1 Nivel nacional URBANO (código 1)
1.1 Pregunta P05: Origen del agua
Esta pregunta posee 4 categorias de respuesta:
1 Red pública
2 Pozo o noria
3 Camión aljibe
4 Río, vertiente, estero, canal, lago, etc.
Leemos las respuestas a la pregunta P05 del censo de viviendas 2017 y obtenemos la tabla de frecuencias por categoría:
tabla_con_clave <- readRDS("censos/censo_viviendas_con_clave_17.rds")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P05
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
categorias <- sort(unique(tabla_con_clave_u$P05 ))
categorias <- as.data.frame(categorias)
names(categorias)[1] <- "cat"
categorias <- filter(categorias, categorias$cat != 99)
categorias <- filter(categorias, categorias$cat != 98)
d_t <- filter(d,d$unlist.c. == categorias[1,1])
for(i in categorias[2,1]:categorias[nrow(categorias),1]){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
# Agregamos un cero a los códigos comunales de 4 dígitos, que queda en la columna llamada **código**:
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Red pública"
names(comuna_corr)[4] <- "Pozo o noria"
names(comuna_corr)[6] <- "Camión aljibe"
names(comuna_corr)[8] <- " Río, vertiente, estero, canal, lago, etc."
renombrar <- seq(1,(ncol(comuna_corr)-2),2)
vv <- 0
for (v in renombrar) {
vv <- vv+1
contador <- paste0("categoria_",vv)
names(comuna_corr )[v] <- contador
}
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
df_2017_2 <- df_2017_2[, -c(2,4,6,8,10)]
kbl(head(df_2017_2,50)) %>% kable_styling(bootstrap_options = c("striped", "hover")) %>% kable_paper() %>% scroll_box(width = "100%", height = "300px")
código | Red pública | Pozo o noria | Camión aljibe | Río, vertiente, estero, canal, lago, etc. | ingresos_expandidos |
---|---|---|---|---|---|
01101 | 54612 | 22 | 57 | 15 | 71930106513 |
01107 | 26433 | 75 | 1622 | 21 | 33766585496 |
01401 | 2617 | 20 | 75 | 1 | 4966851883 |
01404 | 327 | 3 | 15 | 5 | NA |
01405 | 1106 | 132 | 28 | 5 | 3068247619 |
02101 | 95652 | 151 | 1032 | 550 | 133249367039 |
02102 | 2629 | 2 | 255 | 1 | 4979702302 |
02104 | 2818 | 1 | 339 | 2 | 5109282942 |
02201 | 44502 | 33 | 299 | 31 | 71981127235 |
02203 | 1361 | 5 | 136 | 11 | 4869699464 |
02301 | 7504 | 2 | 31 | 1 | 7207910819 |
02302 | 1348 | NA | 2 | NA | 3084818966 |
03101 | 42747 | 142 | 1351 | 31 | 52819016037 |
03102 | 4544 | 8 | 272 | NA | 5628052276 |
03103 | 2559 | 7 | 286 | 2 | 4671058718 |
03201 | 3105 | NA | 150 | 2 | 3499391196 |
03202 | 3902 | 1 | 311 | 5 | 4895805596 |
03301 | 13501 | 22 | 141 | 51 | 16404810756 |
03303 | 1231 | 7 | 137 | 6 | 2035200054 |
03304 | 2663 | 5 | 151 | 3 | 3424422750 |
04101 | 60898 | 310 | 90 | 61 | 61749247282 |
04102 | 61957 | 266 | 769 | 73 | 61277269093 |
04103 | 2962 | 8 | 66 | 7 | 2855312920 |
04104 | 370 | 10 | 10 | 4 | 908664019 |
04106 | 5321 | 9 | 10 | 10 | 7058750373 |
04201 | 6631 | 27 | 60 | 22 | 8703433491 |
04202 | 621 | 5 | 69 | 3 | 2122281844 |
04203 | 5656 | 37 | 35 | 19 | 6098444926 |
04204 | 4753 | 47 | 180 | 11 | 7690585032 |
04301 | 26376 | 59 | 110 | 57 | 31197719080 |
04302 | 2046 | 12 | 15 | 8 | 3124505460 |
04303 | 4691 | 14 | 80 | 8 | 6930326684 |
04304 | 1737 | 62 | 92 | 6 | 2328107498 |
05101 | 94666 | 452 | 1442 | 125 | 90946261553 |
05102 | 5629 | 41 | 22 | 3 | 9352095757 |
05103 | 12814 | 11 | 22 | 3 | 14075920021 |
05105 | 3511 | 1146 | 682 | 14 | 5490274928 |
05107 | 7196 | 1365 | 99 | 14 | 9839456903 |
05109 | 114028 | 392 | 1051 | 139 | 118563074323 |
05201 | 2247 | 23 | 11 | 5 | NA |
05301 | 19133 | 14 | 52 | 7 | 23711104774 |
05302 | 3200 | 94 | 10 | 3 | 3654416747 |
05303 | 2440 | 25 | 2 | 3 | 2855998928 |
05304 | 3586 | 17 | 4 | 15 | 4140022481 |
05401 | 8289 | 208 | 52 | 19 | 9183080280 |
05402 | 3788 | 19 | 11 | 4 | 5094117762 |
05403 | 1737 | 8 | 3 | 3 | 1921527704 |
05404 | 1351 | 54 | 23 | 1 | 2333781007 |
05405 | 1564 | 83 | 4 | 4 | 2160521991 |
05501 | 24708 | 102 | 47 | 33 | 26131733924 |
1.1.0.1 Tabla a correlacionar:
1.1.0.2 Estadísticos básicos de nuestras frecuencias
data_sum <- summary(df_2017_2)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
código | Red pública | Pozo o noria | Camión aljibe | Río, vertiente, estero, canal, lago, etc. | ingresos_expandidos | |
---|---|---|---|---|---|---|
Length:319 | Min. : 278 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. :7.054e+08 | |
Class :character | 1st Qu.: 1737 | 1st Qu.: 10.00 | 1st Qu.: 5.00 | 1st Qu.: 3.00 | 1st Qu.:2.954e+09 | |
Mode :character | Median : 4289 | Median : 35.00 | Median : 14.50 | Median : 8.00 | Median :5.697e+09 | |
NA | Mean : 14806 | Mean : 90.21 | Mean : 73.45 | Mean : 30.41 | Mean :1.784e+10 | |
NA | 3rd Qu.: 15112 | 3rd Qu.: 95.00 | 3rd Qu.: 51.25 | 3rd Qu.: 21.00 | 3rd Qu.:1.857e+10 | |
NA | Max. :162197 | Max. :1365.00 | Max. :1622.00 | Max. :635.00 | Max. :1.870e+11 |
1.1.0.3 Gráficas:
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2))) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T)
fig
2 \(\tau\) de Kendall
df_2017_2f <- filter(df_2017_2, df_2017_2$ingresos_expandidos != 'is.na')
III <- seq(2,(ncol(df_2017_2))-1,1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla
## V1
## Red pública 0.8572234
## Pozo o noria 0.3219002
## Camión aljibe 0.2240917
## Río, vertiente, estero, canal, lago, etc. 0.3011445
tabla %>% rownames_to_column("Origen del agua")%>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Origen del agua | Correlación |
---|---|
Red pública | 0.857223394562826 |
Pozo o noria | 0.321900158823769 |
Camión aljibe | 0.224091677702162 |
Río, vertiente, estero, canal, lago, etc. | 0.301144544442406 |
2.1 Kendall
3 Nivel nacional RURAL (código 2)
3.1 Pregunta P05: Origen del agua
Esta pregunta posee 4 categorias de respuesta:
1 Red pública
2 Pozo o noria
3 Camión aljibe
4 Río, vertiente, estero, canal, lago, etc.
Leemos las respuestas a la pregunta P05 del censo de viviendas 2017 y obtenemos la tabla de frecuencias por categoría:
tabla_con_clave <- readRDS("censos/censo_viviendas_con_clave_17.rds")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P05
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
categorias <- sort(unique(tabla_con_clave_u$P05 ))
categorias <- as.data.frame(categorias)
names(categorias)[1] <- "cat"
categorias <- filter(categorias, categorias$cat != 99)
categorias <- filter(categorias, categorias$cat != 98)
d_t <- filter(d,d$unlist.c. == categorias[1,1])
for(i in categorias[2,1]:categorias[nrow(categorias),1]){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
# Agregamos un cero a los códigos comunales de 4 dígitos, que queda en la columna llamada **código**:
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr)[2] <- "Red pública"
names(comuna_corr)[4] <- "Pozo o noria"
names(comuna_corr)[6] <- "Camión aljibe"
names(comuna_corr)[8] <- " Río, vertiente, estero, canal, lago, etc."
renombrar <- seq(1,(ncol(comuna_corr)-2),2)
vv <- 0
for (v in renombrar) {
vv <- vv+1
contador <- paste0("categoria_",vv)
names(comuna_corr )[v] <- contador
}
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
df_2017_2 <- df_2017_2[, -c(2,4,6,8,10)]
kbl(head(df_2017_2,50)) %>% kable_styling(bootstrap_options = c("striped", "hover")) %>% kable_paper() %>% scroll_box(width = "100%", height = "300px")
código | Red pública | Pozo o noria | Camión aljibe | Río, vertiente, estero, canal, lago, etc. | ingresos_expandidos |
---|---|---|---|---|---|
01101 | 337 | 8 | 409 | 12 | 52180713221 |
01107 | 8 | 2 | 34 | NA | NA |
01401 | 689 | 370 | 209 | 66 | 3822052676 |
01402 | 352 | 10 | 4 | 92 | 283538750 |
01403 | 177 | 23 | 1 | 252 | NA |
01404 | 229 | 82 | 50 | 225 | 645917134 |
01405 | 204 | 69 | 28 | 23 | 2502464414 |
02101 | 96 | NA | 192 | 21 | NA |
02102 | 56 | 1 | 77 | 1 | NA |
02103 | 331 | NA | 9 | 1 | 3290056742 |
02104 | 37 | 1 | 256 | 4 | 3844002134 |
02201 | 378 | 21 | 452 | 102 | 39457387800 |
02202 | 83 | NA | 10 | NA | NA |
02203 | 1141 | 32 | 48 | 104 | 2985112297 |
03101 | 449 | 233 | 256 | 16 | 38699138722 |
03102 | 258 | 8 | 517 | 8 | NA |
03103 | 341 | 151 | 381 | 56 | 4034940816 |
03201 | 229 | 4 | 175 | 1 | NA |
03202 | 203 | NA | 36 | 8 | 4545663075 |
03301 | 955 | 127 | 478 | 358 | 11299454698 |
03302 | 1405 | 102 | 107 | 127 | 1039186477 |
03303 | 462 | 57 | 322 | 18 | 1425547554 |
03304 | 199 | 110 | 176 | 10 | 2089066548 |
04101 | 2840 | 1147 | 1262 | 465 | 44274327972 |
04102 | 2151 | 939 | 837 | 111 | 46918711304 |
04103 | 79 | 80 | 218 | 27 | 2397612293 |
04104 | 741 | 145 | 155 | 14 | 982530309 |
04105 | 1403 | 14 | 29 | 144 | 786383423 |
04106 | 2884 | 191 | 151 | 127 | 4695441470 |
04201 | 2152 | 487 | 466 | 256 | 5109649759 |
04202 | 1283 | 463 | 585 | 345 | 1558270441 |
04203 | 606 | 292 | 338 | 198 | 3704185607 |
04204 | 3125 | 148 | 250 | 144 | 5681637894 |
04301 | 5235 | 951 | 1473 | 173 | 25683781418 |
04302 | 1620 | 434 | 537 | 171 | 2300832587 |
04303 | 4382 | 295 | 433 | 251 | 5835357638 |
04304 | 751 | 494 | 449 | 133 | 1817183694 |
04305 | 1435 | 61 | 82 | 80 | 778712384 |
05101 | 21 | 95 | 150 | 11 | 74756602991 |
05102 | 1612 | 1201 | 108 | 26 | 6779018483 |
05103 | 237 | 118 | 416 | 5 | NA |
05104 | 307 | 4 | NA | 38 | NA |
05105 | 394 | 363 | 170 | 39 | 4295363979 |
05107 | 374 | 1060 | 93 | 63 | 9102071069 |
05201 | 62 | 11 | 48 | 13 | NA |
05301 | 859 | 172 | 38 | 147 | 18714795984 |
05302 | 1092 | 145 | 66 | 13 | 3471349123 |
05303 | 509 | 65 | 76 | 12 | 2512319225 |
05304 | 1963 | 204 | 51 | 200 | 3995512770 |
05401 | 2445 | 356 | 346 | 48 | 6111000517 |
3.1.0.1 Tabla a correlacionar:
3.1.0.2 Estadísticos básicos de nuestras frecuencias
data_sum <- summary(df_2017_2)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
código | Red pública | Pozo o noria | Camión aljibe | Río, vertiente, estero, canal, lago, etc. | ingresos_expandidos | |
---|---|---|---|---|---|---|
Length:313 | Min. : 1 | Min. : 1.0 | Min. : 1.00 | Min. : 1.0 | Min. :2.792e+08 | |
Class :character | 1st Qu.: 326 | 1st Qu.: 116.0 | 1st Qu.: 39.25 | 1st Qu.: 27.0 | 1st Qu.:1.817e+09 | |
Mode :character | Median : 730 | Median : 346.0 | Median : 98.50 | Median : 106.0 | Median :3.604e+09 | |
NA | Mean :1161 | Mean : 618.1 | Mean : 165.89 | Mean : 270.4 | Mean :8.276e+09 | |
NA | 3rd Qu.:1580 | 3rd Qu.: 855.8 | 3rd Qu.: 199.75 | 3rd Qu.: 317.0 | 3rd Qu.:7.285e+09 | |
NA | Max. :9046 | Max. :11255.0 | Max. :1824.00 | Max. :3365.0 | Max. :7.585e+10 |
3.1.0.3 Gráficas:
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2))) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T)
fig
4 \(\tau\) de Kendall
df_2017_2f <- filter(df_2017_2, df_2017_2$ingresos_expandidos != 'is.na')
III <- seq(2,(ncol(df_2017_2))-1,1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla
## V1
## Red pública 0.28850039
## Pozo o noria 0.23943452
## Camión aljibe 0.13472218
## Río, vertiente, estero, canal, lago, etc. -0.08578231
tabla %>% rownames_to_column("Origen del agua")%>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Origen del agua | Correlación |
---|---|
Red pública | 0.288500393210231 |
Pozo o noria | 0.239434522935901 |
Camión aljibe | 0.134722178993687 |
Río, vertiente, estero, canal, lago, etc. | -0.0857823065222773 |