Prep

Maze Prep

Maze GAMs

#no hierarchical, has freq x len interaction
formula_interact <- rt ~ s(surprisal, bs="cr", k=20)+
                     ti(freq, bs="cr") + 
                     ti(len, bs="cr")+
                     ti(freq,len, bs="cr")+
                     s(prev_surp, bs="cr", k=20)+
                     ti(prev_freq, bs="cr")+
                     ti(prev_len, bs="cr")+
                     ti(prev_freq, prev_len, bs="cr")

# no hierarchical, NO freq x len interaction
formula_no_interact <- rt ~ s(surprisal, bs="cr", k=20)+
                     ti(freq, bs="cr") + 
                     ti(len, bs="cr")+
                     s(prev_surp, bs="cr", k=20)+
                     ti(prev_freq, bs="cr")+
                     ti(prev_len, bs="cr")

All of this is on by-item mean data.

## Analysis of Deviance Table
## 
## Model 1: rt ~ s(surprisal, bs = "cr", k = 20) + ti(freq, bs = "cr") + 
##     ti(len, bs = "cr") + ti(freq, len, bs = "cr") + s(prev_surp, 
##     bs = "cr", k = 20) + ti(prev_freq, bs = "cr") + ti(prev_len, 
##     bs = "cr") + ti(prev_freq, prev_len, bs = "cr")
## Model 2: rt ~ s(surprisal, bs = "cr", k = 20) + ti(freq, bs = "cr") + 
##     ti(len, bs = "cr") + s(prev_surp, bs = "cr", k = 20) + ti(prev_freq, 
##     bs = "cr") + ti(prev_len, bs = "cr")
##   Resid. Df Resid. Dev      Df Deviance  Pr(>Chi)    
## 1    6324.8  355096280                               
## 2    6337.0  357451934 -12.278 -2355654 4.008e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table
## 
## Model 1: rt ~ s(surprisal, bs = "cr", k = 20) + ti(freq, bs = "cr") + 
##     ti(len, bs = "cr") + ti(freq, len, bs = "cr") + s(prev_surp, 
##     bs = "cr", k = 20) + ti(prev_freq, bs = "cr") + ti(prev_len, 
##     bs = "cr") + ti(prev_freq, prev_len, bs = "cr")
## Model 2: rt ~ s(surprisal, bs = "cr", k = 20) + ti(freq, bs = "cr") + 
##     ti(len, bs = "cr") + s(prev_surp, bs = "cr", k = 20) + ti(prev_freq, 
##     bs = "cr") + ti(prev_len, bs = "cr")
##   Resid. Df Resid. Dev      Df Deviance  Pr(>Chi)    
## 1    6328.9  326754835                               
## 2    6339.6  328514957 -10.785 -1760122 0.0002991 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table
## 
## Model 1: rt ~ s(surprisal, bs = "cr", k = 20) + ti(freq, bs = "cr") + 
##     ti(len, bs = "cr") + ti(freq, len, bs = "cr") + s(prev_surp, 
##     bs = "cr", k = 20) + ti(prev_freq, bs = "cr") + ti(prev_len, 
##     bs = "cr") + ti(prev_freq, prev_len, bs = "cr")
## Model 2: rt ~ s(surprisal, bs = "cr", k = 20) + ti(freq, bs = "cr") + 
##     ti(len, bs = "cr") + s(prev_surp, bs = "cr", k = 20) + ti(prev_freq, 
##     bs = "cr") + ti(prev_len, bs = "cr")
##   Resid. Df Resid. Dev      Df Deviance  Pr(>Chi)    
## 1    6326.2  338211260                               
## 2    6340.0  340297053 -13.794 -2085793 0.0003155 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Analysis of Deviance Table
## 
## Model 1: rt ~ s(surprisal, bs = "cr", k = 20) + ti(freq, bs = "cr") + 
##     ti(len, bs = "cr") + ti(freq, len, bs = "cr") + s(prev_surp, 
##     bs = "cr", k = 20) + ti(prev_freq, bs = "cr") + ti(prev_len, 
##     bs = "cr") + ti(prev_freq, prev_len, bs = "cr")
## Model 2: rt ~ s(surprisal, bs = "cr", k = 20) + ti(freq, bs = "cr") + 
##     ti(len, bs = "cr") + s(prev_surp, bs = "cr", k = 20) + ti(prev_freq, 
##     bs = "cr") + ti(prev_len, bs = "cr")
##   Resid. Df Resid. Dev      Df Deviance  Pr(>Chi)    
## 1    6324.7  316288721                               
## 2    6335.7  318041282 -10.989 -1752561 0.0002371 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Plots

For the length: frequency interaction, it looks like the effect is ~ 0 for most of the space where there’s actually data, and it only goes off the rails in the region where there isn’t data.

Maze LMs

Maze Model comparison

I’m not sure if this is what we want, but these are the P-values from anova’s comparison the value of adding one set of surprisal predictors to a model that already has another. (So smaller values mean that the column has a lot of predictive utility beyond the row label).

I’m not sure what the best presentational format is – or whether we want F values or p values or what. I also not sure how to arrange the table (should I transpose?) or label it so which one is better is clear.

This is all on meaned data with no mixed effects and predictors of freq x length and surprisal(s) for word and previous word.

Model over 5-gram over GRNN over TXL over GPT-2 Log Lik r_squared
5-gram 2 (p=0.153) 3 (p=0.035) 0 (p=0.611) -43817 0.16
GRNN 287 (p<0.001) 113 (p<0.001) 13 (p<0.001) -43544 0.23
TXL 174 (p<0.001) 5 (p=0.006) 2 (p=0.137) -43650 0.2
GPT-2 394 (p<0.001) 113 (p<0.001) 213 (p<0.001) -43445 0.25

Maze LM with freq**2 effects

Based on GAM viz, we try models with freq**2 effects on item mean data.

(Tried this with orthagonal polynomials, but I get ridiculous predictions where both the effects for 1st and 2nd order are huge with huge std error, so probably cancelling out?).

Instead, square and then center raw frequency. This also finds the effects, and seems a little absurd, since it’s finding big effects, in opposite directions for squared and not squared.

## 
## Call:
## lm(formula = str_c(no_surp_sq, ngram), data = item_mean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -620.35 -141.86  -44.84   80.92 2889.72 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          857.07279   13.69310  62.592  < 2e-16 ***
## freq_sq                               -1.08506    0.23604  -4.597 4.37e-06 ***
## freq_center                           37.91433    9.03805   4.195 2.77e-05 ***
## length_center                         23.86528    2.35851  10.119  < 2e-16 ***
## past_freq_sq                           0.82069    0.24232   3.387 0.000711 ***
## past_freq_center                     -27.80680    9.15120  -3.039 0.002387 ** 
## past_length_center                     2.31919    2.37505   0.976 0.328862    
## ngram_center                          10.73085    1.13183   9.481  < 2e-16 ***
## past_ngram_center                      0.31597    1.13842   0.278 0.781363    
## freq_center:length_center             -3.57009    0.83090  -4.297 1.76e-05 ***
## past_freq_center:past_length_center   -0.07921    0.85895  -0.092 0.926530    
## length_center:ngram_center            -2.40370    0.52020  -4.621 3.90e-06 ***
## past_length_center:past_ngram_center  -0.14831    0.53503  -0.277 0.781637    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 237.6 on 6344 degrees of freedom
## Multiple R-squared:  0.1637, Adjusted R-squared:  0.1621 
## F-statistic: 103.5 on 12 and 6344 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = str_c(no_surp_sq, grnn), data = item_mean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -577.02 -133.10  -38.38   77.91 2813.95 
## 
## Coefficients:
##                                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         835.9723    12.8025  65.297  < 2e-16 ***
## freq_sq                              -1.3090     0.2248  -5.824 6.03e-09 ***
## freq_center                          53.6625     8.5115   6.305 3.08e-10 ***
## length_center                        20.0227     2.2328   8.967  < 2e-16 ***
## past_freq_sq                          0.3833     0.2301   1.666   0.0958 .  
## past_freq_center                    -11.9293     8.5866  -1.389   0.1648    
## past_length_center                    0.1059     2.2354   0.047   0.9622    
## grnn_center                          24.9862     0.9533  26.210  < 2e-16 ***
## past_grnn_center                      1.6513     0.9056   1.823   0.0683 .  
## freq_center:length_center            -2.6904     0.6528  -4.122 3.81e-05 ***
## past_freq_center:past_length_center  -1.4445     0.6642  -2.175   0.0297 *  
## length_center:grnn_center            -1.9313     0.4262  -4.531 5.97e-06 ***
## past_length_center:past_grnn_center  -0.6520     0.4072  -1.601   0.1094    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 227.5 on 6344 degrees of freedom
## Multiple R-squared:  0.2333, Adjusted R-squared:  0.2318 
## F-statistic: 160.8 on 12 and 6344 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = str_c(no_surp_sq, txl), data = item_mean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -576.99 -138.75  -42.69   83.67 2946.83 
## 
## Coefficients:
##                                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         851.4766    13.0041  65.478  < 2e-16 ***
## freq_sq                              -1.1686     0.2286  -5.111 3.29e-07 ***
## freq_center                          46.0778     8.6597   5.321 1.07e-07 ***
## length_center                        22.8865     2.2674  10.094  < 2e-16 ***
## past_freq_sq                          0.5817     0.2339   2.487  0.01291 *  
## past_freq_center                    -20.1397     8.7374  -2.305  0.02120 *  
## past_length_center                    1.4238     2.2735   0.626  0.53117    
## txl_center                           19.5499     0.9265  21.100  < 2e-16 ***
## past_txl_center                      -0.2331     0.8934  -0.261  0.79415    
## freq_center:length_center            -1.8950     0.6681  -2.836  0.00458 ** 
## past_freq_center:past_length_center  -0.9455     0.6787  -1.393  0.16361    
## length_center:txl_center             -1.2301     0.4180  -2.943  0.00326 ** 
## past_length_center:past_txl_center   -0.4410     0.4048  -1.090  0.27591    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 231.7 on 6344 degrees of freedom
## Multiple R-squared:  0.2051, Adjusted R-squared:  0.2036 
## F-statistic: 136.4 on 12 and 6344 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = str_c(no_surp_sq, gpt), data = item_mean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -579.89 -131.08  -37.58   81.06 2900.52 
## 
## Coefficients:
##                                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         834.9056    12.5860  66.336  < 2e-16 ***
## freq_sq                              -1.3257     0.2217  -5.979 2.37e-09 ***
## freq_center                          50.1884     8.3601   6.003 2.04e-09 ***
## length_center                        17.1176     2.2083   7.752 1.05e-14 ***
## past_freq_sq                          0.2914     0.2270   1.283 0.199387    
## past_freq_center                     -9.2724     8.4420  -1.098 0.272089    
## past_length_center                   -1.2015     2.2142  -0.543 0.587411    
## gpt_center                           27.3653     0.9216  29.694  < 2e-16 ***
## past_gpt_center                       3.5142     0.8975   3.916 9.11e-05 ***
## freq_center:length_center            -2.1035     0.6128  -3.433 0.000601 ***
## past_freq_center:past_length_center  -1.4636     0.6210  -2.357 0.018455 *  
## length_center:gpt_center             -1.3979     0.4056  -3.446 0.000572 ***
## past_length_center:past_gpt_center   -0.6488     0.3928  -1.652 0.098647 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 224.2 on 6344 degrees of freedom
## Multiple R-squared:  0.2556, Adjusted R-squared:  0.2542 
## F-statistic: 181.6 on 12 and 6344 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = str_c(no_surp_poly, ngram), data = item_mean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -620.35 -141.86  -44.84   80.92 2889.72 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           8.677e+02  6.367e+00 136.278  < 2e-16 ***
## poly(freq_center, 2)1                -1.211e+03  5.149e+02  -2.352 0.018691 *  
## poly(freq_center, 2)2                -1.371e+03  2.983e+02  -4.597 4.37e-06 ***
## length_center                         2.387e+01  2.359e+00  10.119  < 2e-16 ***
## poly(past_freq_center, 2)1            1.098e+03  5.067e+02   2.167 0.030246 *  
## poly(past_freq_center, 2)2            1.024e+03  3.022e+02   3.387 0.000711 ***
## past_length_center                    2.319e+00  2.375e+00   0.976 0.328862    
## ngram_center                          1.073e+01  1.132e+00   9.481  < 2e-16 ***
## past_ngram_center                     3.160e-01  1.138e+00   0.278 0.781363    
## length_center:freq_center            -3.570e+00  8.309e-01  -4.297 1.76e-05 ***
## past_length_center:past_freq_center  -7.921e-02  8.589e-01  -0.092 0.926530    
## length_center:ngram_center           -2.404e+00  5.202e-01  -4.621 3.90e-06 ***
## past_length_center:past_ngram_center -1.483e-01  5.350e-01  -0.277 0.781637    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 237.6 on 6344 degrees of freedom
## Multiple R-squared:  0.1637, Adjusted R-squared:  0.1621 
## F-statistic: 103.5 on 12 and 6344 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = str_c(no_surp_poly, grnn), data = item_mean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -577.02 -133.10  -38.38   77.91 2813.95 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           869.9051     6.0545 143.678  < 2e-16 ***
## poly(freq_center, 2)1                1106.0700   418.6693   2.642  0.00827 ** 
## poly(freq_center, 2)2               -1654.2059   284.0420  -5.824 6.03e-09 ***
## length_center                          20.0227     2.2328   8.967  < 2e-16 ***
## poly(past_freq_center, 2)1            848.0635   412.9727   2.054  0.04006 *  
## poly(past_freq_center, 2)2            478.0679   286.9693   1.666  0.09578 .  
## past_length_center                      0.1059     2.2354   0.047  0.96222    
## grnn_center                            24.9862     0.9533  26.210  < 2e-16 ***
## past_grnn_center                        1.6513     0.9056   1.823  0.06829 .  
## length_center:freq_center              -2.6904     0.6528  -4.122 3.81e-05 ***
## past_length_center:past_freq_center    -1.4445     0.6642  -2.175  0.02968 *  
## length_center:grnn_center              -1.9313     0.4262  -4.531 5.97e-06 ***
## past_length_center:past_grnn_center    -0.6520     0.4072  -1.601  0.10937    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 227.5 on 6344 degrees of freedom
## Multiple R-squared:  0.2333, Adjusted R-squared:  0.2318 
## F-statistic: 160.8 on 12 and 6344 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = str_c(no_surp_poly, txl), data = item_mean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -576.99 -138.75  -42.69   83.67 2946.83 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           873.8193     6.1630 141.784  < 2e-16 ***
## poly(freq_center, 2)1                 395.0382   431.9890   0.914  0.36051    
## poly(freq_center, 2)2               -1476.7718   288.9162  -5.111 3.29e-07 ***
## length_center                          22.8865     2.2674  10.094  < 2e-16 ***
## poly(past_freq_center, 2)1            642.6468   429.3309   1.497  0.13448    
## poly(past_freq_center, 2)2            725.5358   291.7433   2.487  0.01291 *  
## past_length_center                      1.4238     2.2735   0.626  0.53117    
## txl_center                             19.5499     0.9265  21.100  < 2e-16 ***
## past_txl_center                        -0.2331     0.8934  -0.261  0.79415    
## length_center:freq_center              -1.8950     0.6681  -2.836  0.00458 ** 
## past_length_center:past_freq_center    -0.9455     0.6787  -1.393  0.16361    
## length_center:txl_center               -1.2301     0.4180  -2.943  0.00326 ** 
## past_length_center:past_txl_center     -0.4410     0.4048  -1.090  0.27591    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 231.7 on 6344 degrees of freedom
## Multiple R-squared:  0.2051, Adjusted R-squared:  0.2036 
## F-statistic: 136.4 on 12 and 6344 DF,  p-value: < 2.2e-16
## 
## Call:
## lm(formula = str_c(no_surp_poly, gpt), data = item_mean_data)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -579.89 -131.08  -37.58   81.06 2900.52 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           867.9353     5.9667 145.463  < 2e-16 ***
## poly(freq_center, 2)1                -227.1907   383.1912  -0.593 0.553275    
## poly(freq_center, 2)2               -1675.3331   280.2226  -5.979 2.37e-09 ***
## length_center                          17.1176     2.2083   7.752 1.05e-14 ***
## poly(past_freq_center, 2)1            580.2372   380.8405   1.524 0.127666    
## poly(past_freq_center, 2)2            363.4322   283.1718   1.283 0.199387    
## past_length_center                     -1.2015     2.2142  -0.543 0.587411    
## gpt_center                             27.3653     0.9216  29.694  < 2e-16 ***
## past_gpt_center                         3.5142     0.8975   3.916 9.11e-05 ***
## length_center:freq_center              -2.1035     0.6128  -3.433 0.000601 ***
## past_length_center:past_freq_center    -1.4636     0.6210  -2.357 0.018455 *  
## length_center:gpt_center               -1.3979     0.4056  -3.446 0.000572 ***
## past_length_center:past_gpt_center     -0.6488     0.3928  -1.652 0.098647 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 224.2 on 6344 degrees of freedom
## Multiple R-squared:  0.2556, Adjusted R-squared:  0.2542 
## F-statistic: 181.6 on 12 and 6344 DF,  p-value: < 2.2e-16

SPR Prep

SPR GAMs

#no hierarchical, has freq x len interaction
spr_formula_interact <- rt ~ s(surp, bs="cr", k=20)+
                     ti(length_center, bs="cr")+
                     ti(freq_center,bs="cr")+
                     ti(freq_center,length_center, bs="cr")+
                     s(past_surp, bs="cr", k=20)+
                     ti(past_freq_center, bs="cr")+
                     ti(past_length_center, bs="cr")+
                     ti(past_freq_center, past_length_center, bs="cr")+
                     s(past2_surp, bs="cr", k=20)+
                     ti(past2_freq_center, bs="cr")+
                     ti(past2_length_center, bs="cr")+
                     ti(past2_freq_center, past2_length_center, bs="cr")+
                     s(past3_surp, bs="cr", k=20)+
                     ti(past3_freq_center, bs="cr")+
                     ti(past3_length_center, bs="cr")+
                     ti(past3_freq_center, past3_length_center, bs="cr")

All of this is on by-item mean data.

SPR LMs

## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ surp_center * length_center + length_center * freq_center +  
##     past_surp_center * past_length_center + past_length_center *  
##     past_freq_center + past2_surp_center * past2_length_center +  
##     past2_length_center * past2_freq_center + past3_surp_center *  
##     past3_length_center + past3_length_center * past3_freq_center +  
##     (1 | Word_ID)
##    Data: d
## 
## REML criterion at convergence: 103479.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0157 -0.4678 -0.1733  0.2520 25.9155 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Word_ID  (Intercept)  2722     52.17  
##  Residual             14156    118.98  
## Number of obs: 8242, groups:  Word_ID, 4123
## 
## Fixed effects:
##                                       Estimate Std. Error t value
## (Intercept)                           359.5187     3.5379 101.620
## surp_center                             1.9159     0.5829   3.287
## length_center                           2.1500     1.2006   1.791
## freq_center                             2.3728     0.8163   2.907
## past_surp_center                        1.5188     0.5781   2.627
## past_length_center                     -0.2172     1.1883  -0.183
## past_freq_center                        1.7774     0.8271   2.149
## past2_surp_center                       1.1163     0.5749   1.942
## past2_length_center                     2.2575     1.1979   1.885
## past2_freq_center                       2.0352     0.8246   2.468
## past3_surp_center                       0.5297     0.5919   0.895
## past3_length_center                     0.4446     1.2038   0.369
## past3_freq_center                       0.8798     0.8209   1.072
## surp_center:length_center              -0.1924     0.2744  -0.701
## length_center:freq_center              -0.4802     0.3867  -1.242
## past_surp_center:past_length_center    -0.1461     0.2709  -0.539
## past_length_center:past_freq_center    -0.3246     0.3858  -0.841
## past2_surp_center:past2_length_center  -0.3198     0.2706  -1.182
## past2_length_center:past2_freq_center  -0.5462     0.3854  -1.417
## past3_surp_center:past3_length_center  -0.4291     0.2833  -1.515
## past3_length_center:past3_freq_center  -0.5775     0.3927  -1.471
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ surp_center * length_center + length_center * freq_center +  
##     past_surp_center * past_length_center + past_length_center *  
##     past_freq_center + past2_surp_center * past2_length_center +  
##     past2_length_center * past2_freq_center + past3_surp_center *  
##     past3_length_center + past3_length_center * past3_freq_center +  
##     (1 | Word_ID)
##    Data: d
## 
## REML criterion at convergence: 103463.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9620 -0.4653 -0.1724  0.2471 25.9692 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Word_ID  (Intercept)  2676     51.73  
##  Residual             14156    118.98  
## Number of obs: 8242, groups:  Word_ID, 4123
## 
## Fixed effects:
##                                        Estimate Std. Error t value
## (Intercept)                           363.53925    3.44129 105.640
## surp_center                             2.62457    0.50650   5.182
## length_center                           2.14866    1.18160   1.818
## freq_center                             2.43173    0.68069   3.572
## past_surp_center                        1.65655    0.50286   3.294
## past_length_center                     -0.29636    1.16576  -0.254
## past_freq_center                        1.38108    0.69664   1.982
## past2_surp_center                       0.71623    0.50378   1.422
## past2_length_center                     2.13372    1.17169   1.821
## past2_freq_center                       1.27925    0.69730   1.835
## past3_surp_center                      -0.50376    0.49606  -1.016
## past3_length_center                     0.48990    1.17596   0.417
## past3_freq_center                       0.02131    0.68779   0.031
## surp_center:length_center              -0.44342    0.22953  -1.932
## length_center:freq_center              -0.57042    0.30071  -1.897
## past_surp_center:past_length_center    -0.24032    0.22751  -1.056
## past_length_center:past_freq_center    -0.37320    0.29943  -1.246
## past2_surp_center:past2_length_center  -0.44804    0.23120  -1.938
## past2_length_center:past2_freq_center  -0.56168    0.30050  -1.869
## past3_surp_center:past3_length_center  -0.22918    0.22308  -1.027
## past3_length_center:past3_freq_center  -0.34285    0.30781  -1.114
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ surp_center * length_center + length_center * freq_center +  
##     past_surp_center * past_length_center + past_length_center *  
##     past_freq_center + past2_surp_center * past2_length_center +  
##     past2_length_center * past2_freq_center + past3_surp_center *  
##     past3_length_center + past3_length_center * past3_freq_center +  
##     (1 | Word_ID)
##    Data: d
## 
## REML criterion at convergence: 103490.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0304 -0.4640 -0.1720  0.2508 25.9009 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Word_ID  (Intercept)  2739     52.33  
##  Residual             14156    118.98  
## Number of obs: 8242, groups:  Word_ID, 4123
## 
## Fixed effects:
##                                        Estimate Std. Error t value
## (Intercept)                           363.80523    3.45081 105.426
## surp_center                             1.66038    0.48658   3.412
## length_center                           2.33305    1.18323   1.972
## freq_center                             1.95207    0.69242   2.819
## past_surp_center                        1.26134    0.48356   2.608
## past_length_center                     -0.05669    1.16798  -0.049
## past_freq_center                        1.25686    0.70712   1.777
## past2_surp_center                       0.52483    0.48157   1.090
## past2_length_center                     2.19668    1.17385   1.871
## past2_freq_center                       1.21807    0.71093   1.713
## past3_surp_center                      -0.59755    0.47791  -1.250
## past3_length_center                     0.38996    1.18304   0.330
## past3_freq_center                      -0.10020    0.70382  -0.142
## surp_center:length_center              -0.07813    0.22197  -0.352
## length_center:freq_center              -0.29545    0.30387  -0.972
## past_surp_center:past_length_center     0.12527    0.22236   0.563
## past_length_center:past_freq_center    -0.06776    0.30212  -0.224
## past2_surp_center:past2_length_center  -0.13051    0.22096  -0.591
## past2_length_center:past2_freq_center  -0.32754    0.30215  -1.084
## past3_surp_center:past3_length_center  -0.19992    0.21584  -0.926
## past3_length_center:past3_freq_center  -0.36037    0.30728  -1.173
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ surp_center * length_center + length_center * freq_center +  
##     past_surp_center * past_length_center + past_length_center *  
##     past_freq_center + past2_surp_center * past2_length_center +  
##     past2_length_center * past2_freq_center + past3_surp_center *  
##     past3_length_center + past3_length_center * past3_freq_center +  
##     (1 | Word_ID)
##    Data: d
## 
## REML criterion at convergence: 103490.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0304 -0.4640 -0.1720  0.2508 25.9009 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  Word_ID  (Intercept)  2739     52.33  
##  Residual             14156    118.98  
## Number of obs: 8242, groups:  Word_ID, 4123
## 
## Fixed effects:
##                                        Estimate Std. Error t value
## (Intercept)                           363.80523    3.45081 105.426
## surp_center                             1.66038    0.48658   3.412
## length_center                           2.33305    1.18323   1.972
## freq_center                             1.95207    0.69242   2.819
## past_surp_center                        1.26134    0.48356   2.608
## past_length_center                     -0.05669    1.16798  -0.049
## past_freq_center                        1.25686    0.70712   1.777
## past2_surp_center                       0.52483    0.48157   1.090
## past2_length_center                     2.19668    1.17385   1.871
## past2_freq_center                       1.21807    0.71093   1.713
## past3_surp_center                      -0.59755    0.47791  -1.250
## past3_length_center                     0.38996    1.18304   0.330
## past3_freq_center                      -0.10020    0.70382  -0.142
## surp_center:length_center              -0.07813    0.22197  -0.352
## length_center:freq_center              -0.29545    0.30387  -0.972
## past_surp_center:past_length_center     0.12527    0.22236   0.563
## past_length_center:past_freq_center    -0.06776    0.30212  -0.224
## past2_surp_center:past2_length_center  -0.13051    0.22096  -0.591
## past2_length_center:past2_freq_center  -0.32754    0.30215  -1.084
## past3_surp_center:past3_length_center  -0.19992    0.21584  -0.926
## past3_length_center:past3_freq_center  -0.36037    0.30728  -1.173

Summaries of LMER

These have some hierarchical effects

SPR Model comparison

I’m not sure if this is what we want, but these are the P-values from anova’s comparison the value of adding one set of surprisal predictors to a model that already has another. (So smaller values mean that the column has a lot of predictive utility beyond the row label).

I’m not sure what the best presentational format is – or whether we want F values or p values or what. I also not sure how to arrange the table (should I transpose?) or label it so which one is better is clear.

This is all on meaned data with no mixed effects and predictors of freq x length and surprisal(s) for word and previous word.

Model over 5-gram over GRNN over TXL over GPT-2 Log Lik r_squared
5-gram 3 (p=0.032) 4 (p=0.001) 3 (p=0.033) -51798 0.01
GRNN 7 (p<0.001) 6 (p<0.001) 2 (p=0.153) -51790 0.01
TXL 3 (p=0.010) 0 (p=0.910) 1 (p=0.462) -51801 0.01
GPT-2 10 (p<0.001) 5 (p<0.001) 10 (p<0.001) -51783 0.01

SPR LM with freq**2 effects

## 
## Call:
## lm(formula = str_c(no_surp_poly, ngram), data = item_mean_spr)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -216.4  -66.0  -25.9   34.6 3578.2 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                            367.1462     4.1196  89.122  < 2e-16 ***
## poly(freq_center, 2)1                  928.1652   285.7340   3.248 0.001165 ** 
## poly(freq_center, 2)2                  193.7760   165.2863   1.172 0.241084    
## length_center                            2.4822     1.1521   2.154 0.031232 *  
## poly(past_freq_center, 2)1             608.1251   285.2777   2.132 0.033061 *  
## poly(past_freq_center, 2)2             -95.6702   168.0492  -0.569 0.569169    
## past_length_center                      -0.3613     1.1527  -0.313 0.753942    
## poly(past2_freq_center, 2)1            700.4677   279.7548   2.504 0.012304 *  
## poly(past2_freq_center, 2)2            -21.4001   166.8474  -0.128 0.897945    
## past2_length_center                      2.1724     1.1567   1.878 0.060401 .  
## poly(past3_freq_center, 2)1            390.1674   276.0361   1.413 0.157557    
## poly(past3_freq_center, 2)2            377.5809   163.5949   2.308 0.021023 *  
## past3_length_center                      1.1277     1.1562   0.975 0.329441    
## ngram_center                             1.8645     0.5478   3.403 0.000669 ***
## past_ngram_center                        1.5255     0.5442   2.803 0.005068 ** 
## past2_ngram_center                       0.9544     0.5412   1.764 0.077842 .  
## past3_ngram_center                       0.3895     0.5532   0.704 0.481349    
## length_center:freq_center               -0.2682     0.4088  -0.656 0.511714    
## past_length_center:past_freq_center     -0.4285     0.4104  -1.044 0.296523    
## past2_length_center:past2_freq_center   -0.5729     0.4103  -1.396 0.162627    
## past3_length_center:past3_freq_center   -0.1331     0.4129  -0.322 0.747190    
## length_center:ngram_center              -0.1840     0.2557  -0.720 0.471757    
## past_length_center:past_ngram_center    -0.1667     0.2525  -0.660 0.509012    
## past2_length_center:past2_ngram_center  -0.2955     0.2527  -1.170 0.242171    
## past3_length_center:past3_ngram_center  -0.3648     0.2642  -1.381 0.167412    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 129.9 on 8217 degrees of freedom
## Multiple R-squared:  0.008587,   Adjusted R-squared:  0.005691 
## F-statistic: 2.965 on 24 and 8217 DF,  p-value: 1.564e-06
## 
## Call:
## lm(formula = str_c(no_surp_poly, grnn), data = item_mean_spr)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -220.4  -66.3  -25.3   34.0 3577.1 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                            370.2825     4.0457  91.525  < 2e-16 ***
## poly(freq_center, 2)1                  962.6813   241.3175   3.989 6.69e-05 ***
## poly(freq_center, 2)2                  205.6680   164.0520   1.254  0.21000    
## length_center                            2.4908     1.1384   2.188  0.02869 *  
## poly(past_freq_center, 2)1             449.6060   243.5749   1.846  0.06495 .  
## poly(past_freq_center, 2)2            -115.6865   166.5073  -0.695  0.48721    
## past_length_center                      -0.5109     1.1353  -0.450  0.65273    
## poly(past2_freq_center, 2)1            452.1801   238.9742   1.892  0.05850 .  
## poly(past2_freq_center, 2)2            -13.0991   165.4909  -0.079  0.93691    
## past2_length_center                      2.0607     1.1371   1.812  0.07000 .  
## poly(past3_freq_center, 2)1            120.9526   233.8813   0.517  0.60506    
## poly(past3_freq_center, 2)2            443.8665   161.9194   2.741  0.00613 ** 
## past3_length_center                      1.3283     1.1339   1.171  0.24145    
## grnn_center                              2.6041     0.4747   5.485 4.25e-08 ***
## past_grnn_center                         1.6619     0.4718   3.522  0.00043 ***
## past2_grnn_center                        0.5771     0.4732   1.219  0.22270    
## past3_grnn_center                       -0.6274     0.4629  -1.355  0.17541    
## length_center:freq_center               -0.3422     0.3322  -1.030  0.30295    
## past_length_center:past_freq_center     -0.4962     0.3343  -1.484  0.13779    
## past2_length_center:past2_freq_center   -0.5984     0.3345  -1.789  0.07370 .  
## past3_length_center:past3_freq_center    0.1319     0.3372   0.391  0.69565    
## length_center:grnn_center               -0.4291     0.2135  -2.010  0.04448 *  
## past_length_center:past_grnn_center     -0.2678     0.2117  -1.265  0.20598    
## past2_length_center:past2_grnn_center   -0.4313     0.2153  -2.003  0.04521 *  
## past3_length_center:past3_grnn_center   -0.1945     0.2080  -0.935  0.34973    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 129.7 on 8217 degrees of freedom
## Multiple R-squared:  0.01158,    Adjusted R-squared:  0.008692 
## F-statistic: 4.011 on 24 and 8217 DF,  p-value: 1.53e-10
## 
## Call:
## lm(formula = str_c(no_surp_poly, txl), data = item_mean_spr)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -225.3  -66.0  -26.2   34.4 3577.3 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                           370.98916    4.05176  91.563  < 2e-16 ***
## poly(freq_center, 2)1                 782.47068  244.55802   3.200 0.001382 ** 
## poly(freq_center, 2)2                 229.66844  164.39971   1.397 0.162448    
## length_center                           2.69760    1.13778   2.371 0.017766 *  
## poly(past_freq_center, 2)1            422.95187  246.78238   1.714 0.086591 .  
## poly(past_freq_center, 2)2            -42.50768  166.34717  -0.256 0.798316    
## past_length_center                     -0.12982    1.13544  -0.114 0.908972    
## poly(past2_freq_center, 2)1           439.03848  243.37107   1.804 0.071270 .  
## poly(past2_freq_center, 2)2            37.08715  165.14534   0.225 0.822317    
## past2_length_center                     2.20808    1.13619   1.943 0.052002 .  
## poly(past3_freq_center, 2)1            83.15345  238.93080   0.348 0.727832    
## poly(past3_freq_center, 2)2           460.26339  161.96758   2.842 0.004498 ** 
## past3_length_center                     1.24474    1.13706   1.095 0.273679    
## txl_center                              1.61127    0.45484   3.542 0.000399 ***
## past_txl_center                         1.23850    0.45177   2.741 0.006130 ** 
## past2_txl_center                        0.38057    0.45087   0.844 0.398648    
## past3_txl_center                       -0.69589    0.44491  -1.564 0.117829    
## length_center:freq_center              -0.05280    0.33353  -0.158 0.874212    
## past_length_center:past_freq_center    -0.11241    0.33543  -0.335 0.737540    
## past2_length_center:past2_freq_center  -0.30642    0.33471  -0.916 0.359955    
## past3_length_center:past3_freq_center   0.14128    0.33632   0.420 0.674433    
## length_center:txl_center               -0.06686    0.20612  -0.324 0.745658    
## past_length_center:past_txl_center      0.10374    0.20663   0.502 0.615654    
## past2_length_center:past2_txl_center   -0.11301    0.20545  -0.550 0.582296    
## past3_length_center:past3_txl_center   -0.16271    0.20084  -0.810 0.417861    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 129.9 on 8217 degrees of freedom
## Multiple R-squared:  0.007983,   Adjusted R-squared:  0.005086 
## F-statistic: 2.755 on 24 and 8217 DF,  p-value: 8.824e-06
## 
## Call:
## lm(formula = str_c(no_surp_poly, gpt), data = item_mean_spr)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -224.0  -65.9  -25.7   34.6 3580.9 
## 
## Coefficients:
##                                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                            369.3487     4.0478  91.246  < 2e-16 ***
## poly(freq_center, 2)1                  787.2679   225.1586   3.497 0.000474 ***
## poly(freq_center, 2)2                  181.3571   164.3237   1.104 0.269774    
## length_center                            2.1029     1.1409   1.843 0.065332 .  
## poly(past_freq_center, 2)1             295.9560   228.1958   1.297 0.194689    
## poly(past_freq_center, 2)2            -108.4075   166.6901  -0.650 0.515482    
## past_length_center                      -0.7037     1.1399  -0.617 0.537033    
## poly(past2_freq_center, 2)1            520.1060   224.5531   2.316 0.020573 *  
## poly(past2_freq_center, 2)2            -51.6043   165.6383  -0.312 0.755392    
## past2_length_center                      1.6410     1.1420   1.437 0.150781    
## poly(past3_freq_center, 2)1            135.2172   219.3713   0.616 0.537657    
## poly(past3_freq_center, 2)2            426.2727   162.0943   2.630 0.008560 ** 
## past3_length_center                      0.9408     1.1385   0.826 0.408594    
## gpt_center                               2.7110     0.4647   5.834 5.61e-09 ***
## past_gpt_center                          1.6778     0.4621   3.631 0.000284 ***
## past2_gpt_center                         1.4885     0.4645   3.204 0.001360 ** 
## past3_gpt_center                        -0.4596     0.4624  -0.994 0.320253    
## length_center:freq_center               -0.2129     0.3180  -0.670 0.503118    
## past_length_center:past_freq_center     -0.3810     0.3185  -1.196 0.231554    
## past2_length_center:past2_freq_center   -0.5789     0.3180  -1.821 0.068672 .  
## past3_length_center:past3_freq_center    0.1772     0.3186   0.556 0.578030    
## length_center:gpt_center                -0.2619     0.2060  -1.271 0.203780    
## past_length_center:past_gpt_center      -0.1245     0.2019  -0.617 0.537207    
## past2_length_center:past2_gpt_center    -0.4113     0.2026  -2.030 0.042394 *  
## past3_length_center:past3_gpt_center    -0.0901     0.2007  -0.449 0.653525    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 129.6 on 8217 degrees of freedom
## Multiple R-squared:  0.01251,    Adjusted R-squared:  0.00963 
## F-statistic: 4.339 on 24 and 8217 DF,  p-value: 7.204e-12

Maze and SPR scatter

Abnormally low and high times were excluded, then for each word, an average was taken across subjects. For sentence level, these averages were then summed across the sentence. (Because of A-maze sentence discontinuation and general outlier handling, summing the average is better than averaging the sum.)

We want to compare w/i Maze, w/i SPR and between Maze and SPR. Maze is the smaller dataset (63 subjects), so we split half for each story.

For SPR, we subsample the 165 subjects down to 63 (to match the number of subjects in Maze), and again split half for each story.

For Maze-SPR comparison, we compare each of the Maze half-SPR half and then average the correlations across these 4 pairs.

SPR-SPR

## [1] 0.1368166

## [1] 0.7795845

## [1] 0.2341913

Maze-Maze

## [1] 0.4378548

## [1] 0.9503789

## [1] 0.3606054

Maze-SPR

For maze-spr comparisons we take the 4 pairs (maze1 with spr1; maze1 with spr2, etc) We overplot all the combinations (not sure this is right), and take the average of the 4 correlations.

## [1] 0.1353904

## [1] 0.8765725

## [1] 0.2489745