1 Nivel nacional URBANO (código 1)
1.1 Pregunta P16A_OTRO: Pueblo indígena u originario listado
Categorías de respuesta:
3 Lafquenche
4 Pehuenche
5 Huilliche
6 Picunche
21 Changos
22 Chonos
23 Ona
28 Tehuelches
33 Pueblos de América Latina
34 Pueblos del resto del mundo
35 Afrodescendiente
37 Otros pueblos presentes en el territorio nacional
97 Pueblo no declarado
1.2 Generación de tabla de contingencia para la variable P16A_OTRO
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P16A_OTRO
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 3)
lista <- c(4,5,6,21,22,23,28,33,34,35,37,97)
for(i in lista){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Lafquenche"
names(comuna_corr)[4] <- "Pehuenche"
names(comuna_corr)[6] <- "Huilliche"
names(comuna_corr)[8] <- "Picunche"
names(comuna_corr)[10] <- "Changos"
names(comuna_corr)[12] <- "Chonos"
names(comuna_corr)[14] <- "Ona"
names(comuna_corr)[16] <- "Tehuelches"
names(comuna_corr)[18] <- "Pueblos de América Latina"
names(comuna_corr)[20] <- "Pueblos del resto del mundo"
names(comuna_corr)[22] <- "Afrodescendiente"
names(comuna_corr)[24] <- "Otros pueblos presentes en el territorio nacional"
names(comuna_corr)[26] <- "Pueblo no declarado"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P16A_OTRO_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
Lafquenche | Pehuenche | Huilliche | Picunche | Changos | Chonos | Ona | Tehuelches | Pueblos de América Latina | Pueblos del resto del mundo | Afrodescendiente | Otros pueblos presentes en el territorio nacional | Pueblo no declarado | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 1.000 | Min. : 1.00 | Min. : 1.0 | Min. : 1.000 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. :1.000 | Min. : 3.0 | Min. :1.301e+09 | |
1st Qu.: 1.000 | 1st Qu.: 3.00 | 1st Qu.: 7.0 | 1st Qu.: 1.000 | 1st Qu.: 2.00 | 1st Qu.: 2.00 | 1st Qu.: 6.00 | 1st Qu.: 2.00 | 1st Qu.: 4.00 | 1st Qu.: 3.75 | 1st Qu.: 5.25 | 1st Qu.:1.000 | 1st Qu.: 84.0 | 1st Qu.:6.534e+09 | |
Median : 2.000 | Median : 9.00 | Median : 42.0 | Median : 4.000 | Median : 4.00 | Median : 4.00 | Median :11.00 | Median : 4.00 | Median : 20.00 | Median : 10.00 | Median : 17.00 | Median :2.000 | Median : 261.0 | Median :2.253e+10 | |
Mean : 3.102 | Mean : 17.02 | Mean : 267.3 | Mean : 5.233 | Mean : 25.62 | Mean : 5.88 | Mean :15.92 | Mean : 4.75 | Mean : 77.47 | Mean : 23.27 | Mean : 59.12 | Mean :2.364 | Mean : 428.1 | Mean :4.041e+10 | |
3rd Qu.: 4.500 | 3rd Qu.: 17.00 | 3rd Qu.: 110.0 | 3rd Qu.: 7.500 | 3rd Qu.: 13.00 | 3rd Qu.: 6.00 | 3rd Qu.:19.00 | 3rd Qu.: 6.00 | 3rd Qu.: 73.50 | 3rd Qu.: 37.25 | 3rd Qu.: 62.75 | 3rd Qu.:2.000 | 3rd Qu.: 680.0 | 3rd Qu.:6.044e+10 | |
Max. :17.000 | Max. :218.00 | Max. :3655.0 | Max. :22.000 | Max. :313.00 | Max. :26.00 | Max. :82.00 | Max. :16.00 | Max. :1345.00 | Max. :124.00 | Max. :533.00 | Max. :7.000 | Max. :1836.0 | Max. :1.870e+11 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
2 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P16A_OTRO_URB.rds")
tabla %>%
rownames_to_column("Pueblo indígena u originario (Otro)") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Pueblo indígena u originario (Otro) | Correlación |
---|---|
Lafquenche | 0.321905238860228 |
Pehuenche | 0.693597003878864 |
Huilliche | 0.491711500595977 |
Picunche | 0.621455466265865 |
Changos | 0.390071993700843 |
Chonos | 0.275202335356541 |
Ona | 0.58452973264127 |
Tehuelches | 0.28605152325019 |
Pueblos de América Latina | 0.689196977713458 |
Pueblos del resto del mundo | 0.757826366012736 |
Afrodescendiente | 0.665043190361854 |
Otros pueblos presentes en el territorio nacional | -0.194325082689389 |
Pueblo no declarado | 0.851050862627375 |
## Kendall
# union_final_urb <- mutate_all(union_final_urb, ~replace(., is.na(.), -99)) -------------------------------------------- QUITAR
3 Nivel nacional RURAL (código 2)
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P16A_OTRO
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 3)
lista <- c(4,5,6,21,22,23,28,33,34,35,37,97)
for(i in lista){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Lafquenche"
names(comuna_corr)[4] <- "Pehuenche"
names(comuna_corr)[6] <- "Huilliche"
names(comuna_corr)[8] <- "Picunche"
names(comuna_corr)[10] <- "Changos"
names(comuna_corr)[12] <- "Chonos"
names(comuna_corr)[14] <- "Ona"
names(comuna_corr)[16] <- "Tehuelches"
names(comuna_corr)[18] <- "Pueblos de América Latina"
names(comuna_corr)[20] <- "Pueblos del resto del mundo"
names(comuna_corr)[22] <- "Afrodescendiente"
names(comuna_corr)[24] <- "Otros pueblos presentes en el territorio nacional"
names(comuna_corr)[26] <- "Pueblo no declarado"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P16A_OTRO_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
Lafquenche | Pehuenche | Huilliche | Picunche | Changos | Chonos | Ona | Tehuelches | Pueblos de América Latina | Pueblos del resto del mundo | Afrodescendiente | Otros pueblos presentes en el territorio nacional | Pueblo no declarado | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 1.000 | Min. : 1.00 | Min. : 1.00 | Min. :1.000 | Min. : NA | Min. :1.0 | Min. :1.000 | Min. :2.0 | Min. :1.000 | Min. :1.000 | Min. :1.000 | Min. :1 | Min. : 1.00 | Min. :7.732e+08 | |
1st Qu.: 1.000 | 1st Qu.: 1.25 | 1st Qu.: 6.25 | 1st Qu.:1.000 | 1st Qu.: NA | 1st Qu.:1.0 | 1st Qu.:1.000 | 1st Qu.:2.5 | 1st Qu.:1.000 | 1st Qu.:2.500 | 1st Qu.:1.000 | 1st Qu.:1 | 1st Qu.: 16.25 | 1st Qu.:1.690e+09 | |
Median : 2.000 | Median : 2.50 | Median : 11.00 | Median :1.000 | Median : NA | Median :1.0 | Median :1.000 | Median :3.0 | Median :1.000 | Median :4.000 | Median :1.000 | Median :1 | Median : 44.00 | Median :4.232e+09 | |
Mean : 3.773 | Mean : 405.50 | Mean : 269.83 | Mean :1.333 | Mean :NaN | Mean :1.4 | Mean :1.333 | Mean :3.0 | Mean :2.375 | Mean :3.333 | Mean :1.333 | Mean :1 | Mean : 57.05 | Mean :8.428e+09 | |
3rd Qu.: 4.500 | 3rd Qu.: 3.75 | 3rd Qu.: 67.75 | 3rd Qu.:1.500 | 3rd Qu.: NA | 3rd Qu.:1.0 | 3rd Qu.:1.500 | 3rd Qu.:3.5 | 3rd Qu.:3.250 | 3rd Qu.:4.000 | 3rd Qu.:1.500 | 3rd Qu.:1 | 3rd Qu.: 78.00 | 3rd Qu.:7.711e+09 | |
Max. :18.000 | Max. :4028.00 | Max. :2331.00 | Max. :2.000 | Max. : NA | Max. :3.0 | Max. :2.000 | Max. :4.0 | Max. :7.000 | Max. :5.000 | Max. :2.000 | Max. :1 | Max. :162.00 | Max. :4.895e+10 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
4 Correlaciones
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
df_2017_2f <- df_2017_2f[,-c(5,12),drop=FALSE]
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P16A_OTRO_RU.rds")
tabla %>%
rownames_to_column("Pueblo indígena u originario (Otro)") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Pueblo indígena u originario (Otro) | Correlación |
---|---|
Lafquenche | -0.110008685239055 |
Pehuenche | -0.0898026510133875 |
Huilliche | -0.0669186598213577 |
Picunche | 0.816496580927726 |
Chonos | 0.235702260395516 |
Ona | 0.816496580927726 |
Tehuelches | 1 |
Pueblos de América Latina | 0.534522483824849 |
Pueblos del resto del mundo | 0 |
Afrodescendiente | 0.816496580927726 |
Pueblo no declarado | 0.395779741788315 |
4.1 Kendall
# III <- seq(1,(ncol(union_final_urb)-3),1)
df_2017_exp_subset <- union_final_urb[,c(1,2,3,6,13,(ncol(union_final_urb)))]
chart.Correlation(df_2017_exp_subset, histogram=TRUE, method = c( "kendall"), pch=20)