1 Nivel nacional URBANO (código 1)
1.1 Pregunta P08: Sexo
Categorías de respuesta:
1 Hombre
2 Mujer
1.2 Generación de tabla de contingencia para la variable P08
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P08
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 1)
for(i in 2:2){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Hombre"
names(comuna_corr)[4] <- "Mujer"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P08_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
Hombre | Mujer | ingresos_expandidos | |
---|---|---|---|
Min. : 508 | Min. : 459 | Min. :7.054e+08 | |
1st Qu.: 2720 | 1st Qu.: 2817 | 1st Qu.:2.954e+09 | |
Median : 6532 | Median : 6771 | Median :5.697e+09 | |
Mean : 23407 | Mean : 24945 | Mean :1.784e+10 | |
3rd Qu.: 23220 | 3rd Qu.: 25411 | 3rd Qu.:1.857e+10 | |
Max. :275141 | Max. :292953 | Max. :1.870e+11 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
2 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P08_URB.rds")
tabla %>%
rownames_to_column("Sexo") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Sexo | Correlación |
---|---|
Hombre | 0.864292649739566 |
Mujer | 0.864650429637154 |
## Kendall
3 Nivel nacional RURAL (código 2)
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P08
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 1)
for(i in 2:2){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Hombre"
names(comuna_corr)[4] <- "Mujer"
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P08_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
Hombre | Mujer | ingresos_expandidos | |
---|---|---|---|
Min. : 6 | Min. : 6 | Min. :2.792e+08 | |
1st Qu.: 1504 | 1st Qu.: 1224 | 1st Qu.:1.809e+09 | |
Median : 2803 | Median : 2411 | Median :3.546e+09 | |
Mean : 3558 | Mean : 3181 | Mean :8.206e+09 | |
3rd Qu.: 4674 | 3rd Qu.: 4205 | 3rd Qu.:7.252e+09 | |
Max. :26055 | Max. :25189 | Max. :7.585e+10 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
4 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
4.1 Kendall
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P08_RU.rds")
tabla %>%
rownames_to_column("Sexo") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Sexo | Correlación |
---|---|
Hombre | 0.378855554533943 |
Mujer | 0.350076426337563 |