8.428e+09
3rd Qu.: 4.500 3rd Qu.: 3.75 3rd Qu.: 67.75 3rd Qu.:1.500 3rd Qu.: NA 3rd Qu.:1.0 3rd Qu.:1.500 3rd Qu.:3.5 3rd Qu.:3.250 3rd Qu.:4.000 3rd Qu.:1.500 3rd Qu.:1 3rd Qu.: 78.00 3rd Qu.:7.711e+09
Max. :18.000 Max. :4028.00 Max. :2331.00 Max. :2.000 Max. : NA Max. :3.0 Max. :2.000 Max. :4.0 Max. :7.000 Max. :5.000 Max. :2.000 Max. :1 Max. :162.00 Max. :4.895e+10

Graficas:

library(plotly)

df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]

fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
                 width=7000, height=400) 

grafica_fn <- function(g){
  fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
                 width=7000, height=400) 
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)

}

fig <- fig %>% layout(autosize = T )
fig 

4 Correlaciones

df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
df_2017_2f <- df_2017_2f[,-c(5,12),drop=FALSE]
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación" 
saveRDS(tabla,"tablas_de_corr/C_P16A_OTRO_RU.rds")
tabla %>%
  rownames_to_column("Pueblo indígena u originario (Otro)") %>%  
  mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>% 
  kbl(booktabs = T, linesep = "", escape=FALSE) %>% 
    kable_paper(full_width = F) %>%
    column_spec(1, color = "black")%>%
    column_spec(2, color = "white")
Pueblo indígena u originario (Otro) Correlación
Lafquenche -0.110008685239055
Pehuenche -0.0898026510133875
Huilliche -0.0669186598213577
Picunche 0.816496580927726
Chonos 0.235702260395516
Ona 0.816496580927726
Tehuelches 1
Pueblos de América Latina 0.534522483824849
Pueblos del resto del mundo 0
Afrodescendiente 0.816496580927726
Pueblo no declarado 0.395779741788315

4.1 Kendall

# III <- seq(1,(ncol(union_final_urb)-3),1)
df_2017_exp_subset <- union_final_urb[,c(1,2,3,6,13,(ncol(union_final_urb)))]
chart.Correlation(df_2017_exp_subset, histogram=TRUE, method = c( "kendall"), pch=20)

4.2 Pearson

# III <- seq(1,(ncol(union_final_urb)-3),1)
df_2017_exp_subset <- union_final_urb[,c(1,2,3,13,(ncol(union_final_urb)))]
chart.Correlation(df_2017_exp_subset, histogram=TRUE, method = c( "pearson"), pch=20)

4.3 Spearman

# III <- seq(1,(ncol(union_final_urb)-3),1)
df_2017_exp_subset <- union_final_urb[,c(1,2,3,6,13,(ncol(union_final_urb)))]
chart.Correlation(df_2017_exp_subset, histogram=TRUE, method = c( "spearman"), pch=20)