Correlaciones entre variables del CENSO de Viviendas, Hogares y Personas e Ingresos promedios comunales de la CASEN 2017.

VE-CC-AJ

DataIntelligence

Lunes 12-07-2021


1 Nivel nacional URBANO (código 1)

1.1 Pregunta P16A_GRUPO: Pueblo indígena u originario (grupo)

Categorías de respuesta:

1 Mapuche
2 Aymara
3 Rapa Nui
4 Lican Antai
5 Quechua
6 Colla
7 Diaguita
8 Kawésqar
9 Yagán o Yamana
10 Otro

1.2 Generación de tabla de contingencia para la variable P16A_GRUPO

tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P16A_GRUPO
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 1)
for(i in 2:10){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]

names(comuna_corr)[2] <- "Mapuche"
names(comuna_corr)[4] <- "Aymara"
names(comuna_corr)[6] <- "Rapa Nui"
names(comuna_corr)[8] <- "Lican Antai"
names(comuna_corr)[10] <- "Quechua"
names(comuna_corr)[12] <- "Colla"
names(comuna_corr)[14] <- "Diaguita"
names(comuna_corr)[16] <- "Kawésqar"
names(comuna_corr)[18] <- "Yagán o Yamana"
names(comuna_corr)[20] <- "Otro"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P16A_GRUPO_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "500px")
Mapuche Aymara Rapa Nui Lican Antai Quechua Colla Diaguita Kawésqar Yagán o Yamana Otro ingresos_expandidos
Min. : 24 Min. : 1.0 Min. : 1.00 Min. : 1.0 Min. : 1.0 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. :7.054e+08
1st Qu.: 413 1st Qu.: 7.0 1st Qu.: 2.00 1st Qu.: 2.0 1st Qu.: 3.0 1st Qu.: 2.00 1st Qu.: 4.0 1st Qu.: 2.00 1st Qu.: 1.00 1st Qu.: 24.5 1st Qu.:2.954e+09
Median : 1229 Median : 24.0 Median : 6.00 Median : 6.0 Median : 10.5 Median : 7.00 Median : 19.0 Median : 4.00 Median : 3.00 Median : 62.0 Median :5.697e+09
Mean : 4304 Mean : 471.3 Mean : 35.91 Mean : 134.3 Mean : 128.1 Mean : 84.56 Mean : 280.5 Mean : 15.68 Mean : 8.09 Mean : 267.8 Mean :1.784e+10
3rd Qu.: 4860 3rd Qu.: 139.5 3rd Qu.: 27.00 3rd Qu.: 17.0 3rd Qu.: 58.5 3rd Qu.: 21.00 3rd Qu.: 120.0 3rd Qu.: 15.25 3rd Qu.: 8.00 3rd Qu.: 235.0 3rd Qu.:1.857e+10
Max. :57663 Max. :48723.0 Max. :3249.00 Max. :17191.0 Max. :6873.0 Max. :9210.00 Max. :9091.0 Max. :627.00 Max. :184.00 Max. :5397.0 Max. :1.870e+11

Graficas:

library(plotly)

df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]

fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
                 width=7000, height=400) 

grafica_fn <- function(g){
  fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
                 width=7000, height=400) 
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)

}

fig <- fig %>% layout(autosize = T )
fig 

2 Correlaciones

La distribución es asimétrica, poseyendo un sesgo positivo.

df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
colnames(tabla) <- "Correlación" 
saveRDS(tabla,"tablas_de_corr/C_P16_GRUPO_URB.rds")
tabla %>%
  rownames_to_column("ueblo indígena u originario (grupo)") %>%  
  mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>% 
  kbl(booktabs = T, linesep = "", escape=FALSE) %>% 
    kable_paper(full_width = F) %>%
    column_spec(1, color = "black")%>%
    column_spec(2, color = "white")
ueblo indígena u originario (grupo) Correlación
Mapuche 0.643522392441379
Aymara 0.593452572442544
Rapa Nui 0.683310394670922
Lican Antai 0.483422006513952
Quechua 0.559879763891141
Colla 0.450565548733248
Diaguita 0.467050188651948
Kawésqar 0.632734860805763
Yagán o Yamana 0.652047765827019
Otro 0.76123407835421

## Kendall

chart.Correlation(union_final_urb, histogram=TRUE, method = c( "kendall"), pch=20)

2.1 Pearson

chart.Correlation(union_final_urb, histogram=TRUE, method = c( "pearson"), pch=20)

2.2 Spearman

chart.Correlation(union_final_urb, histogram=TRUE, method = c( "spearman"), pch=20)

3 Nivel nacional RURAL (código 2)

tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P16A_GRUPO
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"

d_t <- filter(d,d$unlist.c. == 1)
for(i in 2:10){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Mapuche"
names(comuna_corr)[4] <- "Aymara"
names(comuna_corr)[6] <- "Rapa Nui"
names(comuna_corr)[8] <- "Lican Antai"
names(comuna_corr)[10] <- "Quechua"
names(comuna_corr)[12] <- "Colla"
names(comuna_corr)[14] <- "Diaguita"
names(comuna_corr)[16] <- "Kawésqar"
names(comuna_corr)[18] <- "Yagán o Yamana"
names(comuna_corr)[20] <- "Otro"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P16A_GRUPO_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "500px")
Mapuche Aymara Rapa Nui Lican Antai Quechua Colla Diaguita Kawésqar Yagán o Yamana Otro ingresos_expandidos
Min. : 2.0 Min. : 1.00 Min. : 1.000 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.000 Min. :1.00 Min. : 1.00 Min. :2.792e+08
1st Qu.: 132.5 1st Qu.: 2.00 1st Qu.: 1.000 1st Qu.: 1.00 1st Qu.: 2.00 1st Qu.: 1.00 1st Qu.: 2.0 1st Qu.: 1.000 1st Qu.:1.00 1st Qu.: 10.00 1st Qu.:1.809e+09
Median : 299.0 Median : 6.00 Median : 2.000 Median : 2.00 Median : 3.00 Median : 2.00 Median : 5.0 Median : 2.000 Median :1.00 Median : 22.00 Median :3.546e+09
Mean : 1166.9 Mean : 73.11 Mean : 4.257 Mean : 31.74 Mean : 19.21 Mean : 15.29 Mean : 58.3 Mean : 2.722 Mean :1.86 Mean : 34.04 Mean :8.206e+09
3rd Qu.: 999.0 3rd Qu.: 16.00 3rd Qu.: 3.000 3rd Qu.: 3.50 3rd Qu.: 10.50 3rd Qu.: 6.25 3rd Qu.: 15.0 3rd Qu.: 3.000 3rd Qu.:2.00 3rd Qu.: 46.75 3rd Qu.:7.252e+09
Max. :25109.0 Max. :8104.00 Max. :263.000 Max. :2165.00 Max. :457.00 Max. :674.00 Max. :2550.0 Max. :43.000 Max. :8.00 Max. :458.00 Max. :7.585e+10

Graficas:

library(plotly)

df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]

fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
                 width=7000, height=400) 

grafica_fn <- function(g){
  fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
                 width=7000, height=400) 
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)

}

fig <- fig %>% layout(autosize = T )
fig 

4 Correlaciones

La distribución es asimétrica, poseyendo un sesgo positivo.

4.1 Kendall

df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla) 
colnames(tabla) <- "Correlación" 
saveRDS(tabla,"tablas_de_corr/C_P16_GRUPO_RU.rds")
tabla %>%
  rownames_to_column("ueblo indígena u originario (grupo)") %>%  
  mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>% 
  kbl(booktabs = T, linesep = "", escape=FALSE) %>% 
    kable_paper(full_width = F) %>%
    column_spec(1, color = "black")%>%
    column_spec(2, color = "white")
ueblo indígena u originario (grupo) Correlación
Mapuche 0.14036984853201
Aymara 0.242601217825957
Rapa Nui 0.243845527548933
Lican Antai 0.0872368696122899
Quechua 0.154908278503076
Colla 0.0446586724144016
Diaguita 0.14763965861913
Kawésqar 0.137801502099119
Yagán o Yamana 0.106419837377798
Otro 0.245877031809144
chart.Correlation(union_final_urb, histogram=TRUE, method = c( "kendall"), pch=20)

4.2 Pearson

chart.Correlation(union_final_urb, histogram=TRUE, method = c( "pearson"), pch=20)

4.3 Spearman

chart.Correlation(union_final_urb, histogram=TRUE, method = c( "spearman"), pch=20)