Correlaciones entre variables del CENSO de Viviendas, Hogares y Personas e Ingresos promedios comunales de la CASEN 2017.

VE-CC-AJ

DataIntelligence

Lunes 12-07-2021


1 Nivel nacional URBANO (código 1)

1.1 Pregunta P09: Relación de parentesco

1.2 Las categorías de respuesta:

1 Edad 0…99
2 100 100 años y más

1.3 Generación de tabla de contingencia para la variable P09

tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P09
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"

d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:100){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,204,2)
 
for (i in 1:101) {
      names(comuna_corr)[III[i]] <- i-1
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P09_urbano.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "500px")
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 ingresos_expandidos
Min. : 1.0 Min. : 6.0 Min. : 6.0 Min. : 8.0 Min. : 9.0 Min. : 6 Min. : 9.0 Min. : 10.0 Min. : 14.0 Min. : 10.0 Min. : 12.0 Min. : 11.0 Min. : 8.0 Min. : 13.0 Min. : 7.0 Min. : 9.0 Min. : 8.0 Min. : 14.0 Min. : 8.0 Min. : 7.0 Min. : 7.0 Min. : 7.0 Min. : 6.0 Min. : 7.0 Min. : 12.0 Min. : 12.0 Min. : 13.0 Min. : 15.0 Min. : 11.0 Min. : 10.0 Min. : 14.0 Min. : 13.0 Min. : 10.0 Min. : 6.0 Min. : 11.0 Min. : 11.0 Min. : 10.0 Min. : 11.0 Min. : 8.0 Min. : 11.0 Min. : 10.0 Min. : 5.0 Min. : 8.0 Min. : 13.0 Min. : 15.0 Min. : 10.0 Min. : 12.0 Min. : 11.0 Min. : 11.0 Min. : 10.0 Min. : 9.0 Min. : 10.0 Min. : 12.0 Min. : 11.0 Min. : 11 Min. : 10.0 Min. : 4.0 Min. : 8.0 Min. : 8.0 Min. : 7.0 Min. : 7.0 Min. : 7.0 Min. : 5.0 Min. : 7.0 Min. : 6.0 Min. : 4 Min. : 3 Min. : 1.0 Min. : 4.0 Min. : 3.0 Min. : 4.0 Min. : 2.0 Min. : 1.0 Min. : 2.00 Min. : 1.0 Min. : 2.0 Min. : 2.00 Min. : 2 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.000 Min. : 1.000 Min. : 1.000 Min. : 1.0 Min. :7.054e+08
1st Qu.: 67.5 1st Qu.: 69.0 1st Qu.: 76.0 1st Qu.: 77.5 1st Qu.: 71.5 1st Qu.: 75 1st Qu.: 75.0 1st Qu.: 81.5 1st Qu.: 82.0 1st Qu.: 77.0 1st Qu.: 75.5 1st Qu.: 77.5 1st Qu.: 75.5 1st Qu.: 78.5 1st Qu.: 80.0 1st Qu.: 77.5 1st Qu.: 86.0 1st Qu.: 81.0 1st Qu.: 72.5 1st Qu.: 73.0 1st Qu.: 67.5 1st Qu.: 74.5 1st Qu.: 76.0 1st Qu.: 79.0 1st Qu.: 77.5 1st Qu.: 83.5 1st Qu.: 87.5 1st Qu.: 88.5 1st Qu.: 84.5 1st Qu.: 79.5 1st Qu.: 75.5 1st Qu.: 75.0 1st Qu.: 70.0 1st Qu.: 72.0 1st Qu.: 75.0 1st Qu.: 79.5 1st Qu.: 70.0 1st Qu.: 67.0 1st Qu.: 68.0 1st Qu.: 71.0 1st Qu.: 68.0 1st Qu.: 73.5 1st Qu.: 75.5 1st Qu.: 81.0 1st Qu.: 77.0 1st Qu.: 75.0 1st Qu.: 72.5 1st Qu.: 71.5 1st Qu.: 74.0 1st Qu.: 81.0 1st Qu.: 80.0 1st Qu.: 78.5 1st Qu.: 75.5 1st Qu.: 75.0 1st Qu.: 73 1st Qu.: 69.5 1st Qu.: 63.5 1st Qu.: 64.5 1st Qu.: 61.5 1st Qu.: 64.5 1st Qu.: 61.5 1st Qu.: 53.5 1st Qu.: 50.5 1st Qu.: 51.5 1st Qu.: 48.5 1st Qu.: 44 1st Qu.: 44 1st Qu.: 45.5 1st Qu.: 41.0 1st Qu.: 37.0 1st Qu.: 34.0 1st Qu.: 34.0 1st Qu.: 34.0 1st Qu.: 30.25 1st Qu.: 28.0 1st Qu.: 27.5 1st Qu.: 27.25 1st Qu.: 26 1st Qu.: 21.0 1st Qu.: 20.0 1st Qu.: 17.0 1st Qu.: 18 1st Qu.: 16.0 1st Qu.: 15.0 1st Qu.: 13.0 1st Qu.: 12.0 1st Qu.: 11.00 1st Qu.: 10.00 1st Qu.: 8.00 1st Qu.: 7.00 1st Qu.: 6.00 1st Qu.: 5.00 1st Qu.: 4.00 1st Qu.: 3.00 1st Qu.: 3.0 1st Qu.: 2.00 1st Qu.: 2.00 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 1.000 1st Qu.: 2.0 1st Qu.:2.954e+09
Median : 166.0 Median : 190.0 Median : 188.0 Median : 182.0 Median : 187.0 Median : 188 Median : 195.0 Median : 201.0 Median : 208.0 Median : 200.0 Median : 194.0 Median : 191.0 Median : 191.0 Median : 186.0 Median : 199.0 Median : 194.0 Median : 206.0 Median : 195.0 Median : 173.0 Median : 168.0 Median : 178.0 Median : 181.0 Median : 188.0 Median : 188.0 Median : 199.0 Median : 201.0 Median : 211.0 Median : 227.0 Median : 205.0 Median : 191.0 Median : 189.0 Median : 179.0 Median : 173.0 Median : 179.0 Median : 185.0 Median : 189.0 Median : 183.0 Median : 183.0 Median : 171.0 Median : 160.0 Median : 170.0 Median : 179.0 Median : 183.0 Median : 190.0 Median : 183.0 Median : 174.0 Median : 176.0 Median : 175.0 Median : 182.0 Median : 185.0 Median : 191.0 Median : 191.0 Median : 188.0 Median : 186.0 Median : 189 Median : 175.0 Median : 176.0 Median : 160.0 Median : 156.0 Median : 153.0 Median : 143.0 Median : 135.0 Median : 131.0 Median : 126.0 Median : 115.0 Median : 114 Median : 104 Median : 105.0 Median : 101.0 Median : 97.0 Median : 91.0 Median : 88.0 Median : 83.0 Median : 76.00 Median : 75.0 Median : 69.0 Median : 67.00 Median : 61 Median : 56.5 Median : 49.5 Median : 46.0 Median : 44 Median : 42.0 Median : 34.0 Median : 30.0 Median : 30.0 Median : 29.00 Median : 24.00 Median : 21.00 Median : 17.00 Median : 14.00 Median : 11.00 Median : 9.00 Median : 8.00 Median : 7.0 Median : 5.00 Median : 4.00 Median : 3.000 Median : 3.000 Median : 3.000 Median : 5.0 Median :5.697e+09
Mean : 601.1 Mean : 658.9 Mean : 670.4 Mean : 655.3 Mean : 663.2 Mean : 663 Mean : 687.0 Mean : 681.0 Mean : 667.0 Mean : 650.5 Mean : 633.9 Mean : 626.9 Mean : 620.0 Mean : 624.8 Mean : 651.3 Mean : 661.5 Mean : 686.4 Mean : 687.7 Mean : 708.7 Mean : 725.4 Mean : 755.4 Mean : 765.1 Mean : 793.7 Mean : 799.3 Mean : 819.9 Mean : 829.8 Mean : 852.6 Mean : 862.4 Mean : 830.4 Mean : 793.9 Mean : 768.6 Mean : 735.6 Mean : 713.0 Mean : 694.8 Mean : 721.6 Mean : 738.5 Mean : 684.8 Mean : 669.5 Mean : 636.7 Mean : 620.0 Mean : 629.2 Mean : 645.0 Mean : 663.3 Mean : 674.9 Mean : 662.9 Mean : 649.6 Mean : 626.9 Mean : 607.8 Mean : 618.9 Mean : 632.4 Mean : 636.5 Mean : 637.5 Mean : 645.6 Mean : 632.0 Mean : 643 Mean : 608.0 Mean : 590.2 Mean : 557.8 Mean : 543.4 Mean : 528.1 Mean : 511.7 Mean : 473.9 Mean : 444.0 Mean : 435.8 Mean : 407.6 Mean : 382 Mean : 359 Mean : 348.1 Mean : 331.4 Mean : 321.4 Mean : 307.0 Mean : 289.8 Mean : 274.7 Mean : 255.02 Mean : 243.8 Mean : 226.0 Mean : 212.58 Mean : 196 Mean : 171.5 Mean : 157.8 Mean : 149.8 Mean : 139 Mean : 127.1 Mean : 115.3 Mean : 109.9 Mean : 100.7 Mean : 96.76 Mean : 83.67 Mean : 69.38 Mean : 61.81 Mean : 48.36 Mean : 38.12 Mean : 33.87 Mean : 26.26 Mean : 21.6 Mean : 16.03 Mean : 13.88 Mean : 9.824 Mean : 7.489 Mean : 6.586 Mean : 15.4 Mean :1.784e+10
3rd Qu.: 667.5 3rd Qu.: 693.0 3rd Qu.: 734.0 3rd Qu.: 710.5 3rd Qu.: 713.0 3rd Qu.: 744 3rd Qu.: 743.5 3rd Qu.: 757.0 3rd Qu.: 748.5 3rd Qu.: 732.0 3rd Qu.: 717.0 3rd Qu.: 697.5 3rd Qu.: 677.0 3rd Qu.: 683.0 3rd Qu.: 696.0 3rd Qu.: 707.0 3rd Qu.: 753.0 3rd Qu.: 730.5 3rd Qu.: 719.0 3rd Qu.: 706.5 3rd Qu.: 685.5 3rd Qu.: 695.5 3rd Qu.: 702.5 3rd Qu.: 705.0 3rd Qu.: 727.0 3rd Qu.: 767.0 3rd Qu.: 779.5 3rd Qu.: 797.0 3rd Qu.: 760.0 3rd Qu.: 726.0 3rd Qu.: 710.5 3rd Qu.: 700.0 3rd Qu.: 699.5 3rd Qu.: 669.5 3rd Qu.: 710.0 3rd Qu.: 724.0 3rd Qu.: 653.0 3rd Qu.: 671.0 3rd Qu.: 657.5 3rd Qu.: 600.5 3rd Qu.: 644.5 3rd Qu.: 628.0 3rd Qu.: 664.0 3rd Qu.: 670.5 3rd Qu.: 654.5 3rd Qu.: 666.0 3rd Qu.: 628.5 3rd Qu.: 638.5 3rd Qu.: 657.0 3rd Qu.: 656.5 3rd Qu.: 668.0 3rd Qu.: 671.5 3rd Qu.: 669.5 3rd Qu.: 667.5 3rd Qu.: 656 3rd Qu.: 637.0 3rd Qu.: 585.0 3rd Qu.: 565.5 3rd Qu.: 547.5 3rd Qu.: 525.5 3rd Qu.: 513.0 3rd Qu.: 495.0 3rd Qu.: 444.5 3rd Qu.: 454.0 3rd Qu.: 419.5 3rd Qu.: 413 3rd Qu.: 364 3rd Qu.: 367.0 3rd Qu.: 333.0 3rd Qu.: 302.5 3rd Qu.: 310.5 3rd Qu.: 280.5 3rd Qu.: 268.5 3rd Qu.: 248.50 3rd Qu.: 237.5 3rd Qu.: 221.0 3rd Qu.: 221.75 3rd Qu.: 193 3rd Qu.: 177.2 3rd Qu.: 155.8 3rd Qu.: 146.5 3rd Qu.: 136 3rd Qu.: 115.0 3rd Qu.: 112.8 3rd Qu.: 95.5 3rd Qu.: 83.0 3rd Qu.: 88.50 3rd Qu.: 76.00 3rd Qu.: 58.50 3rd Qu.: 54.75 3rd Qu.: 44.00 3rd Qu.: 35.00 3rd Qu.: 32.00 3rd Qu.: 24.75 3rd Qu.: 22.0 3rd Qu.: 16.00 3rd Qu.: 15.00 3rd Qu.: 11.000 3rd Qu.: 9.000 3rd Qu.: 8.000 3rd Qu.: 17.0 3rd Qu.:1.857e+10
Max. :7399.0 Max. :8241.0 Max. :8383.0 Max. :8328.0 Max. :8233.0 Max. :8148 Max. :8576.0 Max. :8669.0 Max. :8398.0 Max. :8346.0 Max. :8015.0 Max. :7924.0 Max. :7892.0 Max. :8021.0 Max. :8213.0 Max. :8555.0 Max. :8668.0 Max. :8928.0 Max. :8805.0 Max. :9098.0 Max. :9491.0 Max. :9589.0 Max. :10283.0 Max. :10077.0 Max. :10416.0 Max. :11642.0 Max. :13039.0 Max. :14116.0 Max. :14101.0 Max. :13961.0 Max. :13406.0 Max. :12392.0 Max. :11643.0 Max. :10710.0 Max. :10393.0 Max. :9970.0 Max. :8778.0 Max. :8189.0 Max. :7103.0 Max. :6913.0 Max. :6676.0 Max. :7387.0 Max. :7774.0 Max. :7885.0 Max. :7865.0 Max. :7745.0 Max. :7452.0 Max. :7313.0 Max. :7652.0 Max. :8102.0 Max. :8172.0 Max. :8229.0 Max. :8547.0 Max. :8517.0 Max. :8722 Max. :8242.0 Max. :7846.0 Max. :7277.0 Max. :7004.0 Max. :6633.0 Max. :6218.0 Max. :5585.0 Max. :5128.0 Max. :4834.0 Max. :4529.0 Max. :4042 Max. :3796 Max. :3693.0 Max. :3435.0 Max. :3282.0 Max. :2962.0 Max. :2836.0 Max. :2601.0 Max. :2377.00 Max. :2202.0 Max. :2087.0 Max. :2045.00 Max. :1878 Max. :1658.0 Max. :1544.0 Max. :1556.0 Max. :1507 Max. :1270.0 Max. :1302.0 Max. :1220.0 Max. :1141.0 Max. :1091.00 Max. :944.00 Max. :850.00 Max. :773.00 Max. :606.00 Max. :513.00 Max. :464.00 Max. :340.00 Max. :283.0 Max. :207.00 Max. :185.00 Max. :131.000 Max. :73.000 Max. :78.000 Max. :160.0 Max. :1.870e+11

Graficas:

library(plotly)

df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]

fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
                 width=7000, height=400) 

grafica_fn <- function(g){
  fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
                 width=7000, height=400) 
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)

}

fig <- fig %>% layout(autosize = T )
fig 

2 Correlaciones

La distribución es asimétrica, poseyendo un sesgo positivo.

df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación"
saveRDS(tabla,"tablas_de_corr/C_P09_URB.rds")  
tabla %>%
  rownames_to_column("Edad") %>%  
  mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>% 
  kbl(booktabs = T, linesep = "", escape=FALSE) %>% 
    kable_paper(full_width = F) %>%
    column_spec(1, color = "black")%>%
    column_spec(2, color = "white")
Edad Correlación
0 0.857629771038468
1 0.856089413207342
2 0.860119142298364
3 0.858137074109771
4 0.847330109892176
5 0.85336115577672
6 0.849402655847129
7 0.850245185968231
8 0.850866203578662
9 0.851050740108162
10 0.851540959066402
11 0.849349370024433
12 0.853092580811981
13 0.853922464012424
14 0.852603681726985
15 0.856101357212014
16 0.850931166551822
17 0.852740721965955
18 0.842228938469906
19 0.841686578939329
20 0.84948048854653
21 0.857773304400037
22 0.862679749678618
23 0.860441562678429
24 0.863696072318588
25 0.865975298378341
26 0.868601602139698
27 0.862846895185942
28 0.861037541618425
29 0.863307041287597
30 0.868842321832303
31 0.866047034756565
32 0.868467065863315
33 0.868167289293234
34 0.865379068707707
35 0.863205412600979
36 0.860549848875412
37 0.867014471152666
38 0.868984043322763
39 0.867631965235551
40 0.869178546278751
41 0.864615564870778
42 0.867397695233315
43 0.862882977185464
44 0.86216069857319
45 0.851354888748764
46 0.857480452588242
47 0.855713256404728
48 0.861511216979363
49 0.856763997046574
50 0.854143190624636
51 0.854525068745319
52 0.855307288364897
53 0.849718730933243
54 0.848268556920228
55 0.852136960512337
56 0.85027939561377
57 0.836522446147252
58 0.843987339025792
59 0.846044235830306
60 0.84640987163767
61 0.838834998519466
62 0.840309193378119
63 0.828832915264768
64 0.829598868319639
65 0.83364074470615
66 0.820201022744812
67 0.821322574186577
68 0.823376904311424
69 0.819339549766964
70 0.817120135885864
71 0.813941412453963
72 0.807296547132375
73 0.808665399491473
74 0.803730638609144
75 0.79935350829782
76 0.795523050806606
77 0.797381917503381
78 0.793838651966876
79 0.791656255386037
80 0.791986141998772
81 0.790421365550088
82 0.792305071956893
83 0.784041105583704
84 0.778147207322931
85 0.780665936372705
86 0.765261566663385
87 0.762270554213845
88 0.757182760813398
89 0.753538779614929
90 0.746803423589161
91 0.745845690425261
92 0.733785342626837
93 0.713219926556803
94 0.744319917342276
95 0.694112382313031
96 0.713697414434865
97 0.658138074416036
98 0.656976685831272
99 0.691939214531827
100 0.700481630150255

2.0.1 Kendall

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

2.0.2 Pearson

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)

2.0.3 Spearman

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)

3 Nivel nacional RURAL (código 2)

tabla_con_clave <- readRDS("censos/censo_personas_con_clave_17")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P09
cross_tab =  xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
 
d$anio <- "2017"

d_t <- filter(d,d$unlist.c. == 0)
for(i in 1:100){
  d_i <- filter(d,d$unlist.c. == i)
  d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE] 
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
III <- seq(2,204,2)
 
for (i in 1:101) {
      names(comuna_corr)[III[i]] <- i-1
}
quitar <- seq(1,(ncol(comuna_corr)-1),2)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
union_final_urb <- df_2017_2[,-c(1,(ncol(df_2017_2)-1))]
write_xlsx(union_final_urb, "P09_rural.xlsx")
data_sum <- summary(union_final_urb)
kbl(head(data_sum)) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "500px")
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 ingresos_expandidos
Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.00 Min. : 1.0 Min. : 2.0 Min. : 1.00 Min. : 1.0 Min. : 1 Min. : 1.0 Min. : 1.0 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.00 Min. : 1.0 Min. : 1.000 Min. : 1.000 Min. : 1.00 Min. : 1.000 Min. : 1.000 Min. : 1.00 Min. : 1.000 Min. :1.000 Min. :1.000 Min. :1.0 Min. : 1.000 Min. :2.792e+08
1st Qu.: 26.00 1st Qu.: 30.00 1st Qu.: 32.25 1st Qu.: 31.00 1st Qu.: 32.00 1st Qu.: 31.00 1st Qu.: 34.00 1st Qu.: 35.50 1st Qu.: 37.00 1st Qu.: 33.25 1st Qu.: 33.00 1st Qu.: 35.00 1st Qu.: 35.00 1st Qu.: 33.75 1st Qu.: 32.25 1st Qu.: 31.00 1st Qu.: 32.00 1st Qu.: 31.75 1st Qu.: 26.00 1st Qu.: 28.25 1st Qu.: 30.00 1st Qu.: 29.0 1st Qu.: 32.75 1st Qu.: 33.25 1st Qu.: 35.00 1st Qu.: 36.75 1st Qu.: 40.0 1st Qu.: 38.00 1st Qu.: 37.75 1st Qu.: 34 1st Qu.: 37.00 1st Qu.: 35.00 1st Qu.: 36.00 1st Qu.: 33.75 1st Qu.: 33.75 1st Qu.: 39.00 1st Qu.: 36.50 1st Qu.: 38.75 1st Qu.: 36.00 1st Qu.: 38.00 1st Qu.: 38.00 1st Qu.: 41.50 1st Qu.: 41.50 1st Qu.: 41.5 1st Qu.: 41.0 1st Qu.: 42.5 1st Qu.: 41.0 1st Qu.: 42.75 1st Qu.: 45.0 1st Qu.: 49.0 1st Qu.: 45.75 1st Qu.: 45.0 1st Qu.: 46 1st Qu.: 45.0 1st Qu.: 46.0 1st Qu.: 45.5 1st Qu.: 41.00 1st Qu.: 39.50 1st Qu.: 38.00 1st Qu.: 38.00 1st Qu.: 36.25 1st Qu.: 35.00 1st Qu.: 31.00 1st Qu.: 34.0 1st Qu.: 30.00 1st Qu.: 28.25 1st Qu.: 28.00 1st Qu.: 25.25 1st Qu.: 24.5 1st Qu.: 23.25 1st Qu.: 23.25 1st Qu.: 21.00 1st Qu.: 21.00 1st Qu.: 19.00 1st Qu.: 19.25 1st Qu.: 18.00 1st Qu.: 17.00 1st Qu.: 15.00 1st Qu.: 15.00 1st Qu.: 13.00 1st Qu.: 12.00 1st Qu.: 11.00 1st Qu.: 10.50 1st Qu.: 9.00 1st Qu.: 8.0 1st Qu.: 7.00 1st Qu.: 7.00 1st Qu.: 6.50 1st Qu.: 5.25 1st Qu.: 5.0 1st Qu.: 4.000 1st Qu.: 3.000 1st Qu.: 3.00 1st Qu.: 2.000 1st Qu.: 2.000 1st Qu.: 1.00 1st Qu.: 1.000 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.0 1st Qu.: 1.000 1st Qu.:1.809e+09
Median : 53.00 Median : 63.50 Median : 64.50 Median : 64.00 Median : 62.50 Median : 64.00 Median : 67.00 Median : 70.00 Median : 70.00 Median : 68.00 Median : 70.00 Median : 69.00 Median : 68.00 Median : 67.00 Median : 67.50 Median : 66.00 Median : 68.00 Median : 68.00 Median : 60.00 Median : 58.50 Median : 60.00 Median : 57.0 Median : 63.50 Median : 64.00 Median : 62.00 Median : 68.00 Median : 72.0 Median : 71.00 Median : 66.50 Median : 67 Median : 66.00 Median : 67.00 Median : 63.00 Median : 65.00 Median : 68.50 Median : 70.00 Median : 67.00 Median : 67.00 Median : 66.00 Median : 68.00 Median : 69.00 Median : 73.00 Median : 76.00 Median : 81.0 Median : 77.0 Median : 78.0 Median : 76.0 Median : 77.50 Median : 78.5 Median : 85.0 Median : 84.50 Median : 84.0 Median : 85 Median : 82.0 Median : 79.5 Median : 80.0 Median : 76.00 Median : 74.00 Median : 70.00 Median : 68.50 Median : 69.00 Median : 64.50 Median : 60.00 Median : 60.0 Median : 58.50 Median : 52.50 Median : 53.50 Median : 53.00 Median : 48.0 Median : 46.50 Median : 45.50 Median : 45.00 Median : 43.00 Median : 39.00 Median : 37.00 Median : 35.00 Median : 33.00 Median : 31.00 Median : 27.00 Median : 26.00 Median : 24.00 Median : 21.00 Median : 20.00 Median : 18.00 Median : 16.0 Median : 14.00 Median : 14.00 Median :12.00 Median :10.50 Median : 9.0 Median : 7.000 Median : 5.000 Median : 5.00 Median : 4.000 Median : 3.000 Median : 2.00 Median : 2.000 Median :2.000 Median :1.000 Median :1.0 Median : 2.000 Median :3.546e+09
Mean : 73.22 Mean : 84.38 Mean : 86.88 Mean : 85.55 Mean : 88.27 Mean : 87.37 Mean : 91.54 Mean : 93.29 Mean : 92.43 Mean : 91.00 Mean : 90.74 Mean : 90.07 Mean : 89.83 Mean : 90.64 Mean : 90.91 Mean : 91.79 Mean : 93.77 Mean : 92.62 Mean : 85.16 Mean : 81.12 Mean : 82.06 Mean : 81.8 Mean : 86.26 Mean : 86.70 Mean : 90.13 Mean : 91.99 Mean : 94.5 Mean : 94.57 Mean : 91.29 Mean : 89 Mean : 87.69 Mean : 86.18 Mean : 84.14 Mean : 84.13 Mean : 88.33 Mean : 92.74 Mean : 87.69 Mean : 89.16 Mean : 87.21 Mean : 89.45 Mean : 90.19 Mean : 95.91 Mean : 99.71 Mean :103.0 Mean :103.9 Mean :102.5 Mean :101.1 Mean :101.13 Mean :102.7 Mean :107.5 Mean :107.08 Mean :106.3 Mean :108 Mean :104.3 Mean :105.6 Mean :100.1 Mean : 97.75 Mean : 93.41 Mean : 89.79 Mean : 87.08 Mean : 86.73 Mean : 80.65 Mean : 76.71 Mean : 75.6 Mean : 71.92 Mean : 67.57 Mean : 64.93 Mean : 64.35 Mean : 59.8 Mean : 58.19 Mean : 56.49 Mean : 54.24 Mean : 51.82 Mean : 48.01 Mean : 46.35 Mean : 43.36 Mean : 40.78 Mean : 38.15 Mean : 33.77 Mean : 31.41 Mean : 29.43 Mean : 26.18 Mean : 24.57 Mean : 21.54 Mean : 20.3 Mean : 17.14 Mean : 17.55 Mean :14.99 Mean :12.72 Mean :11.2 Mean : 8.482 Mean : 6.878 Mean : 6.18 Mean : 4.711 Mean : 4.106 Mean : 3.24 Mean : 2.801 Mean :2.117 Mean :1.844 Mean :1.5 Mean : 2.704 Mean :8.206e+09
3rd Qu.: 96.00 3rd Qu.:110.00 3rd Qu.:109.75 3rd Qu.:112.75 3rd Qu.:119.75 3rd Qu.:114.00 3rd Qu.:119.00 3rd Qu.:121.50 3rd Qu.:117.50 3rd Qu.:118.75 3rd Qu.:119.00 3rd Qu.:117.00 3rd Qu.:120.00 3rd Qu.:119.75 3rd Qu.:125.00 3rd Qu.:121.25 3rd Qu.:122.00 3rd Qu.:122.25 3rd Qu.:105.00 3rd Qu.:101.50 3rd Qu.:103.00 3rd Qu.:103.2 3rd Qu.:109.25 3rd Qu.:107.75 3rd Qu.:115.00 3rd Qu.:117.25 3rd Qu.:122.5 3rd Qu.:125.00 3rd Qu.:116.50 3rd Qu.:116 3rd Qu.:117.50 3rd Qu.:113.00 3rd Qu.:112.00 3rd Qu.:115.00 3rd Qu.:112.25 3rd Qu.:121.50 3rd Qu.:119.00 3rd Qu.:114.50 3rd Qu.:116.00 3rd Qu.:116.50 3rd Qu.:117.00 3rd Qu.:126.00 3rd Qu.:129.25 3rd Qu.:135.5 3rd Qu.:138.5 3rd Qu.:139.0 3rd Qu.:132.5 3rd Qu.:132.25 3rd Qu.:136.2 3rd Qu.:141.5 3rd Qu.:140.00 3rd Qu.:140.0 3rd Qu.:142 3rd Qu.:140.0 3rd Qu.:140.2 3rd Qu.:129.5 3rd Qu.:127.75 3rd Qu.:122.00 3rd Qu.:120.00 3rd Qu.:116.00 3rd Qu.:115.75 3rd Qu.:105.25 3rd Qu.:102.00 3rd Qu.:102.0 3rd Qu.:103.00 3rd Qu.: 89.75 3rd Qu.: 86.00 3rd Qu.: 84.75 3rd Qu.: 84.0 3rd Qu.: 81.75 3rd Qu.: 76.75 3rd Qu.: 74.00 3rd Qu.: 69.00 3rd Qu.: 65.00 3rd Qu.: 64.75 3rd Qu.: 59.00 3rd Qu.: 56.00 3rd Qu.: 53.00 3rd Qu.: 45.75 3rd Qu.: 41.50 3rd Qu.: 38.25 3rd Qu.: 37.00 3rd Qu.: 33.00 3rd Qu.: 28.00 3rd Qu.: 27.0 3rd Qu.: 24.00 3rd Qu.: 23.00 3rd Qu.:21.50 3rd Qu.:17.00 3rd Qu.:14.0 3rd Qu.:11.250 3rd Qu.:10.000 3rd Qu.: 8.00 3rd Qu.: 6.000 3rd Qu.: 6.000 3rd Qu.: 4.00 3rd Qu.: 4.000 3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:2.0 3rd Qu.: 4.000 3rd Qu.:7.252e+09
Max. :629.00 Max. :651.00 Max. :660.00 Max. :650.00 Max. :733.00 Max. :682.00 Max. :687.00 Max. :764.00 Max. :750.00 Max. :698.00 Max. :740.00 Max. :713.00 Max. :729.00 Max. :721.00 Max. :767.00 Max. :797.00 Max. :772.00 Max. :793.00 Max. :654.00 Max. :626.00 Max. :602.00 Max. :631.0 Max. :680.00 Max. :675.00 Max. :692.00 Max. :751.00 Max. :659.0 Max. :715.00 Max. :590.00 Max. :557 Max. :628.00 Max. :598.00 Max. :568.00 Max. :548.00 Max. :582.00 Max. :595.00 Max. :602.00 Max. :629.00 Max. :626.00 Max. :607.00 Max. :610.00 Max. :634.00 Max. :680.00 Max. :776.0 Max. :801.0 Max. :813.0 Max. :809.0 Max. :764.00 Max. :736.0 Max. :862.0 Max. :770.00 Max. :787.0 Max. :803 Max. :751.0 Max. :783.0 Max. :723.0 Max. :730.00 Max. :764.00 Max. :636.00 Max. :626.00 Max. :653.00 Max. :564.00 Max. :567.00 Max. :525.0 Max. :516.00 Max. :448.00 Max. :477.00 Max. :443.00 Max. :433.0 Max. :411.00 Max. :438.00 Max. :374.00 Max. :379.00 Max. :350.00 Max. :277.00 Max. :299.00 Max. :294.00 Max. :266.00 Max. :198.00 Max. :214.00 Max. :190.00 Max. :175.00 Max. :165.00 Max. :160.00 Max. :129.0 Max. :109.00 Max. :107.00 Max. :91.00 Max. :89.00 Max. :60.0 Max. :51.000 Max. :36.000 Max. :47.00 Max. :25.000 Max. :30.000 Max. :12.00 Max. :15.000 Max. :8.000 Max. :7.000 Max. :7.0 Max. :14.000 Max. :7.585e+10

Graficas:

library(plotly)

df_2017_fig <- df_2017_2[,-c((ncol(df_2017_2)-1))]

fig <- plot_ly(df_2017_fig, x = df_2017_fig$código, y = df_2017_fig[,2]
, name = colnames(df_2017_fig[2]), type = 'scatter', mode = 'lines',
                 width=7000, height=400) 

grafica_fn <- function(g){
  fig <<- fig %>% add_trace(y = ~df_2017_fig[,g]
, name = colnames(df_2017_fig[g]), mode = 'lines',
                 width=7000, height=400) 
}
for (g in 3:(ncol(df_2017_2)-1)) {
grafica_fn(g)

}

fig <- fig %>% layout(autosize = T )
fig 

4 Correlaciones

La distribución es asimétrica, poseyendo un sesgo positivo.

df_2017_2f <- filter(union_final_urb, union_final_urb$ingresos_expandidos != 'is.na')
III <- seq(1,(ncol(df_2017_2f)-1),1)
my_data <- df_2017_2f[, c(III)]
tabla <- cor(x=my_data, y=df_2017_2f$ingresos_expandidos, method=c("kendall"), use = "pairwise")
tabla <- as.data.frame(tabla)
tabla <- tabla %>% drop_na()
colnames(tabla) <- "Correlación" 
saveRDS(tabla,"tablas_de_corr/C_P09_RU.rds") 
tabla %>%
  rownames_to_column("Edad") %>%  
  mutate(Correlación = cell_spec(Correlación, background=ifelse(Correlación == max(Correlación), "#fc0303", "#5cb81f"))) %>% 
  kbl(booktabs = T, linesep = "", escape=FALSE) %>% 
    kable_paper(full_width = F) %>%
    column_spec(1, color = "black")%>%
    column_spec(2, color = "white")
Edad Correlación
0 0.36422716493549
1 0.378278348093485
2 0.381066738787395
3 0.370264320917734
4 0.381015100914762
5 0.382061526312644
6 0.370524026311262
7 0.350549596215369
8 0.350289155802935
9 0.346792354316738
10 0.358276507166301
11 0.341440382924532
12 0.34265300623428
13 0.342381962585026
14 0.359135193451297
15 0.350452862603614
16 0.360657588946918
17 0.392937149890324
18 0.420049892189835
19 0.407929240571898
20 0.417515006946944
21 0.394980272442455
22 0.401745691806346
23 0.400836223498038
24 0.390023726343292
25 0.388176870427974
26 0.386241602529561
27 0.393755119846237
28 0.386737662413168
29 0.381972720757621
30 0.383837441174584
31 0.374392041726846
32 0.384736981380995
33 0.37893421163091
34 0.378628464463987
35 0.391018013667588
36 0.390668807744472
37 0.394295570437441
38 0.384605432151816
39 0.380577529289795
40 0.377268619517147
41 0.376416155143294
42 0.379796417725142
43 0.365572462069529
44 0.372141938026652
45 0.377738414297778
46 0.368158632905975
47 0.355157371813942
48 0.353252841624849
49 0.366928507340533
50 0.351975775541492
51 0.371007431713864
52 0.367405177812981
53 0.360341371008987
54 0.354899128303914
55 0.351985070204323
56 0.357955466761956
57 0.344309417207608
58 0.338864104695034
59 0.343660825972374
60 0.325033277244826
61 0.317189752990506
62 0.333175367175558
63 0.309600728706021
64 0.30882270215302
65 0.291486179426719
66 0.293014292698353
67 0.278999530932255
68 0.29237694165403
69 0.27331898302005
70 0.266150380343059
71 0.261277135179241
72 0.271141779371025
73 0.275484806972236
74 0.241168677260498
75 0.238642869195313
76 0.229840907477348
77 0.220437136544099
78 0.209111557513497
79 0.202029384651949
80 0.217209526329119
81 0.188349170239865
82 0.186502646907289
83 0.202535282852046
84 0.217796470497663
85 0.221291103866618
86 0.185298147787355
87 0.217129580536119
88 0.22864837273293
89 0.194574951511741
90 0.220113817968862
91 0.169413175316738
92 0.138382859933303
93 0.178456914735354
94 0.183360105867286
95 0.216247840187856
96 0.214670142598776
97 0.168433238474441
98 0.158191032418731
99 0.180824943752942
100 0.26543976609067

4.0.1 Kendall

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

4.0.2 Pearson

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "pearson"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)

4.0.3 Spearman

i <- 1
f <- 10
for (cc in 1:10) {
  III <- seq(i,f)
print(paste0(i-1,"-",f-1))
df_2017_2_sub_subset <- union_final_urb[,c(III,ncol(union_final_urb))]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "spearman"), pch=20)

i <- i+10
f <- f+10
}
## [1] "0-9"

## [1] "10-19"

## [1] "20-29"

## [1] "30-39"

## [1] "40-49"

## [1] "50-59"

## [1] "60-69"

## [1] "70-79"

## [1] "80-89"

## [1] "90-99"

print("100")
## [1] "100"
df_2017_2_sub_subset <- union_final_urb[,c(101,102)]
chart.Correlation(df_2017_2_sub_subset, histogram=TRUE, method = c( "kendall"), pch=20)