1 Nivel nacional URBANO (código 1)
1.1 Pregunta P09: Relación de parentesco
1.2 Las categorías de respuesta:
1 Edad 0…99
2 100 100 años y más
1.3 Generación de tabla de contingencia para la variable P09
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P09
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:100){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,204,2)
for (i in 1:101) {
names(comuna_corr)[III[i]] <- i-1
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P09_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 1.0 | Min. : 6.0 | Min. : 6.0 | Min. : 8.0 | Min. : 9.0 | Min. : 6 | Min. : 9.0 | Min. : 10.0 | Min. : 14.0 | Min. : 10.0 | Min. : 12.0 | Min. : 11.0 | Min. : 8.0 | Min. : 13.0 | Min. : 7.0 | Min. : 9.0 | Min. : 8.0 | Min. : 14.0 | Min. : 8.0 | Min. : 7.0 | Min. : 7.0 | Min. : 7.0 | Min. : 6.0 | Min. : 7.0 | Min. : 12.0 | Min. : 12.0 | Min. : 13.0 | Min. : 15.0 | Min. : 11.0 | Min. : 10.0 | Min. : 14.0 | Min. : 13.0 | Min. : 10.0 | Min. : 6.0 | Min. : 11.0 | Min. : 11.0 | Min. : 10.0 | Min. : 11.0 | Min. : 8.0 | Min. : 11.0 | Min. : 10.0 | Min. : 5.0 | Min. : 8.0 | Min. : 13.0 | Min. : 15.0 | Min. : 10.0 | Min. : 12.0 | Min. : 11.0 | Min. : 11.0 | Min. : 10.0 | Min. : 9.0 | Min. : 10.0 | Min. : 12.0 | Min. : 11.0 | Min. : 11 | Min. : 10.0 | Min. : 4.0 | Min. : 8.0 | Min. : 8.0 | Min. : 7.0 | Min. : 7.0 | Min. : 7.0 | Min. : 5.0 | Min. : 7.0 | Min. : 6.0 | Min. : 4 | Min. : 3 | Min. : 1.0 | Min. : 4.0 | Min. : 3.0 | Min. : 4.0 | Min. : 2.0 | Min. : 1.0 | Min. : 2.00 | Min. : 1.0 | Min. : 2.0 | Min. : 2.00 | Min. : 2 | Min. : 1.0 | Min. : 1.0 | Min. : 1.0 | Min. : 1 | Min. : 1.0 | Min. : 1.0 | Min. : 1.0 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.000 | Min. : 1.000 | Min. : 1.000 | Min. : 1.0 | Min. :7.054e+08 | |
1st Qu.: 67.5 | 1st Qu.: 69.0 | 1st Qu.: 76.0 | 1st Qu.: 77.5 | 1st Qu.: 71.5 | 1st Qu.: 75 | 1st Qu.: 75.0 | 1st Qu.: 81.5 | 1st Qu.: 82.0 | 1st Qu.: 77.0 | 1st Qu.: 75.5 | 1st Qu.: 77.5 | 1st Qu.: 75.5 | 1st Qu.: 78.5 | 1st Qu.: 80.0 | 1st Qu.: 77.5 | 1st Qu.: 86.0 | 1st Qu.: 81.0 | 1st Qu.: 72.5 | 1st Qu.: 73.0 | 1st Qu.: 67.5 | 1st Qu.: 74.5 | 1st Qu.: 76.0 | 1st Qu.: 79.0 | 1st Qu.: 77.5 | 1st Qu.: 83.5 | 1st Qu.: 87.5 | 1st Qu.: 88.5 | 1st Qu.: 84.5 | 1st Qu.: 79.5 | 1st Qu.: 75.5 | 1st Qu.: 75.0 | 1st Qu.: 70.0 | 1st Qu.: 72.0 | 1st Qu.: 75.0 | 1st Qu.: 79.5 | 1st Qu.: 70.0 | 1st Qu.: 67.0 | 1st Qu.: 68.0 | 1st Qu.: 71.0 | 1st Qu.: 68.0 | 1st Qu.: 73.5 | 1st Qu.: 75.5 | 1st Qu.: 81.0 | 1st Qu.: 77.0 | 1st Qu.: 75.0 | 1st Qu.: 72.5 | 1st Qu.: 71.5 | 1st Qu.: 74.0 | 1st Qu.: 81.0 | 1st Qu.: 80.0 | 1st Qu.: 78.5 | 1st Qu.: 75.5 | 1st Qu.: 75.0 | 1st Qu.: 73 | 1st Qu.: 69.5 | 1st Qu.: 63.5 | 1st Qu.: 64.5 | 1st Qu.: 61.5 | 1st Qu.: 64.5 | 1st Qu.: 61.5 | 1st Qu.: 53.5 | 1st Qu.: 50.5 | 1st Qu.: 51.5 | 1st Qu.: 48.5 | 1st Qu.: 44 | 1st Qu.: 44 | 1st Qu.: 45.5 | 1st Qu.: 41.0 | 1st Qu.: 37.0 | 1st Qu.: 34.0 | 1st Qu.: 34.0 | 1st Qu.: 34.0 | 1st Qu.: 30.25 | 1st Qu.: 28.0 | 1st Qu.: 27.5 | 1st Qu.: 27.25 | 1st Qu.: 26 | 1st Qu.: 21.0 | 1st Qu.: 20.0 | 1st Qu.: 17.0 | 1st Qu.: 18 | 1st Qu.: 16.0 | 1st Qu.: 15.0 | 1st Qu.: 13.0 | 1st Qu.: 12.0 | 1st Qu.: 11.00 | 1st Qu.: 10.00 | 1st Qu.: 8.00 | 1st Qu.: 7.00 | 1st Qu.: 6.00 | 1st Qu.: 5.00 | 1st Qu.: 4.00 | 1st Qu.: 3.00 | 1st Qu.: 3.0 | 1st Qu.: 2.00 | 1st Qu.: 2.00 | 1st Qu.: 1.000 | 1st Qu.: 1.000 | 1st Qu.: 1.000 | 1st Qu.: 2.0 | 1st Qu.:2.954e+09 | |
Median : 166.0 | Median : 190.0 | Median : 188.0 | Median : 182.0 | Median : 187.0 | Median : 188 | Median : 195.0 | Median : 201.0 | Median : 208.0 | Median : 200.0 | Median : 194.0 | Median : 191.0 | Median : 191.0 | Median : 186.0 | Median : 199.0 | Median : 194.0 | Median : 206.0 | Median : 195.0 | Median : 173.0 | Median : 168.0 | Median : 178.0 | Median : 181.0 | Median : 188.0 | Median : 188.0 | Median : 199.0 | Median : 201.0 | Median : 211.0 | Median : 227.0 | Median : 205.0 | Median : 191.0 | Median : 189.0 | Median : 179.0 | Median : 173.0 | Median : 179.0 | Median : 185.0 | Median : 189.0 | Median : 183.0 | Median : 183.0 | Median : 171.0 | Median : 160.0 | Median : 170.0 | Median : 179.0 | Median : 183.0 | Median : 190.0 | Median : 183.0 | Median : 174.0 | Median : 176.0 | Median : 175.0 | Median : 182.0 | Median : 185.0 | Median : 191.0 | Median : 191.0 | Median : 188.0 | Median : 186.0 | Median : 189 | Median : 175.0 | Median : 176.0 | Median : 160.0 | Median : 156.0 | Median : 153.0 | Median : 143.0 | Median : 135.0 | Median : 131.0 | Median : 126.0 | Median : 115.0 | Median : 114 | Median : 104 | Median : 105.0 | Median : 101.0 | Median : 97.0 | Median : 91.0 | Median : 88.0 | Median : 83.0 | Median : 76.00 | Median : 75.0 | Median : 69.0 | Median : 67.00 | Median : 61 | Median : 56.5 | Median : 49.5 | Median : 46.0 | Median : 44 | Median : 42.0 | Median : 34.0 | Median : 30.0 | Median : 30.0 | Median : 29.00 | Median : 24.00 | Median : 21.00 | Median : 17.00 | Median : 14.00 | Median : 11.00 | Median : 9.00 | Median : 8.00 | Median : 7.0 | Median : 5.00 | Median : 4.00 | Median : 3.000 | Median : 3.000 | Median : 3.000 | Median : 5.0 | Median :5.697e+09 | |
Mean : 601.1 | Mean : 658.9 | Mean : 670.4 | Mean : 655.3 | Mean : 663.2 | Mean : 663 | Mean : 687.0 | Mean : 681.0 | Mean : 667.0 | Mean : 650.5 | Mean : 633.9 | Mean : 626.9 | Mean : 620.0 | Mean : 624.8 | Mean : 651.3 | Mean : 661.5 | Mean : 686.4 | Mean : 687.7 | Mean : 708.7 | Mean : 725.4 | Mean : 755.4 | Mean : 765.1 | Mean : 793.7 | Mean : 799.3 | Mean : 819.9 | Mean : 829.8 | Mean : 852.6 | Mean : 862.4 | Mean : 830.4 | Mean : 793.9 | Mean : 768.6 | Mean : 735.6 | Mean : 713.0 | Mean : 694.8 | Mean : 721.6 | Mean : 738.5 | Mean : 684.8 | Mean : 669.5 | Mean : 636.7 | Mean : 620.0 | Mean : 629.2 | Mean : 645.0 | Mean : 663.3 | Mean : 674.9 | Mean : 662.9 | Mean : 649.6 | Mean : 626.9 | Mean : 607.8 | Mean : 618.9 | Mean : 632.4 | Mean : 636.5 | Mean : 637.5 | Mean : 645.6 | Mean : 632.0 | Mean : 643 | Mean : 608.0 | Mean : 590.2 | Mean : 557.8 | Mean : 543.4 | Mean : 528.1 | Mean : 511.7 | Mean : 473.9 | Mean : 444.0 | Mean : 435.8 | Mean : 407.6 | Mean : 382 | Mean : 359 | Mean : 348.1 | Mean : 331.4 | Mean : 321.4 | Mean : 307.0 | Mean : 289.8 | Mean : 274.7 | Mean : 255.02 | Mean : 243.8 | Mean : 226.0 | Mean : 212.58 | Mean : 196 | Mean : 171.5 | Mean : 157.8 | Mean : 149.8 | Mean : 139 | Mean : 127.1 | Mean : 115.3 | Mean : 109.9 | Mean : 100.7 | Mean : 96.76 | Mean : 83.67 | Mean : 69.38 | Mean : 61.81 | Mean : 48.36 | Mean : 38.12 | Mean : 33.87 | Mean : 26.26 | Mean : 21.6 | Mean : 16.03 | Mean : 13.88 | Mean : 9.824 | Mean : 7.489 | Mean : 6.586 | Mean : 15.4 | Mean :1.784e+10 | |
3rd Qu.: 667.5 | 3rd Qu.: 693.0 | 3rd Qu.: 734.0 | 3rd Qu.: 710.5 | 3rd Qu.: 713.0 | 3rd Qu.: 744 | 3rd Qu.: 743.5 | 3rd Qu.: 757.0 | 3rd Qu.: 748.5 | 3rd Qu.: 732.0 | 3rd Qu.: 717.0 | 3rd Qu.: 697.5 | 3rd Qu.: 677.0 | 3rd Qu.: 683.0 | 3rd Qu.: 696.0 | 3rd Qu.: 707.0 | 3rd Qu.: 753.0 | 3rd Qu.: 730.5 | 3rd Qu.: 719.0 | 3rd Qu.: 706.5 | 3rd Qu.: 685.5 | 3rd Qu.: 695.5 | 3rd Qu.: 702.5 | 3rd Qu.: 705.0 | 3rd Qu.: 727.0 | 3rd Qu.: 767.0 | 3rd Qu.: 779.5 | 3rd Qu.: 797.0 | 3rd Qu.: 760.0 | 3rd Qu.: 726.0 | 3rd Qu.: 710.5 | 3rd Qu.: 700.0 | 3rd Qu.: 699.5 | 3rd Qu.: 669.5 | 3rd Qu.: 710.0 | 3rd Qu.: 724.0 | 3rd Qu.: 653.0 | 3rd Qu.: 671.0 | 3rd Qu.: 657.5 | 3rd Qu.: 600.5 | 3rd Qu.: 644.5 | 3rd Qu.: 628.0 | 3rd Qu.: 664.0 | 3rd Qu.: 670.5 | 3rd Qu.: 654.5 | 3rd Qu.: 666.0 | 3rd Qu.: 628.5 | 3rd Qu.: 638.5 | 3rd Qu.: 657.0 | 3rd Qu.: 656.5 | 3rd Qu.: 668.0 | 3rd Qu.: 671.5 | 3rd Qu.: 669.5 | 3rd Qu.: 667.5 | 3rd Qu.: 656 | 3rd Qu.: 637.0 | 3rd Qu.: 585.0 | 3rd Qu.: 565.5 | 3rd Qu.: 547.5 | 3rd Qu.: 525.5 | 3rd Qu.: 513.0 | 3rd Qu.: 495.0 | 3rd Qu.: 444.5 | 3rd Qu.: 454.0 | 3rd Qu.: 419.5 | 3rd Qu.: 413 | 3rd Qu.: 364 | 3rd Qu.: 367.0 | 3rd Qu.: 333.0 | 3rd Qu.: 302.5 | 3rd Qu.: 310.5 | 3rd Qu.: 280.5 | 3rd Qu.: 268.5 | 3rd Qu.: 248.50 | 3rd Qu.: 237.5 | 3rd Qu.: 221.0 | 3rd Qu.: 221.75 | 3rd Qu.: 193 | 3rd Qu.: 177.2 | 3rd Qu.: 155.8 | 3rd Qu.: 146.5 | 3rd Qu.: 136 | 3rd Qu.: 115.0 | 3rd Qu.: 112.8 | 3rd Qu.: 95.5 | 3rd Qu.: 83.0 | 3rd Qu.: 88.50 | 3rd Qu.: 76.00 | 3rd Qu.: 58.50 | 3rd Qu.: 54.75 | 3rd Qu.: 44.00 | 3rd Qu.: 35.00 | 3rd Qu.: 32.00 | 3rd Qu.: 24.75 | 3rd Qu.: 22.0 | 3rd Qu.: 16.00 | 3rd Qu.: 15.00 | 3rd Qu.: 11.000 | 3rd Qu.: 9.000 | 3rd Qu.: 8.000 | 3rd Qu.: 17.0 | 3rd Qu.:1.857e+10 | |
Max. :7399.0 | Max. :8241.0 | Max. :8383.0 | Max. :8328.0 | Max. :8233.0 | Max. :8148 | Max. :8576.0 | Max. :8669.0 | Max. :8398.0 | Max. :8346.0 | Max. :8015.0 | Max. :7924.0 | Max. :7892.0 | Max. :8021.0 | Max. :8213.0 | Max. :8555.0 | Max. :8668.0 | Max. :8928.0 | Max. :8805.0 | Max. :9098.0 | Max. :9491.0 | Max. :9589.0 | Max. :10283.0 | Max. :10077.0 | Max. :10416.0 | Max. :11642.0 | Max. :13039.0 | Max. :14116.0 | Max. :14101.0 | Max. :13961.0 | Max. :13406.0 | Max. :12392.0 | Max. :11643.0 | Max. :10710.0 | Max. :10393.0 | Max. :9970.0 | Max. :8778.0 | Max. :8189.0 | Max. :7103.0 | Max. :6913.0 | Max. :6676.0 | Max. :7387.0 | Max. :7774.0 | Max. :7885.0 | Max. :7865.0 | Max. :7745.0 | Max. :7452.0 | Max. :7313.0 | Max. :7652.0 | Max. :8102.0 | Max. :8172.0 | Max. :8229.0 | Max. :8547.0 | Max. :8517.0 | Max. :8722 | Max. :8242.0 | Max. :7846.0 | Max. :7277.0 | Max. :7004.0 | Max. :6633.0 | Max. :6218.0 | Max. :5585.0 | Max. :5128.0 | Max. :4834.0 | Max. :4529.0 | Max. :4042 | Max. :3796 | Max. :3693.0 | Max. :3435.0 | Max. :3282.0 | Max. :2962.0 | Max. :2836.0 | Max. :2601.0 | Max. :2377.00 | Max. :2202.0 | Max. :2087.0 | Max. :2045.00 | Max. :1878 | Max. :1658.0 | Max. :1544.0 | Max. :1556.0 | Max. :1507 | Max. :1270.0 | Max. :1302.0 | Max. :1220.0 | Max. :1141.0 | Max. :1091.00 | Max. :944.00 | Max. :850.00 | Max. :773.00 | Max. :606.00 | Max. :513.00 | Max. :464.00 | Max. :340.00 | Max. :283.0 | Max. :207.00 | Max. :185.00 | Max. :131.000 | Max. :73.000 | Max. :78.000 | Max. :160.0 | Max. :1.870e+11 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
2 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P09_URB.rds")
tabla %>%
rownames_to_column("Edad") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Edad | Correlación |
---|---|
0 | 0.857629771038468 |
1 | 0.856089413207342 |
2 | 0.860119142298364 |
3 | 0.858137074109771 |
4 | 0.847330109892176 |
5 | 0.85336115577672 |
6 | 0.849402655847129 |
7 | 0.850245185968231 |
8 | 0.850866203578662 |
9 | 0.851050740108162 |
10 | 0.851540959066402 |
11 | 0.849349370024433 |
12 | 0.853092580811981 |
13 | 0.853922464012424 |
14 | 0.852603681726985 |
15 | 0.856101357212014 |
16 | 0.850931166551822 |
17 | 0.852740721965955 |
18 | 0.842228938469906 |
19 | 0.841686578939329 |
20 | 0.84948048854653 |
21 | 0.857773304400037 |
22 | 0.862679749678618 |
23 | 0.860441562678429 |
24 | 0.863696072318588 |
25 | 0.865975298378341 |
26 | 0.868601602139698 |
27 | 0.862846895185942 |
28 | 0.861037541618425 |
29 | 0.863307041287597 |
30 | 0.868842321832303 |
31 | 0.866047034756565 |
32 | 0.868467065863315 |
33 | 0.868167289293234 |
34 | 0.865379068707707 |
35 | 0.863205412600979 |
36 | 0.860549848875412 |
37 | 0.867014471152666 |
38 | 0.868984043322763 |
39 | 0.867631965235551 |
40 | 0.869178546278751 |
41 | 0.864615564870778 |
42 | 0.867397695233315 |
43 | 0.862882977185464 |
44 | 0.86216069857319 |
45 | 0.851354888748764 |
46 | 0.857480452588242 |
47 | 0.855713256404728 |
48 | 0.861511216979363 |
49 | 0.856763997046574 |
50 | 0.854143190624636 |
51 | 0.854525068745319 |
52 | 0.855307288364897 |
53 | 0.849718730933243 |
54 | 0.848268556920228 |
55 | 0.852136960512337 |
56 | 0.85027939561377 |
57 | 0.836522446147252 |
58 | 0.843987339025792 |
59 | 0.846044235830306 |
60 | 0.84640987163767 |
61 | 0.838834998519466 |
62 | 0.840309193378119 |
63 | 0.828832915264768 |
64 | 0.829598868319639 |
65 | 0.83364074470615 |
66 | 0.820201022744812 |
67 | 0.821322574186577 |
68 | 0.823376904311424 |
69 | 0.819339549766964 |
70 | 0.817120135885864 |
71 | 0.813941412453963 |
72 | 0.807296547132375 |
73 | 0.808665399491473 |
74 | 0.803730638609144 |
75 | 0.79935350829782 |
76 | 0.795523050806606 |
77 | 0.797381917503381 |
78 | 0.793838651966876 |
79 | 0.791656255386037 |
80 | 0.791986141998772 |
81 | 0.790421365550088 |
82 | 0.792305071956893 |
83 | 0.784041105583704 |
84 | 0.778147207322931 |
85 | 0.780665936372705 |
86 | 0.765261566663385 |
87 | 0.762270554213845 |
88 | 0.757182760813398 |
89 | 0.753538779614929 |
90 | 0.746803423589161 |
91 | 0.745845690425261 |
92 | 0.733785342626837 |
93 | 0.713219926556803 |
94 | 0.744319917342276 |
95 | 0.694112382313031 |
96 | 0.713697414434865 |
97 | 0.658138074416036 |
98 | 0.656976685831272 |
99 | 0.691939214531827 |
100 | 0.700481630150255 |
2.0.1 Kendall
i <- 1
f <- 10
for (cc in 1:10) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "20-29"
## [1] "30-39"
## [1] "40-49"
## [1] "50-59"
## [1] "60-69"
## [1] "70-79"
## [1] "80-89"
## [1] "90-99"
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
2.0.2 Pearson
i <- 1
f <- 10
for (cc in 1:10) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "20-29"
## [1] "30-39"
## [1] "40-49"
## [1] "50-59"
## [1] "60-69"
## [1] "70-79"
## [1] "80-89"
## [1] "90-99"
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)
2.0.3 Spearman
i <- 1
f <- 10
for (cc in 1:10) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "20-29"
## [1] "30-39"
## [1] "40-49"
## [1] "50-59"
## [1] "60-69"
## [1] "70-79"
## [1] "80-89"
## [1] "90-99"
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)
3 Nivel nacional RURAL (código 2)
tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P09
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:100){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,204,2)
for (i in 1:101) {
names(comuna_corr)[III[i]] <- i-1
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P09_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | ingresos_expandidos | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.0 | Min. : 1.0 | Min. : 1.0 | Min. : 1.00 | Min. : 1.0 | Min. : 2.0 | Min. : 1.00 | Min. : 1.0 | Min. : 1 | Min. : 1.0 | Min. : 1.0 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. : 1.0 | Min. : 1.000 | Min. : 1.000 | Min. : 1.00 | Min. : 1.000 | Min. : 1.000 | Min. : 1.00 | Min. : 1.000 | Min. :1.000 | Min. :1.000 | Min. :1.0 | Min. : 1.000 | Min. :2.792e+08 | |
1st Qu.: 26.00 | 1st Qu.: 30.00 | 1st Qu.: 32.25 | 1st Qu.: 31.00 | 1st Qu.: 32.00 | 1st Qu.: 31.00 | 1st Qu.: 34.00 | 1st Qu.: 35.50 | 1st Qu.: 37.00 | 1st Qu.: 33.25 | 1st Qu.: 33.00 | 1st Qu.: 35.00 | 1st Qu.: 35.00 | 1st Qu.: 33.75 | 1st Qu.: 32.25 | 1st Qu.: 31.00 | 1st Qu.: 32.00 | 1st Qu.: 31.75 | 1st Qu.: 26.00 | 1st Qu.: 28.25 | 1st Qu.: 30.00 | 1st Qu.: 29.0 | 1st Qu.: 32.75 | 1st Qu.: 33.25 | 1st Qu.: 35.00 | 1st Qu.: 36.75 | 1st Qu.: 40.0 | 1st Qu.: 38.00 | 1st Qu.: 37.75 | 1st Qu.: 34 | 1st Qu.: 37.00 | 1st Qu.: 35.00 | 1st Qu.: 36.00 | 1st Qu.: 33.75 | 1st Qu.: 33.75 | 1st Qu.: 39.00 | 1st Qu.: 36.50 | 1st Qu.: 38.75 | 1st Qu.: 36.00 | 1st Qu.: 38.00 | 1st Qu.: 38.00 | 1st Qu.: 41.50 | 1st Qu.: 41.50 | 1st Qu.: 41.5 | 1st Qu.: 41.0 | 1st Qu.: 42.5 | 1st Qu.: 41.0 | 1st Qu.: 42.75 | 1st Qu.: 45.0 | 1st Qu.: 49.0 | 1st Qu.: 45.75 | 1st Qu.: 45.0 | 1st Qu.: 46 | 1st Qu.: 45.0 | 1st Qu.: 46.0 | 1st Qu.: 45.5 | 1st Qu.: 41.00 | 1st Qu.: 39.50 | 1st Qu.: 38.00 | 1st Qu.: 38.00 | 1st Qu.: 36.25 | 1st Qu.: 35.00 | 1st Qu.: 31.00 | 1st Qu.: 34.0 | 1st Qu.: 30.00 | 1st Qu.: 28.25 | 1st Qu.: 28.00 | 1st Qu.: 25.25 | 1st Qu.: 24.5 | 1st Qu.: 23.25 | 1st Qu.: 23.25 | 1st Qu.: 21.00 | 1st Qu.: 21.00 | 1st Qu.: 19.00 | 1st Qu.: 19.25 | 1st Qu.: 18.00 | 1st Qu.: 17.00 | 1st Qu.: 15.00 | 1st Qu.: 15.00 | 1st Qu.: 13.00 | 1st Qu.: 12.00 | 1st Qu.: 11.00 | 1st Qu.: 10.50 | 1st Qu.: 9.00 | 1st Qu.: 8.0 | 1st Qu.: 7.00 | 1st Qu.: 7.00 | 1st Qu.: 6.50 | 1st Qu.: 5.25 | 1st Qu.: 5.0 | 1st Qu.: 4.000 | 1st Qu.: 3.000 | 1st Qu.: 3.00 | 1st Qu.: 2.000 | 1st Qu.: 2.000 | 1st Qu.: 1.00 | 1st Qu.: 1.000 | 1st Qu.:1.000 | 1st Qu.:1.000 | 1st Qu.:1.0 | 1st Qu.: 1.000 | 1st Qu.:1.809e+09 | |
Median : 53.00 | Median : 63.50 | Median : 64.50 | Median : 64.00 | Median : 62.50 | Median : 64.00 | Median : 67.00 | Median : 70.00 | Median : 70.00 | Median : 68.00 | Median : 70.00 | Median : 69.00 | Median : 68.00 | Median : 67.00 | Median : 67.50 | Median : 66.00 | Median : 68.00 | Median : 68.00 | Median : 60.00 | Median : 58.50 | Median : 60.00 | Median : 57.0 | Median : 63.50 | Median : 64.00 | Median : 62.00 | Median : 68.00 | Median : 72.0 | Median : 71.00 | Median : 66.50 | Median : 67 | Median : 66.00 | Median : 67.00 | Median : 63.00 | Median : 65.00 | Median : 68.50 | Median : 70.00 | Median : 67.00 | Median : 67.00 | Median : 66.00 | Median : 68.00 | Median : 69.00 | Median : 73.00 | Median : 76.00 | Median : 81.0 | Median : 77.0 | Median : 78.0 | Median : 76.0 | Median : 77.50 | Median : 78.5 | Median : 85.0 | Median : 84.50 | Median : 84.0 | Median : 85 | Median : 82.0 | Median : 79.5 | Median : 80.0 | Median : 76.00 | Median : 74.00 | Median : 70.00 | Median : 68.50 | Median : 69.00 | Median : 64.50 | Median : 60.00 | Median : 60.0 | Median : 58.50 | Median : 52.50 | Median : 53.50 | Median : 53.00 | Median : 48.0 | Median : 46.50 | Median : 45.50 | Median : 45.00 | Median : 43.00 | Median : 39.00 | Median : 37.00 | Median : 35.00 | Median : 33.00 | Median : 31.00 | Median : 27.00 | Median : 26.00 | Median : 24.00 | Median : 21.00 | Median : 20.00 | Median : 18.00 | Median : 16.0 | Median : 14.00 | Median : 14.00 | Median :12.00 | Median :10.50 | Median : 9.0 | Median : 7.000 | Median : 5.000 | Median : 5.00 | Median : 4.000 | Median : 3.000 | Median : 2.00 | Median : 2.000 | Median :2.000 | Median :1.000 | Median :1.0 | Median : 2.000 | Median :3.546e+09 | |
Mean : 73.22 | Mean : 84.38 | Mean : 86.88 | Mean : 85.55 | Mean : 88.27 | Mean : 87.37 | Mean : 91.54 | Mean : 93.29 | Mean : 92.43 | Mean : 91.00 | Mean : 90.74 | Mean : 90.07 | Mean : 89.83 | Mean : 90.64 | Mean : 90.91 | Mean : 91.79 | Mean : 93.77 | Mean : 92.62 | Mean : 85.16 | Mean : 81.12 | Mean : 82.06 | Mean : 81.8 | Mean : 86.26 | Mean : 86.70 | Mean : 90.13 | Mean : 91.99 | Mean : 94.5 | Mean : 94.57 | Mean : 91.29 | Mean : 89 | Mean : 87.69 | Mean : 86.18 | Mean : 84.14 | Mean : 84.13 | Mean : 88.33 | Mean : 92.74 | Mean : 87.69 | Mean : 89.16 | Mean : 87.21 | Mean : 89.45 | Mean : 90.19 | Mean : 95.91 | Mean : 99.71 | Mean :103.0 | Mean :103.9 | Mean :102.5 | Mean :101.1 | Mean :101.13 | Mean :102.7 | Mean :107.5 | Mean :107.08 | Mean :106.3 | Mean :108 | Mean :104.3 | Mean :105.6 | Mean :100.1 | Mean : 97.75 | Mean : 93.41 | Mean : 89.79 | Mean : 87.08 | Mean : 86.73 | Mean : 80.65 | Mean : 76.71 | Mean : 75.6 | Mean : 71.92 | Mean : 67.57 | Mean : 64.93 | Mean : 64.35 | Mean : 59.8 | Mean : 58.19 | Mean : 56.49 | Mean : 54.24 | Mean : 51.82 | Mean : 48.01 | Mean : 46.35 | Mean : 43.36 | Mean : 40.78 | Mean : 38.15 | Mean : 33.77 | Mean : 31.41 | Mean : 29.43 | Mean : 26.18 | Mean : 24.57 | Mean : 21.54 | Mean : 20.3 | Mean : 17.14 | Mean : 17.55 | Mean :14.99 | Mean :12.72 | Mean :11.2 | Mean : 8.482 | Mean : 6.878 | Mean : 6.18 | Mean : 4.711 | Mean : 4.106 | Mean : 3.24 | Mean : 2.801 | Mean :2.117 | Mean :1.844 | Mean :1.5 | Mean : 2.704 | Mean :8.206e+09 | |
3rd Qu.: 96.00 | 3rd Qu.:110.00 | 3rd Qu.:109.75 | 3rd Qu.:112.75 | 3rd Qu.:119.75 | 3rd Qu.:114.00 | 3rd Qu.:119.00 | 3rd Qu.:121.50 | 3rd Qu.:117.50 | 3rd Qu.:118.75 | 3rd Qu.:119.00 | 3rd Qu.:117.00 | 3rd Qu.:120.00 | 3rd Qu.:119.75 | 3rd Qu.:125.00 | 3rd Qu.:121.25 | 3rd Qu.:122.00 | 3rd Qu.:122.25 | 3rd Qu.:105.00 | 3rd Qu.:101.50 | 3rd Qu.:103.00 | 3rd Qu.:103.2 | 3rd Qu.:109.25 | 3rd Qu.:107.75 | 3rd Qu.:115.00 | 3rd Qu.:117.25 | 3rd Qu.:122.5 | 3rd Qu.:125.00 | 3rd Qu.:116.50 | 3rd Qu.:116 | 3rd Qu.:117.50 | 3rd Qu.:113.00 | 3rd Qu.:112.00 | 3rd Qu.:115.00 | 3rd Qu.:112.25 | 3rd Qu.:121.50 | 3rd Qu.:119.00 | 3rd Qu.:114.50 | 3rd Qu.:116.00 | 3rd Qu.:116.50 | 3rd Qu.:117.00 | 3rd Qu.:126.00 | 3rd Qu.:129.25 | 3rd Qu.:135.5 | 3rd Qu.:138.5 | 3rd Qu.:139.0 | 3rd Qu.:132.5 | 3rd Qu.:132.25 | 3rd Qu.:136.2 | 3rd Qu.:141.5 | 3rd Qu.:140.00 | 3rd Qu.:140.0 | 3rd Qu.:142 | 3rd Qu.:140.0 | 3rd Qu.:140.2 | 3rd Qu.:129.5 | 3rd Qu.:127.75 | 3rd Qu.:122.00 | 3rd Qu.:120.00 | 3rd Qu.:116.00 | 3rd Qu.:115.75 | 3rd Qu.:105.25 | 3rd Qu.:102.00 | 3rd Qu.:102.0 | 3rd Qu.:103.00 | 3rd Qu.: 89.75 | 3rd Qu.: 86.00 | 3rd Qu.: 84.75 | 3rd Qu.: 84.0 | 3rd Qu.: 81.75 | 3rd Qu.: 76.75 | 3rd Qu.: 74.00 | 3rd Qu.: 69.00 | 3rd Qu.: 65.00 | 3rd Qu.: 64.75 | 3rd Qu.: 59.00 | 3rd Qu.: 56.00 | 3rd Qu.: 53.00 | 3rd Qu.: 45.75 | 3rd Qu.: 41.50 | 3rd Qu.: 38.25 | 3rd Qu.: 37.00 | 3rd Qu.: 33.00 | 3rd Qu.: 28.00 | 3rd Qu.: 27.0 | 3rd Qu.: 24.00 | 3rd Qu.: 23.00 | 3rd Qu.:21.50 | 3rd Qu.:17.00 | 3rd Qu.:14.0 | 3rd Qu.:11.250 | 3rd Qu.:10.000 | 3rd Qu.: 8.00 | 3rd Qu.: 6.000 | 3rd Qu.: 6.000 | 3rd Qu.: 4.00 | 3rd Qu.: 4.000 | 3rd Qu.:3.000 | 3rd Qu.:2.000 | 3rd Qu.:2.0 | 3rd Qu.: 4.000 | 3rd Qu.:7.252e+09 | |
Max. :629.00 | Max. :651.00 | Max. :660.00 | Max. :650.00 | Max. :733.00 | Max. :682.00 | Max. :687.00 | Max. :764.00 | Max. :750.00 | Max. :698.00 | Max. :740.00 | Max. :713.00 | Max. :729.00 | Max. :721.00 | Max. :767.00 | Max. :797.00 | Max. :772.00 | Max. :793.00 | Max. :654.00 | Max. :626.00 | Max. :602.00 | Max. :631.0 | Max. :680.00 | Max. :675.00 | Max. :692.00 | Max. :751.00 | Max. :659.0 | Max. :715.00 | Max. :590.00 | Max. :557 | Max. :628.00 | Max. :598.00 | Max. :568.00 | Max. :548.00 | Max. :582.00 | Max. :595.00 | Max. :602.00 | Max. :629.00 | Max. :626.00 | Max. :607.00 | Max. :610.00 | Max. :634.00 | Max. :680.00 | Max. :776.0 | Max. :801.0 | Max. :813.0 | Max. :809.0 | Max. :764.00 | Max. :736.0 | Max. :862.0 | Max. :770.00 | Max. :787.0 | Max. :803 | Max. :751.0 | Max. :783.0 | Max. :723.0 | Max. :730.00 | Max. :764.00 | Max. :636.00 | Max. :626.00 | Max. :653.00 | Max. :564.00 | Max. :567.00 | Max. :525.0 | Max. :516.00 | Max. :448.00 | Max. :477.00 | Max. :443.00 | Max. :433.0 | Max. :411.00 | Max. :438.00 | Max. :374.00 | Max. :379.00 | Max. :350.00 | Max. :277.00 | Max. :299.00 | Max. :294.00 | Max. :266.00 | Max. :198.00 | Max. :214.00 | Max. :190.00 | Max. :175.00 | Max. :165.00 | Max. :160.00 | Max. :129.0 | Max. :109.00 | Max. :107.00 | Max. :91.00 | Max. :89.00 | Max. :60.0 | Max. :51.000 | Max. :36.000 | Max. :47.00 | Max. :25.000 | Max. :30.000 | Max. :12.00 | Max. :15.000 | Max. :8.000 | Max. :7.000 | Max. :7.0 | Max. :14.000 | Max. :7.585e+10 |
Graficas:
library(plotly)
df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]
fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
width=7000, height=400)
grafica_fn <- function(g){
fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
width=7000, height=400)
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)
}
fig <- fig %>% layout(autosize = T )
fig
4 Correlaciones
La distribución es asimétrica, poseyendo un sesgo positivo.
df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P09_RU.rds")
tabla %>%
rownames_to_column("Edad") %>%
mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>%
kbl(booktabs = T, linesep = "", escape=FALSE) %>%
kable_paper(full_width = F) %>%
column_spec(1, color = "black")%>%
column_spec(2, color = "white")
Edad | Correlación |
---|---|
0 | 0.36422716493549 |
1 | 0.378278348093485 |
2 | 0.381066738787395 |
3 | 0.370264320917734 |
4 | 0.381015100914762 |
5 | 0.382061526312644 |
6 | 0.370524026311262 |
7 | 0.350549596215369 |
8 | 0.350289155802935 |
9 | 0.346792354316738 |
10 | 0.358276507166301 |
11 | 0.341440382924532 |
12 | 0.34265300623428 |
13 | 0.342381962585026 |
14 | 0.359135193451297 |
15 | 0.350452862603614 |
16 | 0.360657588946918 |
17 | 0.392937149890324 |
18 | 0.420049892189835 |
19 | 0.407929240571898 |
20 | 0.417515006946944 |
21 | 0.394980272442455 |
22 | 0.401745691806346 |
23 | 0.400836223498038 |
24 | 0.390023726343292 |
25 | 0.388176870427974 |
26 | 0.386241602529561 |
27 | 0.393755119846237 |
28 | 0.386737662413168 |
29 | 0.381972720757621 |
30 | 0.383837441174584 |
31 | 0.374392041726846 |
32 | 0.384736981380995 |
33 | 0.37893421163091 |
34 | 0.378628464463987 |
35 | 0.391018013667588 |
36 | 0.390668807744472 |
37 | 0.394295570437441 |
38 | 0.384605432151816 |
39 | 0.380577529289795 |
40 | 0.377268619517147 |
41 | 0.376416155143294 |
42 | 0.379796417725142 |
43 | 0.365572462069529 |
44 | 0.372141938026652 |
45 | 0.377738414297778 |
46 | 0.368158632905975 |
47 | 0.355157371813942 |
48 | 0.353252841624849 |
49 | 0.366928507340533 |
50 | 0.351975775541492 |
51 | 0.371007431713864 |
52 | 0.367405177812981 |
53 | 0.360341371008987 |
54 | 0.354899128303914 |
55 | 0.351985070204323 |
56 | 0.357955466761956 |
57 | 0.344309417207608 |
58 | 0.338864104695034 |
59 | 0.343660825972374 |
60 | 0.325033277244826 |
61 | 0.317189752990506 |
62 | 0.333175367175558 |
63 | 0.309600728706021 |
64 | 0.30882270215302 |
65 | 0.291486179426719 |
66 | 0.293014292698353 |
67 | 0.278999530932255 |
68 | 0.29237694165403 |
69 | 0.27331898302005 |
70 | 0.266150380343059 |
71 | 0.261277135179241 |
72 | 0.271141779371025 |
73 | 0.275484806972236 |
74 | 0.241168677260498 |
75 | 0.238642869195313 |
76 | 0.229840907477348 |
77 | 0.220437136544099 |
78 | 0.209111557513497 |
79 | 0.202029384651949 |
80 | 0.217209526329119 |
81 | 0.188349170239865 |
82 | 0.186502646907289 |
83 | 0.202535282852046 |
84 | 0.217796470497663 |
85 | 0.221291103866618 |
86 | 0.185298147787355 |
87 | 0.217129580536119 |
88 | 0.22864837273293 |
89 | 0.194574951511741 |
90 | 0.220113817968862 |
91 | 0.169413175316738 |
92 | 0.138382859933303 |
93 | 0.178456914735354 |
94 | 0.183360105867286 |
95 | 0.216247840187856 |
96 | 0.214670142598776 |
97 | 0.168433238474441 |
98 | 0.158191032418731 |
99 | 0.180824943752942 |
100 | 0.26543976609067 |
4.0.1 Kendall
i <- 1
f <- 10
for (cc in 1:10) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "20-29"
## [1] "30-39"
## [1] "40-49"
## [1] "50-59"
## [1] "60-69"
## [1] "70-79"
## [1] "80-89"
## [1] "90-99"
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
4.0.2 Pearson
i <- 1
f <- 10
for (cc in 1:10) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "20-29"
## [1] "30-39"
## [1] "40-49"
## [1] "50-59"
## [1] "60-69"
## [1] "70-79"
## [1] "80-89"
## [1] "90-99"
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)
4.0.3 Spearman
i <- 1
f <- 10
for (cc in 1:10) {
III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)
i <- i+10
f <- f+10
}
## [1] "0-9"
## [1] "10-19"
## [1] "20-29"
## [1] "30-39"
## [1] "40-49"
## [1] "50-59"
## [1] "60-69"
## [1] "70-79"
## [1] "80-89"
## [1] "90-99"
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)