1 Nivel nacional URBANO (código 1)
1.1 Pregunta P16A_GRUPO: Pueblo indígena u originario (grupo)
Categorías de respuesta:
1 Mapuche
2 Aymara
3 Rapa Nui
4 Lican Antai
5 Quechua
6 Colla
7 Diaguita
8 Kawésqar
9 Yagán o Yamana
10 Otro
1.2 Generación de tabla de contingencia para la variable P16A_GRUPO
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P16A_GRUPO
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 1)
for(i in 2:10){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Mapuche"
names(comuna_corr)[4] <- "Aymara"
names(comuna_corr)[6] <- "Rapa Nui"
names(comuna_corr)[8] <- "Lican Antai"
names(comuna_corr)[10] <- "Quechua"
names(comuna_corr)[12] <- "Colla"
names(comuna_corr)[14] <- "Diaguita"
names(comuna_corr)[16] <- "Kawésqar"
names(comuna_corr)[18] <- "Yagán o Yamana"
names(comuna_corr)[20] <- "Otro"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P16A_GRUPO_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
Mapuche | Aymara | Rapa Nui | Lican Antai | Quechua | Colla | Diaguita | Kawésqar | Yagán o Yamana | Otro | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 24 | Min. : 1.0 | Min. : 1.00 | Min. : 1.0 | Min. : 1.0 | Min. : 1.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. :7.054e+08 | |
1st Qu.: 413 | 1st Qu.: 7.0 | 1st Qu.: 2.00 | 1st Qu.: 2.0 | 1st Qu.: 3.0 | 1st Qu.: 2.00 | 1st Qu.: 4.0 | 1st Qu.: 2.00 | 1st Qu.: 1.00 | 1st Qu.: 24.5 | 1st Qu.:2.954e+09 | |
Median : 1229 | Median : 24.0 | Median : 6.00 | Median : 6.0 | Median : 10.5 | Median : 7.00 | Median : 19.0 | Median : 4.00 | Median : 3.00 | Median : 62.0 | Median :5.697e+09 | |
Mean : 4304 | Mean : 471.3 | Mean : 35.91 | Mean : 134.3 | Mean : 128.1 | Mean : 84.56 | Mean : 280.5 | Mean : 15.68 | Mean : 8.09 | Mean : 267.8 | Mean :1.784e+10 | |
3rd Qu.: 4860 | 3rd Qu.: 139.5 | 3rd Qu.: 27.00 | 3rd Qu.: 17.0 | 3rd Qu.: 58.5 | 3rd Qu.: 21.00 | 3rd Qu.: 120.0 | 3rd Qu.: 15.25 | 3rd Qu.: 8.00 | 3rd Qu.: 235.0 | 3rd Qu.:1.857e+10 | |
Max. :57663 | Max. :48723.0 | Max. :3249.00 | Max. :17191.0 | Max. :6873.0 | Max. :9210.00 | Max. :9091.0 | Max. :627.00 | Max. :184.00 | Max. :5397.0 | Max. :1.870e+11 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
2 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P16_GRUPO_URB.rds")
tabla %>%
rownames_to_column("ueblo indígena u originario (grupo)") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
ueblo indígena u originario (grupo) | Correlación |
---|---|
Mapuche | 0.643522392441379 |
Aymara | 0.593452572442544 |
Rapa Nui | 0.683310394670922 |
Lican Antai | 0.483422006513952 |
Quechua | 0.559879763891141 |
Colla | 0.450565548733248 |
Diaguita | 0.467050188651948 |
Kawésqar | 0.632734860805763 |
Yagán o Yamana | 0.652047765827019 |
Otro | 0.76123407835421 |
## Kendall
3 Nivel nacional RURAL (código 2)
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P16A_GRUPO
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 1)
for(i in 2:10){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Mapuche"
names(comuna_corr)[4] <- "Aymara"
names(comuna_corr)[6] <- "Rapa Nui"
names(comuna_corr)[8] <- "Lican Antai"
names(comuna_corr)[10] <- "Quechua"
names(comuna_corr)[12] <- "Colla"
names(comuna_corr)[14] <- "Diaguita"
names(comuna_corr)[16] <- "Kawésqar"
names(comuna_corr)[18] <- "Yagán o Yamana"
names(comuna_corr)[20] <- "Otro"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P16A_GRUPO_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
Mapuche | Aymara | Rapa Nui | Lican Antai | Quechua | Colla | Diaguita | Kawésqar | Yagán o Yamana | Otro | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 2.0 | Min. : 1.00 | Min. : 1.000 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.000 | Min. :1.00 | Min. : 1.00 | Min. :2.792e+08 | |
1st Qu.: 132.5 | 1st Qu.: 2.00 | 1st Qu.: 1.000 | 1st Qu.: 1.00 | 1st Qu.: 2.00 | 1st Qu.: 1.00 | 1st Qu.: 2.0 | 1st Qu.: 1.000 | 1st Qu.:1.00 | 1st Qu.: 10.00 | 1st Qu.:1.809e+09 | |
Median : 299.0 | Median : 6.00 | Median : 2.000 | Median : 2.00 | Median : 3.00 | Median : 2.00 | Median : 5.0 | Median : 2.000 | Median :1.00 | Median : 22.00 | Median :3.546e+09 | |
Mean : 1166.9 | Mean : 73.11 | Mean : 4.257 | Mean : 31.74 | Mean : 19.21 | Mean : 15.29 | Mean : 58.3 | Mean : 2.722 | Mean :1.86 | Mean : 34.04 | Mean :8.206e+09 | |
3rd Qu.: 999.0 | 3rd Qu.: 16.00 | 3rd Qu.: 3.000 | 3rd Qu.: 3.50 | 3rd Qu.: 10.50 | 3rd Qu.: 6.25 | 3rd Qu.: 15.0 | 3rd Qu.: 3.000 | 3rd Qu.:2.00 | 3rd Qu.: 46.75 | 3rd Qu.:7.252e+09 | |
Max. :25109.0 | Max. :8104.00 | Max. :263.000 | Max. :2165.00 | Max. :457.00 | Max. :674.00 | Max. :2550.0 | Max. :43.000 | Max. :8.00 | Max. :458.00 | Max. :7.585e+10 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
4 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
4.1 Kendall
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P16_GRUPO_RU.rds")
tabla %>%
rownames_to_column("ueblo indígena u originario (grupo)") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
ueblo indígena u originario (grupo) | Correlación |
---|---|
Mapuche | 0.14036984853201 |
Aymara | 0.242601217825957 |
Rapa Nui | 0.243845527548933 |
Lican Antai | 0.0872368696122899 |
Quechua | 0.154908278503076 |
Colla | 0.0446586724144016 |
Diaguita | 0.14763965861913 |
Kawésqar | 0.137801502099119 |
Yagán o Yamana | 0.106419837377798 |
Otro | 0.245877031809144 |