Introduction

This files describes the analysis in R, going from a coount table that includes one column for each library and rows for each gene, like the one generated by the genome platform as part of their “best practice” analaysis. The analysis also requires a design matrix file that holds information on the sample name and treatment for each of these samples.

Loading needed packages and data

# Reading in the needed packages
library(limma) # For DE detection
library(edgeR) # For DE detection
library(biomaRt) # For intereacting with the biomart database via R. This makes it feasible to convert/extract info from the ensebl gene ids

rm(list = ls()) # remove any objects to avoid any issues downstreams
counts <- read.table("../../Data/count_table_new.txt") # reads in the new data and save the data frame as counts with ensembl id from BDGP5 as row.names
# Remove all genes that have 0 reads over all samples and hence are not expressed at all under these conditons note that this filtering can be further increased to looking at DE below as large number of lowlly expressed gene eg. CPM values below 0 is likely very noisy and not very rewarding to retain for identification of downstream targets. 
A <- rowSums(counts) 
isexpr <- A > 0
counts <- counts[isexpr,] # this drops 2696 genes that have 0 expression from the counts dataframe

design <- read.table("../designMatrix", header=T) # Create model matrix for Limma/edgeR analysis

ensembl = useMart("ENSEMBL_MART_ENSEMBL",host="feb2014.archive.ensembl.org") # use ensembl version that holds the BDGP5 version of the Dme genome annotation
ensembl = useDataset('dmelanogaster_gene_ensembl', mart=ensembl)
gene.list <- getBM(attributes = c("ensembl_gene_id", "external_gene_id", "chromosome_name", "start_position", "end_position", "strand"), filters = "ensembl_gene_id", values = row.names(counts), mart=ensembl) # NB! Needs internet access and collect all requested features from using the ensembl_gene_id as query
gene.list.ordered <- gene.list[order(gene.list$ensembl_gene_id),] # orders the gene.list to be identical to the counts and hence allow to bind them together using cbind. If not order one need to match the common columns so that orderd is inferred during merging see ?merge for more info
annotated.count.data <- cbind(gene.list.ordered, counts)
temp <- cpm(annotated.count.data[,7:28])
temp.log <- cpm(annotated.count.data[,7:28], log=TRUE) # get the counts per million using colsums of counts as library size and reports the log2 values here.
annotated.count.cpm <- cbind(annotated.count.data, temp, temp.log) # Save up all info in one large data frame and save the dataframe as an .csv file suitable to read into R

write.csv(annotated.count.cpm, file="Expression_matrix.csv", row.names=F)


y <- DGEList(counts=counts, group=design$Treatment) # Converts the count matrix to DGEList, objects that works nice in both Limma and edgeR packages

Detect differential gene expression

Limma - A first look at the data

The Limma package, which originally was developed for microrray analysis, but have been modifed to also work with RNA-seq count data, will be used. It uses linear models to assess differential gene expression and has in comparative tests proven to be very reliable. It also allows for analysis of more complex experimental designs and even with limited number of replicates it give robust results (as it shares information across genes for to increase power).

A <- rowSums(y$counts)
isexpr <- A > 22 

# perform additional filtering not retaining any gene that over all samples have less than 22 reads mapping eg. average mapping of 1 read/library. In practice this removes genes that have lots of zeros in the count matrix
y.limma <- y[isexpr,,keep.lib.size = FALSE]
y.limma <- calcNormFactors(y.limma)
gene.names.limma <- gene.list.ordered[gene.list.ordered$ensembl_gene_id %in% row.names(y.limma),1:2]


# Create design matrix
lev <- unique(design$Treatment)
f <- factor(design$Treatment, levels=lev)
des <- model.matrix(~0+f)
colnames(des) <- lev

# Transform count data for Linear modelling using Limma
v <- voom(y.limma, des)
plotMDS(v, labels = design$Treatment) # Do a Multidimensional plot to look at differences in geneexpression between samples, can be interpreted in similar ways as a PCA plo, eg. clustering represents similarity

shortname <- c("empty", "empty", "WT", "WT", "WT", "K804", "K804", "K804", "YN", "YN", "YN", "empty", "empty", "WT", "WT", "WT", "K804", "K804", "K804", "YN", "YN", "YN")

plotMDS(v, dim=c(3,4), labels = shortname)

The first dimension (the largest distance) in plot one clearly highlight that samples ending with 100 looks different (focus on the differentiation seen along the x-axis). The second dimension seperates three main groups: The WT and YN without 100 in name, the WT and YN with 100 in name and the empty and K804R samples. In the second plot four clusters can be easily identified: Empty, WT, YN, K804 showing that there is a gene expression difference between these groups. All of this suggest that we should be able to detect differences in gene expression between some of the groups/treatments. We can also based on this hypothesiss that the largest effect is 100 and a few other contrast like the different “empty” types are very similar and unlikely to many signicant genes in terms of differential gene expression.

Limma - Model and detect differential gene expression

fit <- lmFit(v, design = des)  # Uses a linear model to fit gene expression for all genes according to the design given in the design matrix named des


# contrast empty_dsGFP vs empty_dsBrm
empty_dsGFP.vs.empty_dsBrm <- makeContrasts(empty_dsGFP - empty_dsBrm, levels = des)
fit.empty_dsGFP.vs.empty_dsBrm <- contrasts.fit(fit, empty_dsGFP.vs.empty_dsBrm)
fit.empty_dsGFP.vs.empty_dsBrm <- eBayes(fit.empty_dsGFP.vs.empty_dsBrm)
fit.empty_dsGFP.vs.empty_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.empty_dsBrm <- decideTests(fit.empty_dsGFP.vs.empty_dsBrm) 
table(results.fit.empty_dsGFP.vs.empty_dsBrm)
## results.fit.empty_dsGFP.vs.empty_dsBrm
##   -1    0    1 
##    1 9599    1
volcanoplot(fit.empty_dsGFP.vs.empty_dsBrm, highlight = 2, names = fit.empty_dsGFP.vs.empty_dsBrm$genes[,2], main = "empty_dsGFP vs empty_dsBrm")

topTable(fit.empty_dsGFP.vs.empty_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id      logFC   AveExpr
## FBgn0041604     FBgn0041604              dlp -1.4881236  5.165021
## FBgn0030596     FBgn0030596          CG12398  1.6285694  4.245533
## FBgn0000212     FBgn0000212              brm  1.3211861 10.532912
## FBgn0032192     FBgn0032192           CG5731 -1.3782049  3.423886
## FBgn0015371     FBgn0015371              chn  1.6680509  2.706613
## FBgn0040091     FBgn0040091          Ugt58Fa  0.7651813  8.240297
## FBgn0034117     FBgn0034117           CG7997 -1.5741785  4.847735
## FBgn0262983     FBgn0262983          CG43291  1.4025430  3.179732
## FBgn0040071     FBgn0040071             tara -1.4144868  6.038023
## FBgn0062978     FBgn0062978          CG31808 -1.0481532  2.805649
##                     t      P.Value adj.P.Val        B
## FBgn0041604 -7.612594 1.343560e-06 0.0105550 5.438877
## FBgn0030596  7.312381 2.198728e-06 0.0105550 4.959205
## FBgn0000212  5.598806 4.617562e-05 0.1068445 2.266381
## FBgn0032192 -5.370446 7.139490e-05 0.1068445 1.826236
## FBgn0015371  5.619156 4.443166e-05 0.1068445 1.820567
## FBgn0040091  5.288904 8.355173e-05 0.1068445 1.694920
## FBgn0034117 -5.115663 1.170153e-04 0.1068445 1.395807
## FBgn0262983  5.154997 1.083644e-04 0.1068445 1.348982
## FBgn0040071 -5.092210 1.225095e-04 0.1068445 1.342788
## FBgn0062978 -5.072508 1.273305e-04 0.1068445 1.318585
write.fit(fit.empty_dsGFP.vs.empty_dsBrm , results = results.fit.empty_dsGFP.vs.empty_dsBrm , file="empty_dsGFP_vs_empty_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs WT_GFP
empty_dsGFP.vs.WT_dsGFP <- makeContrasts(empty_dsGFP - WT_dsGFP, levels = des) 
fit.empty_dsGFP.vs.WT_dsGFP <- contrasts.fit(fit, empty_dsGFP.vs.WT_dsGFP)
fit.empty_dsGFP.vs.WT_dsGFP <- eBayes(fit.empty_dsGFP.vs.WT_dsGFP)
fit.empty_dsGFP.vs.WT_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.WT_dsGFP <- decideTests(fit.empty_dsGFP.vs.WT_dsGFP) 
table(results.fit.empty_dsGFP.vs.WT_dsGFP)
## results.fit.empty_dsGFP.vs.WT_dsGFP
##   -1    0    1 
##  471 8569  561
topTable(fit.empty_dsGFP.vs.WT_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0051361     FBgn0051361            dpr17 -2.475920 5.651741 -17.58646
## FBgn0041183     FBgn0041183             TepI  6.179907 3.487013  17.54839
## FBgn0085446     FBgn0085446          CG34417  3.476569 5.274943  15.93526
## FBgn0261673     FBgn0261673             nemy  2.900370 6.498878  15.70986
## FBgn0038299     FBgn0038299          Spn88Eb  6.607302 3.644801  16.60457
## FBgn0261451     FBgn0261451             trol -3.351690 8.436969 -15.19561
## FBgn0013773     FBgn0013773          Cyp6a22 -3.453257 4.385441 -14.76692
## FBgn0033374     FBgn0033374          CG13741  7.759078 2.141350  17.58799
## FBgn0086251     FBgn0086251              del  2.563562 6.648684  12.82692
## FBgn0038098     FBgn0038098           CG7381  2.406314 4.958387  12.28652
##                  P.Value    adj.P.Val        B
## FBgn0051361 1.323371e-11 4.372299e-08 16.94719
## FBgn0041183 1.366201e-11 4.372299e-08 15.96965
## FBgn0085446 5.600247e-11 1.075359e-07 15.56825
## FBgn0261673 6.889957e-11 1.102508e-07 15.36401
## FBgn0038299 3.072549e-11 7.374887e-08 14.99770
## FBgn0261451 1.116701e-10 1.531635e-07 14.88935
## FBgn0013773 1.688914e-10 2.026908e-07 14.15714
## FBgn0033374 1.321682e-11 4.372299e-08 13.96245
## FBgn0086251 1.264742e-09 1.214279e-06 12.45990
## FBgn0038098 2.320199e-09 1.821569e-06 11.87951
volcanoplot(fit.empty_dsGFP.vs.WT_dsGFP, highlight = 10, names = fit.empty_dsGFP.vs.WT_dsGFP$genes[,2], main = "empty_dsGFP vs WT_dsBrm")

write.fit(fit.empty_dsGFP.vs.WT_dsGFP , results = results.fit.empty_dsGFP.vs.WT_dsGFP , file="empty_dsGFP_vs_WT_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs WT_dsBrm
empty_dsGFP.vs.WT_dsBrm <- makeContrasts(empty_dsGFP - WT_dsBrm, levels = des) 
fit.empty_dsGFP.vs.WT_dsBrm <- contrasts.fit(fit, empty_dsGFP.vs.WT_dsBrm)
fit.empty_dsGFP.vs.WT_dsBrm <- eBayes(fit.empty_dsGFP.vs.WT_dsBrm)
fit.empty_dsGFP.vs.WT_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.WT_dsBrm <- decideTests(fit.empty_dsGFP.vs.WT_dsBrm) 
table(results.fit.empty_dsGFP.vs.WT_dsBrm)
## results.fit.empty_dsGFP.vs.WT_dsBrm
##   -1    0    1 
##  534 8475  592
topTable(fit.empty_dsGFP.vs.WT_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0051361     FBgn0051361            dpr17 -3.638798 5.651741 -25.78173
## FBgn0261673     FBgn0261673             nemy  3.424770 6.498878  17.07001
## FBgn0041183     FBgn0041183             TepI  5.685959 3.487013  17.42095
## FBgn0085446     FBgn0085446          CG34417  3.384459 5.274943  15.46238
## FBgn0261451     FBgn0261451             trol -3.343331 8.436969 -15.21919
## FBgn0013773     FBgn0013773          Cyp6a22 -3.663273 4.385441 -15.69928
## FBgn0033374     FBgn0033374          CG13741  7.011560 2.141350  17.53693
## FBgn0038299     FBgn0038299          Spn88Eb  7.096041 3.644801  16.12325
## FBgn0052626     FBgn0052626          CG32626  1.877783 8.488482  13.55076
## FBgn0036368     FBgn0036368          CG10738 -2.605751 4.304201 -13.37241
##                  P.Value    adj.P.Val        B
## FBgn0051361 4.426454e-14 4.249839e-10 22.08957
## FBgn0261673 2.049823e-11 4.920089e-08 16.49392
## FBgn0041183 1.520628e-11 4.866517e-08 16.00861
## FBgn0085446 8.677013e-11 1.190114e-07 15.13278
## FBgn0261451 1.091899e-10 1.310415e-07 14.91159
## FBgn0013773 6.957753e-11 1.113356e-07 14.88381
## FBgn0033374 1.379380e-11 4.866517e-08 14.31819
## FBgn0038299 4.720700e-11 9.064689e-08 14.19580
## FBgn0052626 5.797974e-10 6.185149e-07 13.24724
## FBgn0036368 7.003042e-10 6.723621e-07 13.05981
volcanoplot(fit.empty_dsGFP.vs.WT_dsBrm, highlight = 10, names = fit.empty_dsGFP.vs.WT_dsBrm$genes[,2], main = "empty_dsGFP vs WT_dsBrm")

write.fit(fit.empty_dsGFP.vs.WT_dsBrm , results = results.fit.empty_dsGFP.vs.WT_dsBrm , file="empty_dsGFP_vs_WT_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs WT_dsBrm_100
empty_dsGFP.vs.WT_dsBrm_100 <- makeContrasts(empty_dsGFP - WT_dsBrm_100, levels = des) 
fit.empty_dsGFP.vs.WT_dsBrm_100 <- contrasts.fit(fit, empty_dsGFP.vs.WT_dsBrm_100)
fit.empty_dsGFP.vs.WT_dsBrm_100 <- eBayes(fit.empty_dsGFP.vs.WT_dsBrm_100)
fit.empty_dsGFP.vs.WT_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.WT_dsBrm_100 <- decideTests(fit.empty_dsGFP.vs.WT_dsBrm_100) 
table(results.fit.empty_dsGFP.vs.WT_dsBrm_100)
## results.fit.empty_dsGFP.vs.WT_dsBrm_100
##   -1    0    1 
## 1145 7489  967
topTable(fit.empty_dsGFP.vs.WT_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0000212     FBgn0000212              brm -5.493298 10.532912 -18.75590
## FBgn0041183     FBgn0041183             TepI  4.094520  3.487013  17.27251
## FBgn0051361     FBgn0051361            dpr17 -2.386931  5.651741 -16.92780
## FBgn0038299     FBgn0038299          Spn88Eb  4.889160  3.644801  17.14230
## FBgn0085446     FBgn0085446          CG34417  2.982768  5.274943  14.20551
## FBgn0035763     FBgn0035763           CG8602 -2.283702  9.088558 -14.19505
## FBgn0033374     FBgn0033374          CG13741  7.823408  2.141350  17.20933
## FBgn0086251     FBgn0086251              del  2.768554  6.648684  13.44719
## FBgn0003231     FBgn0003231          ref(2)P -2.426474  8.521526 -13.41069
## FBgn0013773     FBgn0013773          Cyp6a22 -3.218282  4.385441 -13.61625
##                  P.Value    adj.P.Val        B
## FBgn0000212 5.123013e-12 3.699556e-08 17.75307
## FBgn0041183 1.724212e-11 3.699556e-08 16.51037
## FBgn0051361 2.317188e-11 3.707887e-08 16.39235
## FBgn0038299 1.926652e-11 3.699556e-08 16.14844
## FBgn0085446 2.950815e-10 3.579004e-07 13.92473
## FBgn0035763 2.982193e-10 3.579004e-07 13.91489
## FBgn0033374 1.819465e-11 3.699556e-08 13.39329
## FBgn0086251 6.468231e-10 5.379484e-07 13.14534
## FBgn0003231 6.723655e-10 5.379484e-07 13.10426
## FBgn0013773 5.412472e-10 5.379484e-07 13.05588
volcanoplot(fit.empty_dsGFP.vs.WT_dsBrm_100, highlight = 10, names = fit.empty_dsGFP.vs.WT_dsBrm_100$genes[,2], main = "empty_dsGFP vs WT_dsBrm_100")

write.fit(fit.empty_dsGFP.vs.WT_dsBrm_100 , results = results.fit.empty_dsGFP.vs.WT_dsBrm_100 , file="empty_dsGFP_vs_WT_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs K804R_dsGFP
empty_dsGFP.vs.K804R_dsGFP <- makeContrasts(empty_dsGFP - K804R_dsGFP, levels = des) 
fit.empty_dsGFP.vs.K804R_dsGFP <- contrasts.fit(fit, empty_dsGFP.vs.K804R_dsGFP)
fit.empty_dsGFP.vs.K804R_dsGFP <- eBayes(fit.empty_dsGFP.vs.K804R_dsGFP)
fit.empty_dsGFP.vs.K804R_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.K804R_dsGFP <- decideTests(fit.empty_dsGFP.vs.K804R_dsGFP) 
table(results.fit.empty_dsGFP.vs.K804R_dsGFP)
## results.fit.empty_dsGFP.vs.K804R_dsGFP
##   -1    0    1 
##  415 8792  394
topTable(fit.empty_dsGFP.vs.K804R_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0261451     FBgn0261451             trol -4.086234 8.436969 -18.17496
## FBgn0085446     FBgn0085446          CG34417  4.376563 5.274943  17.54882
## FBgn0041183     FBgn0041183             TepI  4.814501 3.487013  17.54408
## FBgn0033374     FBgn0033374          CG13741  4.279285 2.141350  17.67218
## FBgn0010043     FBgn0010043            GstD7 -3.942124 5.637142 -15.44701
## FBgn0085412     FBgn0085412          CG34383 -2.719829 5.528909 -13.32276
## FBgn0060296     FBgn0060296             pain -2.169251 4.977743 -13.22442
## FBgn0260011     FBgn0260011            nimC4 -3.404814 7.769583 -13.01375
## FBgn0052207     FBgn0052207          CR32207 -2.910486 3.297262 -12.77192
## FBgn0036806     FBgn0036806          Cyp12c1 -3.407019 5.002296 -12.27895
##                  P.Value    adj.P.Val        B
## FBgn0261451 8.151421e-12 3.291074e-08 17.41281
## FBgn0085446 1.365705e-11 3.291074e-08 16.79776
## FBgn0041183 1.371138e-11 3.291074e-08 16.39734
## FBgn0033374 1.232055e-11 3.291074e-08 16.24049
## FBgn0010043 8.803163e-11 1.690383e-07 15.02415
## FBgn0085412 7.383819e-10 1.125282e-06 12.97341
## FBgn0060296 8.204329e-10 1.125282e-06 12.87205
## FBgn0260011 1.030514e-09 1.236746e-06 12.68332
## FBgn0052207 1.343986e-09 1.433735e-06 12.27599
## FBgn0036806 2.340364e-09 2.246984e-06 11.79890
volcanoplot(fit.empty_dsGFP.vs.K804R_dsGFP, highlight = 10, names = fit.empty_dsGFP.vs.K804R_dsGFP$genes[,2], main = "empty_dsGFP vs K804R_dsGFP")

write.fit(fit.empty_dsGFP.vs.K804R_dsGFP , results = results.fit.empty_dsGFP.vs.K804R_dsGFP , file="empty_dsGFP_vs_K804R_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs K804R_dsBrm
empty_dsGFP.vs.K804R_dsBrm <- makeContrasts(empty_dsGFP - K804R_dsBrm, levels = des) 
fit.empty_dsGFP.vs.K804R_dsBrm <- contrasts.fit(fit, empty_dsGFP.vs.K804R_dsBrm)
fit.empty_dsGFP.vs.K804R_dsBrm <- eBayes(fit.empty_dsGFP.vs.K804R_dsBrm)
fit.empty_dsGFP.vs.K804R_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.K804R_dsBrm <- decideTests(fit.empty_dsGFP.vs.K804R_dsBrm) 
table(results.fit.empty_dsGFP.vs.K804R_dsBrm)
## results.fit.empty_dsGFP.vs.K804R_dsBrm
##   -1    0    1 
##  478 8622  501
topTable(fit.empty_dsGFP.vs.K804R_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0261451     FBgn0261451             trol -4.056676 8.436969 -17.93596
## FBgn0085446     FBgn0085446          CG34417  4.291218 5.274943  17.95562
## FBgn0041183     FBgn0041183             TepI  5.038556 3.487013  18.36436
## FBgn0033374     FBgn0033374          CG13741  4.156648 2.141350  18.41740
## FBgn0010043     FBgn0010043            GstD7 -3.570151 5.637142 -13.98950
## FBgn0260011     FBgn0260011            nimC4 -3.482725 7.769583 -13.20255
## FBgn0085412     FBgn0085412          CG34383 -2.621600 5.528909 -12.88055
## FBgn0259740     FBgn0259740          CG42394  4.230548 5.710746  12.73885
## FBgn0038299     FBgn0038299          Spn88Eb  2.335372 3.644801  12.59677
## FBgn0052207     FBgn0052207          CR32207 -2.869864 3.297262 -12.68191
##                  P.Value    adj.P.Val        B
## FBgn0261451 9.906886e-12 2.377900e-08 17.23161
## FBgn0085446 9.748381e-12 2.377900e-08 17.16537
## FBgn0041183 6.995671e-12 2.377900e-08 16.99686
## FBgn0033374 6.704200e-12 2.377900e-08 16.95494
## FBgn0010043 3.676269e-10 7.059171e-07 13.67176
## FBgn0260011 8.399624e-10 1.344080e-06 12.88661
## FBgn0085412 1.192222e-09 1.568179e-06 12.51967
## FBgn0259740 1.394144e-09 1.568179e-06 12.37996
## FBgn0038299 1.633350e-09 1.568179e-06 12.22367
## FBgn0052207 1.485223e-09 1.568179e-06 12.20181
volcanoplot(fit.empty_dsGFP.vs.K804R_dsBrm, highlight = 10, names = fit.empty_dsGFP.vs.K804R_dsBrm$genes[,2], main = "empty_dsGFP vs K804R_dsBrm")

write.fit(fit.empty_dsGFP.vs.K804R_dsBrm , results = results.fit.empty_dsGFP.vs.K804R_dsBrm , file="empty_dsGFP_vs_K804R_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs K804R_dsBrm_100
empty_dsGFP.vs.K804R_dsBrm_100 <- makeContrasts(empty_dsGFP - K804R_dsBrm_100, levels = des) 
fit.empty_dsGFP.vs.K804R_dsBrm_100 <- contrasts.fit(fit, empty_dsGFP.vs.K804R_dsBrm_100)
fit.empty_dsGFP.vs.K804R_dsBrm_100 <- eBayes(fit.empty_dsGFP.vs.K804R_dsBrm_100)
fit.empty_dsGFP.vs.K804R_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.K804R_dsBrm_100 <- decideTests(fit.empty_dsGFP.vs.K804R_dsBrm_100) 
table(results.fit.empty_dsGFP.vs.K804R_dsBrm_100)
## results.fit.empty_dsGFP.vs.K804R_dsBrm_100
##   -1    0    1 
##  745 8257  599
topTable(fit.empty_dsGFP.vs.K804R_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0085446     FBgn0085446          CG34417  4.368885 5.274943  18.04586
## FBgn0041183     FBgn0041183             TepI  4.564556 3.487013  18.08563
## FBgn0033374     FBgn0033374          CG13741  4.983479 2.141350  18.24992
## FBgn0261451     FBgn0261451             trol -3.391852 8.436969 -15.35762
## FBgn0010043     FBgn0010043            GstD7 -3.874557 5.637142 -15.16689
## FBgn0060296     FBgn0060296             pain -2.222327 4.977743 -13.64258
## FBgn0032123     FBgn0032123          Oatp30B -2.814895 5.169766 -13.58155
## FBgn0052207     FBgn0052207          CR32207 -3.072861 3.297262 -13.62431
## FBgn0085412     FBgn0085412          CG34383 -2.645741 5.528909 -12.96205
## FBgn0038299     FBgn0038299          Spn88Eb  2.375980 3.644801  12.63246
##                  P.Value    adj.P.Val        B
## FBgn0085446 9.054396e-12 2.897708e-08 17.22782
## FBgn0041183 8.765463e-12 2.897708e-08 16.98344
## FBgn0033374 7.671472e-12 2.897708e-08 16.30596
## FBgn0261451 9.576214e-11 1.836524e-07 15.03882
## FBgn0010043 1.147708e-10 1.836524e-07 14.78646
## FBgn0060296 5.265226e-10 5.988079e-07 13.30914
## FBgn0032123 5.613239e-10 5.988079e-07 13.25932
## FBgn0052207 5.366929e-10 5.988079e-07 13.15023
## FBgn0085412 1.090338e-09 1.046833e-06 12.60696
## FBgn0038299 1.569443e-09 1.369838e-06 12.26497
volcanoplot(fit.empty_dsGFP.vs.K804R_dsBrm_100, highlight = 10, names = fit.empty_dsGFP.vs.K804R_dsBrm_100$genes[,2], main = "empty_dsGFP vs K804R_dsBrm_100")

write.fit(fit.empty_dsGFP.vs.K804R_dsBrm_100 , results = results.fit.empty_dsGFP.vs.K804R_dsBrm_100 , file="empty_dsGFP_vs_K804R_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs YN_dsGFP
empty_dsGFP.vs.YN_dsGFP <- makeContrasts(empty_dsGFP - YN_dsGFP, levels = des) 
fit.empty_dsGFP.vs.YN_dsGFP <- contrasts.fit(fit, empty_dsGFP.vs.YN_dsGFP)
fit.empty_dsGFP.vs.YN_dsGFP <- eBayes(fit.empty_dsGFP.vs.YN_dsGFP)
fit.empty_dsGFP.vs.YN_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.YN_dsGFP <- decideTests(fit.empty_dsGFP.vs.YN_dsGFP) 
table(results.fit.empty_dsGFP.vs.YN_dsGFP)
## results.fit.empty_dsGFP.vs.YN_dsGFP
##   -1    0    1 
##  507 8485  609
topTable(fit.empty_dsGFP.vs.YN_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0261451     FBgn0261451             trol -4.411528 8.436969 -19.26069
## FBgn0036368     FBgn0036368          CG10738 -3.740761 4.304201 -19.39774
## FBgn0085446     FBgn0085446          CG34417  4.024759 5.274943  17.52402
## FBgn0041183     FBgn0041183             TepI  3.934357 3.487013  17.55145
## FBgn0038299     FBgn0038299          Spn88Eb  4.508791 3.644801  17.52079
## FBgn0060296     FBgn0060296             pain -2.729480 4.977743 -17.07736
## FBgn0085412     FBgn0085412          CG34383 -3.174748 5.528909 -15.75547
## FBgn0033374     FBgn0033374          CG13741  2.716904 2.141350  15.62993
## FBgn0010389     FBgn0010389              htl -4.264200 6.156398 -15.47189
## FBgn0013773     FBgn0013773          Cyp6a22 -3.632162 4.385441 -15.65187
##                  P.Value    adj.P.Val        B
## FBgn0261451 3.458420e-12 1.660215e-08 18.19952
## FBgn0036368 3.113591e-12 1.660215e-08 18.09477
## FBgn0085446 1.394392e-11 2.684769e-08 16.84270
## FBgn0041183 1.362706e-11 2.684769e-08 16.72252
## FBgn0038299 1.398172e-11 2.684769e-08 16.51003
## FBgn0060296 2.036920e-11 3.259412e-08 16.34268
## FBgn0085412 6.605572e-11 7.915586e-08 15.24942
## FBgn0033374 7.420089e-11 7.915586e-08 15.18398
## FBgn0010389 8.599961e-11 8.256822e-08 15.09448
## FBgn0013773 7.270401e-11 7.915586e-08 14.74237
volcanoplot(fit.empty_dsGFP.vs.YN_dsGFP, highlight = 10, names = fit.empty_dsGFP.vs.YN_dsGFP$genes[,2], main = "empty_dsGFP vs YN_dsGFP")

write.fit(fit.empty_dsGFP.vs.YN_dsGFP , results = results.fit.empty_dsGFP.vs.YN_dsGFP , file="empty_dsGFP_vs_YN_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs YN_dsBrm
empty_dsGFP.vs.YN_dsBrm <- makeContrasts(empty_dsGFP - YN_dsBrm, levels = des) 
fit.empty_dsGFP.vs.YN_dsBrm <- contrasts.fit(fit, empty_dsGFP.vs.YN_dsBrm)
fit.empty_dsGFP.vs.YN_dsBrm <- eBayes(fit.empty_dsGFP.vs.YN_dsBrm)
fit.empty_dsGFP.vs.YN_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.YN_dsBrm <- decideTests(fit.empty_dsGFP.vs.YN_dsBrm) 
table(results.fit.empty_dsGFP.vs.YN_dsBrm)
## results.fit.empty_dsGFP.vs.YN_dsBrm
##   -1    0    1 
##  637 8322  642
topTable(fit.empty_dsGFP.vs.YN_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0036368     FBgn0036368          CG10738 -3.956618 4.304201 -20.49990
## FBgn0261451     FBgn0261451             trol -4.471794 8.436969 -19.75604
## FBgn0060296     FBgn0060296             pain -3.042067 4.977743 -18.95371
## FBgn0041183     FBgn0041183             TepI  4.163317 3.487013  16.69666
## FBgn0010389     FBgn0010389              htl -4.454298 6.156398 -16.23147
## FBgn0085446     FBgn0085446          CG34417  3.833156 5.274943  16.22814
## FBgn0085412     FBgn0085412          CG34383 -3.309114 5.528909 -16.33061
## FBgn0034438     FBgn0034438           CG9416 -4.252531 8.658978 -15.83963
## FBgn0038299     FBgn0038299          Spn88Eb  5.123759 3.644801  16.51666
## FBgn0260011     FBgn0260011            nimC4 -4.047398 7.769583 -15.27018
##                  P.Value    adj.P.Val        B
## FBgn0036368 1.370609e-12 1.139415e-08 18.81961
## FBgn0261451 2.373534e-12 1.139415e-08 18.56286
## FBgn0060296 4.386877e-12 1.403947e-08 17.71578
## FBgn0041183 2.833795e-11 5.154268e-08 15.91983
## FBgn0010389 4.281932e-11 5.154268e-08 15.76237
## FBgn0085446 4.294776e-11 5.154268e-08 15.76069
## FBgn0085412 3.917891e-11 5.154268e-08 15.72647
## FBgn0034438 6.113012e-11 6.521226e-08 15.46934
## FBgn0038299 3.320444e-11 5.154268e-08 15.38942
## FBgn0260011 1.040251e-10 8.416750e-08 14.94840
volcanoplot(fit.empty_dsGFP.vs.YN_dsBrm, highlight = 10, names = fit.empty_dsGFP.vs.YN_dsBrm$genes[,2], main = "empty_dsGFP vs YN_dsBrm")

write.fit(fit.empty_dsGFP.vs.YN_dsBrm , results = results.fit.empty_dsGFP.vs.YN_dsBrm , file="empty_dsGFP_vs_YN_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsGFP vs YN_dsBrm_100
empty_dsGFP.vs.YN_dsBrm_100 <- makeContrasts(empty_dsGFP - YN_dsBrm_100, levels = des) 
fit.empty_dsGFP.vs.YN_dsBrm_100 <- contrasts.fit(fit, empty_dsGFP.vs.YN_dsBrm_100)
fit.empty_dsGFP.vs.YN_dsBrm_100 <- eBayes(fit.empty_dsGFP.vs.YN_dsBrm_100)
fit.empty_dsGFP.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsGFP.vs.YN_dsBrm_100 <- decideTests(fit.empty_dsGFP.vs.YN_dsBrm_100) 
table(results.fit.empty_dsGFP.vs.YN_dsBrm_100)
## results.fit.empty_dsGFP.vs.YN_dsBrm_100
##   -1    0    1 
## 1450 6974 1177
topTable(fit.empty_dsGFP.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0000212     FBgn0000212              brm -6.090874 10.532912 -20.79623
## FBgn0035763     FBgn0035763           CG8602 -2.827441  9.088558 -17.38791
## FBgn0060296     FBgn0060296             pain -2.816611  4.977743 -17.46353
## FBgn0085446     FBgn0085446          CG34417  3.707376  5.274943  15.98980
## FBgn0033374     FBgn0033374          CG13741  3.218187  2.141350  15.90196
## FBgn0036368     FBgn0036368          CG10738 -3.020514  4.304201 -15.55789
## FBgn0085412     FBgn0085412          CG34383 -3.099603  5.528909 -15.24598
## FBgn0033205     FBgn0033205           CG2064 -2.833732  8.015501 -14.78318
## FBgn0038299     FBgn0038299          Spn88Eb  3.337314  3.644801  14.80904
## FBgn0031589     FBgn0031589           CG3714 -2.359358  7.154859 -14.51042
##                  P.Value    adj.P.Val        B
## FBgn0000212 1.107014e-12 1.062844e-08 18.92556
## FBgn0035763 1.563625e-11 5.004122e-08 16.73622
## FBgn0060296 1.467070e-11 5.004122e-08 16.53111
## FBgn0085446 5.328438e-11 9.238504e-08 15.52320
## FBgn0033374 5.773464e-11 9.238504e-08 15.15348
## FBgn0036368 7.935018e-11 1.088344e-07 15.06313
## FBgn0085412 1.064430e-10 1.277450e-07 14.73228
## FBgn0033205 1.662305e-10 1.450890e-07 14.48627
## FBgn0038299 1.620886e-10 1.450890e-07 14.38388
## FBgn0031589 2.174264e-10 1.605777e-07 14.22652
volcanoplot(fit.empty_dsGFP.vs.YN_dsBrm_100, highlight = 10, names = fit.empty_dsGFP.vs.YN_dsBrm_100$genes[,2], main = "empty_dsGFP vs YN_dsBrm_100")

write.fit(fit.empty_dsGFP.vs.YN_dsBrm_100 , results = results.fit.empty_dsGFP.vs.YN_dsBrm_100, file = "empty_dsGFP_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file



# contrast empty_dsBrm vs WT_GFP
empty_dsBrm.vs.WT_dsGFP <- makeContrasts(empty_dsBrm - WT_dsGFP, levels = des) 
fit.empty_dsBrm.vs.WT_dsGFP <- contrasts.fit(fit, empty_dsBrm.vs.WT_dsGFP)
fit.empty_dsBrm.vs.WT_dsGFP <- eBayes(fit.empty_dsBrm.vs.WT_dsGFP)
fit.empty_dsBrm.vs.WT_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.WT_dsGFP <- decideTests(fit.empty_dsBrm.vs.WT_dsGFP) 
table(results.fit.empty_dsBrm.vs.WT_dsGFP)
## results.fit.empty_dsBrm.vs.WT_dsGFP
##   -1    0    1 
##  604 8252  745
topTable(fit.empty_dsBrm.vs.WT_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0041183     FBgn0041183             TepI  5.905460  3.487013  16.76539
## FBgn0261451     FBgn0261451             trol -3.597941  8.436969 -15.56444
## FBgn0261673     FBgn0261673             nemy  2.855993  6.498878  15.53426
## FBgn0038299     FBgn0038299          Spn88Eb  6.747943  3.644801  16.95803
## FBgn0051361     FBgn0051361            dpr17 -2.161719  5.651741 -15.29800
## FBgn0085446     FBgn0085446          CG34417  3.279444  5.274943  15.22930
## FBgn0086251     FBgn0086251              del  2.754531  6.648684  13.81929
## FBgn0000212     FBgn0000212              brm -3.501695 10.532912 -13.78016
## FBgn0033374     FBgn0033374          CG13741  7.647252  2.141350  17.30795
## FBgn0013773     FBgn0013773          Cyp6a22 -3.527952  4.385441 -13.86515
##                  P.Value    adj.P.Val        B
## FBgn0041183 2.668479e-11 8.540022e-08 15.25566
## FBgn0261451 7.886696e-11 1.483287e-07 15.22050
## FBgn0261673 8.112145e-11 1.483287e-07 15.19323
## FBgn0038299 2.257394e-11 8.540022e-08 15.00449
## FBgn0051361 1.013176e-10 1.483287e-07 14.95891
## FBgn0085446 1.081451e-10 1.483287e-07 14.91467
## FBgn0086251 4.380539e-10 3.981692e-07 13.53340
## FBgn0000212 4.561881e-10 3.981692e-07 13.49458
## FBgn0033374 1.673102e-11 8.540022e-08 13.43714
## FBgn0013773 4.177734e-10 3.981692e-07 13.12508
volcanoplot(fit.empty_dsBrm.vs.WT_dsGFP, highlight = 10, names = fit.empty_dsBrm.vs.WT_dsGFP$genes[,2], main = "empty_dsBrm vs WT_dsBrm")

write.fit(fit.empty_dsBrm.vs.WT_dsGFP , results = results.fit.empty_dsBrm.vs.WT_dsGFP , file="empty_dsBrm_vs_WT_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsBrm vs WT_dsBrm
empty_dsBrm.vs.WT_dsBrm <- makeContrasts(empty_dsBrm - WT_dsBrm, levels = des) 
fit.empty_dsBrm.vs.WT_dsBrm <- contrasts.fit(fit, empty_dsBrm.vs.WT_dsBrm)
fit.empty_dsBrm.vs.WT_dsBrm <- eBayes(fit.empty_dsBrm.vs.WT_dsBrm)
fit.empty_dsBrm.vs.WT_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.WT_dsBrm <- decideTests(fit.empty_dsBrm.vs.WT_dsBrm) 
table(results.fit.empty_dsBrm.vs.WT_dsBrm)
## results.fit.empty_dsBrm.vs.WT_dsBrm
##   -1    0    1 
##  533 8421  647
topTable(fit.empty_dsBrm.vs.WT_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0051361     FBgn0051361            dpr17 -3.324597 5.651741 -23.46900
## FBgn0261673     FBgn0261673             nemy  3.380392 6.498878  16.90850
## FBgn0041183     FBgn0041183             TepI  5.411512 3.487013  16.57585
## FBgn0261451     FBgn0261451             trol -3.589582 8.436969 -15.58559
## FBgn0085446     FBgn0085446          CG34417  3.187334 5.274943  14.75191
## FBgn0038299     FBgn0038299          Spn88Eb  7.236681 3.644801  16.44283
## FBgn0033374     FBgn0033374          CG13741  6.899733 2.141350  17.22507
## FBgn0013773     FBgn0013773          Cyp6a22 -3.737967 4.385441 -14.71767
## FBgn0086251     FBgn0086251              del  2.840318 6.648684  13.92686
## FBgn0260011     FBgn0260011            nimC4 -3.409449 7.769583 -12.32250
##                  P.Value    adj.P.Val        B
## FBgn0051361 1.817417e-13 1.744902e-09 20.85353
## FBgn0261673 2.356228e-11 6.807234e-08 16.36210
## FBgn0041183 3.151304e-11 6.807234e-08 15.40850
## FBgn0261451 7.732678e-11 1.237357e-07 15.24632
## FBgn0085446 1.713882e-10 2.127021e-07 14.46404
## FBgn0038299 3.545065e-11 6.807234e-08 14.38916
## FBgn0033374 1.795214e-11 6.807234e-08 14.13504
## FBgn0013773 1.772333e-10 2.127021e-07 13.91508
## FBgn0086251 3.920373e-10 4.182167e-07 13.64356
## FBgn0260011 2.226810e-09 1.825286e-06 11.91449
volcanoplot(fit.empty_dsBrm.vs.WT_dsBrm, highlight = 10, names = fit.empty_dsBrm.vs.WT_dsBrm$genes[,2], main = "empty_dsBrm vs WT_dsBrm")

write.fit(fit.empty_dsBrm.vs.WT_dsBrm , results = results.fit.empty_dsBrm.vs.WT_dsBrm , file="empty_dsBrm_vs_WT_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsBrm vs WT_dsBrm_100
empty_dsBrm.vs.WT_dsBrm_100 <- makeContrasts(empty_dsBrm - WT_dsBrm_100, levels = des) 
fit.empty_dsBrm.vs.WT_dsBrm_100 <- contrasts.fit(fit, empty_dsBrm.vs.WT_dsBrm_100)
fit.empty_dsBrm.vs.WT_dsBrm_100 <- eBayes(fit.empty_dsBrm.vs.WT_dsBrm_100)
fit.empty_dsBrm.vs.WT_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.WT_dsBrm_100 <- decideTests(fit.empty_dsBrm.vs.WT_dsBrm_100) 
table(results.fit.empty_dsBrm.vs.WT_dsBrm_100)
## results.fit.empty_dsBrm.vs.WT_dsBrm_100
##   -1    0    1 
## 1151 7393 1057
topTable(fit.empty_dsBrm.vs.WT_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0000212     FBgn0000212              brm -6.814484 10.532912 -23.85295
## FBgn0038299     FBgn0038299          Spn88Eb  5.029801  3.644801  17.63547
## FBgn0041183     FBgn0041183             TepI  3.820073  3.487013  16.10696
## FBgn0035763     FBgn0035763           CG8602 -2.413299  9.088558 -15.13130
## FBgn0051361     FBgn0051361            dpr17 -2.072730  5.651741 -14.64542
## FBgn0086251     FBgn0086251              del  2.959524  6.648684  14.41096
## FBgn0003231     FBgn0003231          ref(2)P -2.456175  8.521526 -13.66908
## FBgn0033374     FBgn0033374          CG13741  7.711581  2.141350  16.93887
## FBgn0085446     FBgn0085446          CG34417  2.785644  5.274943  13.45525
## FBgn0261673     FBgn0261673             nemy  2.231337  6.498878  12.83474
##                  P.Value    adj.P.Val        B
## FBgn0000212 1.424761e-13 1.367913e-09 21.01954
## FBgn0038299 1.270315e-11 6.098148e-08 16.53631
## FBgn0041183 4.790784e-11 9.199264e-08 15.58446
## FBgn0035763 1.187418e-10 1.900067e-07 14.82856
## FBgn0051361 1.902671e-10 2.609649e-07 14.35541
## FBgn0086251 2.400533e-10 2.880940e-07 14.13061
## FBgn0003231 5.121281e-10 5.463268e-07 13.37329
## FBgn0033374 2.295097e-11 7.295909e-08 13.34995
## FBgn0085446 6.413226e-10 6.157339e-07 13.14409
## FBgn0261673 1.253882e-09 9.354958e-07 12.46842
volcanoplot(fit.empty_dsBrm.vs.WT_dsBrm_100, highlight = 10, names = fit.empty_dsBrm.vs.WT_dsBrm_100$genes[,2], main = "empty_dsBrm vs WT_dsBrm_100")

write.fit(fit.empty_dsBrm.vs.WT_dsBrm_100 , results = results.fit.empty_dsBrm.vs.WT_dsBrm_100 , file="empty_dsBrm_vs_WT_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsBrm vs K804R_dsGFP
empty_dsBrm.vs.K804R_dsGFP <- makeContrasts(empty_dsBrm - K804R_dsGFP, levels = des) 
fit.empty_dsBrm.vs.K804R_dsGFP <- contrasts.fit(fit, empty_dsBrm.vs.K804R_dsGFP)
fit.empty_dsBrm.vs.K804R_dsGFP <- eBayes(fit.empty_dsBrm.vs.K804R_dsGFP)
fit.empty_dsBrm.vs.K804R_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.K804R_dsGFP <- decideTests(fit.empty_dsBrm.vs.K804R_dsGFP) 
table(results.fit.empty_dsBrm.vs.K804R_dsGFP)
## results.fit.empty_dsBrm.vs.K804R_dsGFP
##   -1    0    1 
##  405 8736  460
topTable(fit.empty_dsBrm.vs.K804R_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0261451     FBgn0261451             trol -4.332485 8.436969 -18.41804
## FBgn0085446     FBgn0085446          CG34417  4.179439 5.274943  16.92620
## FBgn0033374     FBgn0033374          CG13741  4.167458 2.141350  17.12335
## FBgn0041183     FBgn0041183             TepI  4.540054 3.487013  16.53801
## FBgn0010043     FBgn0010043            GstD7 -3.847158 5.637142 -14.49406
## FBgn0260011     FBgn0260011            nimC4 -3.660353 7.769583 -13.15550
## FBgn0038299     FBgn0038299          Spn88Eb  2.352340 3.644801  12.55783
## FBgn0036806     FBgn0036806          Cyp12c1 -3.935987 5.002296 -11.96312
## FBgn0060296     FBgn0060296             pain -1.981094 4.977743 -11.78555
## FBgn0085412     FBgn0085412          CG34383 -2.391090 5.528909 -11.67740
##                  P.Value    adj.P.Val        B
## FBgn0261451 6.700748e-12 6.433388e-08 17.56789
## FBgn0085446 2.320403e-11 7.426063e-08 16.31653
## FBgn0033374 1.958172e-11 7.426063e-08 15.85569
## FBgn0041183 3.258340e-11 7.820830e-08 15.65772
## FBgn0010043 2.209878e-10 4.243407e-07 14.13012
## FBgn0260011 8.836589e-10 1.414002e-06 12.84040
## FBgn0038299 1.706250e-09 2.340243e-06 12.18360
## FBgn0036806 3.371714e-09 3.779364e-06 11.31830
## FBgn0060296 4.154467e-09 3.779364e-06 11.30003
## FBgn0085412 4.723713e-09 3.779364e-06 11.17913
volcanoplot(fit.empty_dsBrm.vs.K804R_dsGFP, highlight = 10, names = fit.empty_dsBrm.vs.K804R_dsGFP$genes[,2], main = "empty_dsBrm vs K804R_dsGFP")

write.fit(fit.empty_dsBrm.vs.K804R_dsGFP , results = results.fit.empty_dsBrm.vs.K804R_dsGFP , file="empty_dsBrm_vs_K804R_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsBrm vs K804R_dsBrm
empty_dsBrm.vs.K804R_dsBrm <- makeContrasts(empty_dsBrm - K804R_dsBrm, levels = des) 
fit.empty_dsBrm.vs.K804R_dsBrm <- contrasts.fit(fit, empty_dsBrm.vs.K804R_dsBrm)
fit.empty_dsBrm.vs.K804R_dsBrm <- eBayes(fit.empty_dsBrm.vs.K804R_dsBrm)
fit.empty_dsBrm.vs.K804R_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.K804R_dsBrm <- decideTests(fit.empty_dsBrm.vs.K804R_dsBrm) 
table(results.fit.empty_dsBrm.vs.K804R_dsBrm)
## results.fit.empty_dsBrm.vs.K804R_dsBrm
##   -1    0    1 
##  354 8805  442
topTable(fit.empty_dsBrm.vs.K804R_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0261451     FBgn0261451             trol -4.302927 8.436969 -18.19273
## FBgn0085446     FBgn0085446          CG34417  4.094093 5.274943  17.31782
## FBgn0033374     FBgn0033374          CG13741  4.044821 2.141350  17.81771
## FBgn0041183     FBgn0041183             TepI  4.764109 3.487013  17.35778
## FBgn0038299     FBgn0038299          Spn88Eb  2.476012 3.644801  13.35547
## FBgn0260011     FBgn0260011            nimC4 -3.738264 7.769583 -13.33811
## FBgn0010043     FBgn0010043            GstD7 -3.475184 5.637142 -13.09270
## FBgn0052207     FBgn0052207          CR32207 -2.726379 3.297262 -11.60256
## FBgn0036806     FBgn0036806          Cyp12c1 -3.777365 5.002296 -11.49136
## FBgn0062978     FBgn0062978          CG31808  3.402407 2.805649  11.38066
##                  P.Value    adj.P.Val        B
## FBgn0261451 8.034857e-12 3.982408e-08 17.39360
## FBgn0085446 1.659164e-11 3.982408e-08 16.66755
## FBgn0033374 1.092014e-11 3.982408e-08 16.51028
## FBgn0041183 1.603952e-11 3.982408e-08 16.27035
## FBgn0038299 7.130557e-10 1.162325e-06 13.05162
## FBgn0260011 7.263777e-10 1.162325e-06 13.03413
## FBgn0010043 9.457809e-10 1.297206e-06 12.74295
## FBgn0052207 5.165596e-09 5.510543e-06 11.00266
## FBgn0036806 5.904700e-09 5.669102e-06 10.80871
## FBgn0062978 6.752505e-09 5.893709e-06 10.74964
volcanoplot(fit.empty_dsBrm.vs.K804R_dsBrm, highlight = 10, names = fit.empty_dsBrm.vs.K804R_dsBrm$genes[,2], main = "empty_dsBrm vs K804R_dsBrm")

write.fit(fit.empty_dsBrm.vs.K804R_dsBrm , results = results.fit.empty_dsBrm.vs.K804R_dsBrm , file="empty_dsBrm_vs_K804R_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsBrm vs K804R_dsBrm_100
empty_dsBrm.vs.K804R_dsBrm_100 <- makeContrasts(empty_dsBrm - K804R_dsBrm_100, levels = des) 
fit.empty_dsBrm.vs.K804R_dsBrm_100 <- contrasts.fit(fit, empty_dsBrm.vs.K804R_dsBrm_100)
fit.empty_dsBrm.vs.K804R_dsBrm_100 <- eBayes(fit.empty_dsBrm.vs.K804R_dsBrm_100)
fit.empty_dsBrm.vs.K804R_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.K804R_dsBrm_100 <- decideTests(fit.empty_dsBrm.vs.K804R_dsBrm_100) 
table(results.fit.empty_dsBrm.vs.K804R_dsBrm_100)
## results.fit.empty_dsBrm.vs.K804R_dsBrm_100
##   -1    0    1 
##  717 8242  642
topTable(fit.empty_dsBrm.vs.K804R_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0085446     FBgn0085446          CG34417  4.171760  5.274943  17.41488
## FBgn0041183     FBgn0041183             TepI  4.290109  3.487013  16.99095
## FBgn0033374     FBgn0033374          CG13741  4.871652  2.141350  17.76935
## FBgn0261451     FBgn0261451             trol -3.638103  8.436969 -15.71948
## FBgn0010043     FBgn0010043            GstD7 -3.779590  5.637142 -14.22619
## FBgn0000212     FBgn0000212              brm -3.529204 10.532912 -13.87784
## FBgn0038299     FBgn0038299          Spn88Eb  2.516621  3.644801  13.38030
## FBgn0052207     FBgn0052207          CR32207 -2.929376  3.297262 -12.50505
## FBgn0035763     FBgn0035763           CG8602 -1.915686  9.088558 -12.20194
## FBgn0060296     FBgn0060296             pain -2.034169  4.977743 -12.18172
##                  P.Value    adj.P.Val        B
## FBgn0085446 1.528436e-11 7.022031e-08 16.71171
## FBgn0041183 2.194156e-11 7.022031e-08 16.10723
## FBgn0033374 1.136583e-11 7.022031e-08 15.84991
## FBgn0261451 6.828909e-11 1.360911e-07 15.34803
## FBgn0010043 2.889825e-10 4.624201e-07 13.86049
## FBgn0000212 4.123378e-10 5.655508e-07 13.59384
## FBgn0038299 6.944454e-10 8.334213e-07 13.07878
## FBgn0052207 1.810582e-09 1.931489e-06 11.95491
## FBgn0035763 2.556426e-09 2.093497e-06 11.77376
## FBgn0060296 2.616599e-09 2.093497e-06 11.74254
volcanoplot(fit.empty_dsBrm.vs.K804R_dsBrm_100, highlight = 10, names = fit.empty_dsBrm.vs.K804R_dsBrm_100$genes[,2], main = "empty_dsBrm vs K804R_dsBrm_100")

write.fit(fit.empty_dsBrm.vs.K804R_dsBrm_100 , results = results.fit.empty_dsBrm.vs.K804R_dsBrm_100 , file="empty_dsBrm_vs_K804R_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsBrm vs YN_dsGFP
empty_dsBrm.vs.YN_dsGFP <- makeContrasts(empty_dsBrm - YN_dsGFP, levels = des) 
fit.empty_dsBrm.vs.YN_dsGFP <- contrasts.fit(fit, empty_dsBrm.vs.YN_dsGFP)
fit.empty_dsBrm.vs.YN_dsGFP <- eBayes(fit.empty_dsBrm.vs.YN_dsGFP)
fit.empty_dsBrm.vs.YN_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.YN_dsGFP <- decideTests(fit.empty_dsBrm.vs.YN_dsGFP) 
table(results.fit.empty_dsBrm.vs.YN_dsGFP)
## results.fit.empty_dsBrm.vs.YN_dsGFP
##   -1    0    1 
##  617 8169  815
topTable(fit.empty_dsBrm.vs.YN_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0261451     FBgn0261451             trol -4.657778  8.436969 -19.46722
## FBgn0036368     FBgn0036368          CG10738 -3.612059  4.304201 -18.11321
## FBgn0038299     FBgn0038299          Spn88Eb  4.649432  3.644801  18.06738
## FBgn0085446     FBgn0085446          CG34417  3.827635  5.274943  16.86301
## FBgn0040091     FBgn0040091          Ugt58Fa -2.474163  8.240297 -16.25689
## FBgn0041183     FBgn0041183             TepI  3.659910  3.487013  16.31827
## FBgn0060296     FBgn0060296             pain -2.541323  4.977743 -15.49627
## FBgn0000212     FBgn0000212              brm -3.987694 10.532912 -15.32840
## FBgn0010389     FBgn0010389              htl -4.392536  6.156398 -14.89474
## FBgn0033374     FBgn0033374          CG13741  2.605077  2.141350  14.84059
##                  P.Value    adj.P.Val        B
## FBgn0261451 2.952900e-12 2.835079e-08 18.33891
## FBgn0036368 8.570763e-12 2.847283e-08 17.18653
## FBgn0038299 8.896834e-12 2.847283e-08 16.96664
## FBgn0085446 2.451053e-11 5.883140e-08 16.33782
## FBgn0040091 4.185306e-11 6.697187e-08 15.85515
## FBgn0041183 3.961334e-11 6.697187e-08 15.77803
## FBgn0060296 8.405629e-11 1.152892e-07 15.04428
## FBgn0000212 9.844380e-11 1.181449e-07 15.00272
## FBgn0010389 1.491295e-10 1.496074e-07 14.55136
## FBgn0033374 1.571843e-10 1.496074e-07 14.49015
volcanoplot(fit.empty_dsBrm.vs.YN_dsGFP, highlight = 10, names = fit.empty_dsBrm.vs.YN_dsGFP$genes[,2], main = "empty_dsBrm vs YN_dsGFP")

write.fit(fit.empty_dsBrm.vs.YN_dsGFP , results = results.fit.empty_dsBrm.vs.YN_dsGFP , file="empty_dsBrm_vs_YN_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsBrm vs YN_dsBrm
empty_dsBrm.vs.YN_dsBrm <- makeContrasts(empty_dsBrm - YN_dsBrm, levels = des) 
fit.empty_dsBrm.vs.YN_dsBrm <- contrasts.fit(fit, empty_dsBrm.vs.YN_dsBrm)
fit.empty_dsBrm.vs.YN_dsBrm <- eBayes(fit.empty_dsBrm.vs.YN_dsBrm)
fit.empty_dsBrm.vs.YN_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.YN_dsBrm <- decideTests(fit.empty_dsBrm.vs.YN_dsBrm) 
table(results.fit.empty_dsBrm.vs.YN_dsBrm)
## results.fit.empty_dsBrm.vs.YN_dsBrm
##   -1    0    1 
##  545 8456  600
topTable(fit.empty_dsBrm.vs.YN_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0261451     FBgn0261451             trol -4.718045 8.436969 -19.93372
## FBgn0036368     FBgn0036368          CG10738 -3.827916 4.304201 -19.18064
## FBgn0060296     FBgn0060296             pain -2.853910 4.977743 -17.33337
## FBgn0040091     FBgn0040091          Ugt58Fa -2.502999 8.240297 -16.66277
## FBgn0038299     FBgn0038299          Spn88Eb  5.264400 3.644801  16.97007
## FBgn0085446     FBgn0085446          CG34417  3.636031 5.274943  15.56570
## FBgn0010389     FBgn0010389              htl -4.582634 6.156398 -15.59795
## FBgn0041183     FBgn0041183             TepI  3.888870 3.487013  15.58918
## FBgn0260011     FBgn0260011            nimC4 -4.302937 7.769583 -15.28813
## FBgn0034438     FBgn0034438           CG9416 -3.997675 8.658978 -14.86558
##                  P.Value    adj.P.Val        B
## FBgn0261451 2.078167e-12 1.765828e-08 18.63440
## FBgn0036368 3.678425e-12 1.765828e-08 17.88652
## FBgn0060296 1.637449e-11 5.240381e-08 16.49690
## FBgn0040091 2.919272e-11 5.605585e-08 16.20071
## FBgn0038299 2.234054e-11 5.362287e-08 15.70281
## FBgn0085446 7.877417e-11 9.453885e-08 15.18541
## FBgn0010389 7.644129e-11 9.453885e-08 15.16467
## FBgn0041183 7.706854e-11 9.453885e-08 15.01327
## FBgn0260011 1.022693e-10 1.090986e-07 14.94566
## FBgn0034438 1.534114e-10 1.472903e-07 14.56887
volcanoplot(fit.empty_dsBrm.vs.YN_dsBrm, highlight = 10, names = fit.empty_dsBrm.vs.YN_dsBrm$genes[,2], main = "empty_dsBrm vs YN_dsBrm")

write.fit(fit.empty_dsBrm.vs.YN_dsBrm , results = results.fit.empty_dsBrm.vs.YN_dsBrm , file="empty_dsBrm_vs_YN_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast empty_dsBrm vs YN_dsBrm_100
empty_dsBrm.vs.YN_dsBrm_100 <- makeContrasts(empty_dsBrm - YN_dsBrm_100, levels = des) 
fit.empty_dsBrm.vs.YN_dsBrm_100 <- contrasts.fit(fit, empty_dsBrm.vs.YN_dsBrm_100)
fit.empty_dsBrm.vs.YN_dsBrm_100 <- eBayes(fit.empty_dsBrm.vs.YN_dsBrm_100)
fit.empty_dsBrm.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.empty_dsBrm.vs.YN_dsBrm_100 <- decideTests(fit.empty_dsBrm.vs.YN_dsBrm_100) 
table(results.fit.empty_dsBrm.vs.YN_dsBrm_100)
## results.fit.empty_dsBrm.vs.YN_dsBrm_100
##   -1    0    1 
## 1381 6950 1270
topTable(fit.empty_dsBrm.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0000212     FBgn0000212              brm -7.412060 10.532912 -25.94467
## FBgn0035763     FBgn0035763           CG8602 -2.957038  9.088558 -18.33994
## FBgn0060296     FBgn0060296             pain -2.628453  4.977743 -15.89014
## FBgn0040091     FBgn0040091          Ugt58Fa -2.328580  8.240297 -15.59627
## FBgn0038299     FBgn0038299          Spn88Eb  3.477954  3.644801  15.43320
## FBgn0085446     FBgn0085446          CG34417  3.510251  5.274943  15.31540
## FBgn0033374     FBgn0033374          CG13741  3.106360  2.141350  15.23863
## FBgn0261451     FBgn0261451             trol -3.260204  8.436969 -14.34764
## FBgn0003231     FBgn0003231          ref(2)P -2.558977  8.521526 -14.31482
## FBgn0036368     FBgn0036368          CG10738 -2.891812  4.304201 -14.41046
##                  P.Value    adj.P.Val        B
## FBgn0000212 4.025736e-14 3.865109e-10 21.81769
## FBgn0035763 7.134409e-12 3.424873e-08 17.50692
## FBgn0060296 5.836280e-11 1.286406e-07 15.30288
## FBgn0040091 7.656130e-11 1.286406e-07 15.25413
## FBgn0038299 8.918115e-11 1.286406e-07 14.96880
## FBgn0085446 9.966162e-11 1.286406e-07 14.95453
## FBgn0033374 1.071893e-10 1.286406e-07 14.64271
## FBgn0261451 2.557490e-10 2.306955e-07 14.06143
## FBgn0003231 2.643111e-10 2.306955e-07 14.03208
## FBgn0036368 2.401745e-10 2.306955e-07 14.03022
volcanoplot(fit.empty_dsBrm.vs.YN_dsBrm_100, highlight = 10, names = fit.empty_dsBrm.vs.YN_dsBrm_100$genes[,2], main = "empty_dsBrm vs YN_dsBrm_100")

write.fit(fit.empty_dsBrm.vs.YN_dsBrm_100 , results = results.fit.empty_dsBrm.vs.YN_dsBrm_100, file = "empty_dsBrm_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file
# contrast WT_dsGFP vs WT_dsBrm
WT_dsGFP.vs.WT_dsBrm <- makeContrasts(WT_dsGFP - WT_dsBrm, levels = des) 
fit.WT_dsGFP.vs.WT_dsBrm <- contrasts.fit(fit, WT_dsGFP.vs.WT_dsBrm)
fit.WT_dsGFP.vs.WT_dsBrm <- eBayes(fit.WT_dsGFP.vs.WT_dsBrm)
fit.WT_dsGFP.vs.WT_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsGFP.vs.WT_dsBrm <- decideTests(fit.WT_dsGFP.vs.WT_dsBrm) 
table(results.fit.WT_dsGFP.vs.WT_dsBrm)
## results.fit.WT_dsGFP.vs.WT_dsBrm
##   -1    0 
##    3 9598
topTable(fit.WT_dsGFP.vs.WT_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id      logFC    AveExpr
## FBgn0051361     FBgn0051361            dpr17 -1.1628780  5.6517414
## FBgn0030332     FBgn0030332           CG9360 -1.4490027  4.8311070
## FBgn0259715     FBgn0259715          CG42369 -2.2638820  3.7240859
## FBgn0001089     FBgn0001089              Gal -1.8930300  3.6688653
## FBgn0028985     FBgn0028985             Spn4 -0.8232741  7.0166994
## FBgn0003319     FBgn0003319               Sb -2.1482146 -0.5706676
## FBgn0083959     FBgn0083959             trpm -0.6716413  7.8503244
## FBgn0014163     FBgn0014163              fax  0.9160993  8.6853082
## FBgn0050323     FBgn0050323          CG30323 -1.0172569  5.4612285
## FBgn0027929     FBgn0027929            nimB1 -1.6056953  2.8396444
##                     t      P.Value    adj.P.Val        B
## FBgn0051361 -9.814923 5.074296e-08 0.0004871832 8.699161
## FBgn0030332 -6.732507 5.890185e-06 0.0282758336 4.210743
## FBgn0259715 -6.372453 1.111369e-05 0.0355675112 3.603429
## FBgn0001089 -5.899694 2.628090e-05 0.0630807321 2.718084
## FBgn0028985 -5.474002 5.854342e-05 0.0802964757 2.002353
## FBgn0003319 -5.572588 4.852773e-05 0.0802964757 1.846502
## FBgn0083959 -5.352215 7.394406e-05 0.0816299582 1.775025
## FBgn0014163  5.334440 7.652011e-05 0.0816299582 1.766296
## FBgn0050323 -5.196991 9.985428e-05 0.0948568344 1.516480
## FBgn0027929 -5.032118 1.378352e-04 0.0971903120 1.237865
volcanoplot(fit.WT_dsGFP.vs.WT_dsBrm, highlight = 10, names = fit.WT_dsGFP.vs.WT_dsBrm$genes[,2], main = "WT_dsGFP vs WT_dsBrm")

write.fit(fit.WT_dsGFP.vs.WT_dsBrm , results = results.fit.WT_dsGFP.vs.WT_dsBrm , file="WT_dsGFP_vs_WT_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsGFP vs WT_dsBrm_100
WT_dsGFP.vs.WT_dsBrm_100 <- makeContrasts(WT_dsGFP - WT_dsBrm_100, levels = des) 
fit.WT_dsGFP.vs.WT_dsBrm_100 <- contrasts.fit(fit, WT_dsGFP.vs.WT_dsBrm_100)
fit.WT_dsGFP.vs.WT_dsBrm_100 <- eBayes(fit.WT_dsGFP.vs.WT_dsBrm_100)
fit.WT_dsGFP.vs.WT_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsGFP.vs.WT_dsBrm_100 <- decideTests(fit.WT_dsGFP.vs.WT_dsBrm_100) 
table(results.fit.WT_dsGFP.vs.WT_dsBrm_100)
## results.fit.WT_dsGFP.vs.WT_dsBrm_100
##   -1    0    1 
##  656 8669  276
topTable(fit.WT_dsGFP.vs.WT_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0003231     FBgn0003231          ref(2)P -2.293445  8.5215263
## FBgn0053192     FBgn0053192             MtnD -9.998707 -0.6745924
## FBgn0000212     FBgn0000212              brm -3.312789 10.5329124
## FBgn0037750     FBgn0037750            Whamy -4.470245  4.1745421
## FBgn0053462     FBgn0053462          CG33462 -2.823511  7.2315289
## FBgn0040260     FBgn0040260          Ugt36Bc -3.471470  2.9430625
## FBgn0010041     FBgn0010041            GstD5 -3.377748  7.4410796
## FBgn0042106     FBgn0042106          CG18754 -4.867774  2.8874345
## FBgn0005660     FBgn0005660           Ets21C -2.160937  4.3591115
## FBgn0028516     FBgn0028516           ZnT35C -8.409795 -1.8247788
##                      t      P.Value    adj.P.Val         B
## FBgn0003231 -12.660485 1.521106e-09 7.302071e-06 12.296409
## FBgn0053192 -16.620858 3.028810e-11 2.907960e-07 11.101693
## FBgn0000212 -10.766906 1.448627e-08 3.177880e-05 10.078582
## FBgn0037750 -10.542329 1.931799e-08 3.177880e-05  9.789946
## FBgn0053462 -10.520944 1.985968e-08 3.177880e-05  9.713021
## FBgn0040260  -9.834191 4.942757e-08 5.272824e-05  8.874122
## FBgn0010041  -9.878793 4.651878e-08 5.272824e-05  8.839304
## FBgn0042106  -9.863942 4.746673e-08 5.272824e-05  8.568102
## FBgn0005660  -9.448603 8.422525e-08 8.086466e-05  8.331365
## FBgn0028516 -11.539627 5.570991e-09 1.782903e-05  8.199299
volcanoplot(fit.WT_dsGFP.vs.WT_dsBrm_100, highlight = 10, names = fit.WT_dsGFP.vs.WT_dsBrm_100$genes[,2], main = "WT_dsGFP vs WT_dsBrm_100")

write.fit(fit.WT_dsGFP.vs.WT_dsBrm_100 , results = results.fit.WT_dsGFP.vs.WT_dsBrm_100 , file="WT_dsGFP_vs_WT_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsGFP vs K804R_dsGFP
WT_dsGFP.vs.K804R_dsGFP <- makeContrasts(WT_dsGFP - K804R_dsGFP, levels = des) 
fit.WT_dsGFP.vs.K804R_dsGFP <- contrasts.fit(fit, WT_dsGFP.vs.K804R_dsGFP)
fit.WT_dsGFP.vs.K804R_dsGFP <- eBayes(fit.WT_dsGFP.vs.K804R_dsGFP)
fit.WT_dsGFP.vs.K804R_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsGFP.vs.K804R_dsGFP <- decideTests(fit.WT_dsGFP.vs.K804R_dsGFP) 
table(results.fit.WT_dsGFP.vs.K804R_dsGFP)
## results.fit.WT_dsGFP.vs.K804R_dsGFP
##   -1    0    1 
##  292 9095  214
topTable(fit.WT_dsGFP.vs.K804R_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0086251     FBgn0086251              del -2.859810 6.648684 -14.29144
## FBgn0263041     FBgn0263041          CG43336 -4.066900 3.702348 -14.45890
## FBgn0036368     FBgn0036368          CG10738  5.613905 4.304201  14.81655
## FBgn0052207     FBgn0052207          CR32207 -3.643306 3.297262 -13.64020
## FBgn0261673     FBgn0261673             nemy -2.388745 6.498878 -12.99920
## FBgn0051361     FBgn0051361            dpr17  1.690615 5.651741  12.87240
## FBgn0034139     FBgn0034139           CG4927 -3.084744 3.472933 -12.71088
## FBgn0050090     FBgn0050090          CG30090 -2.951461 5.714388 -12.19476
## FBgn0053462     FBgn0053462          CG33462 -3.244070 7.231529 -12.01037
## FBgn0259896     FBgn0259896            nimC1  5.149448 4.568158  11.32005
##                  P.Value    adj.P.Val        B
## FBgn0086251 2.705938e-10 8.659904e-07 14.00884
## FBgn0263041 2.288508e-10 8.659904e-07 13.89729
## FBgn0036368 1.609071e-10 8.659904e-07 13.44793
## FBgn0052207 5.278343e-10 1.266934e-06 13.02222
## FBgn0261673 1.046994e-09 1.924939e-06 12.66011
## FBgn0051361 1.202961e-09 1.924939e-06 12.51843
## FBgn0034139 1.438120e-09 1.972484e-06 12.28991
## FBgn0050090 2.577623e-09 3.093470e-06 11.77975
## FBgn0053462 3.190906e-09 3.403988e-06 11.53531
## FBgn0259896 7.270398e-09 5.569653e-06 10.72360
volcanoplot(fit.WT_dsGFP.vs.K804R_dsGFP, highlight = 10, names = fit.WT_dsGFP.vs.K804R_dsGFP$genes[,2], main = "WT_dsGFP vs K804R_dsGFP")

write.fit(fit.WT_dsGFP.vs.K804R_dsGFP , results = results.fit.WT_dsGFP.vs.K804R_dsGFP , file="WT_dsGFP_vs_K804R_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsGFP vs K804R_dsBrm
WT_dsGFP.vs.K804R_dsBrm <- makeContrasts(WT_dsGFP - K804R_dsBrm, levels = des) 
fit.WT_dsGFP.vs.K804R_dsBrm <- contrasts.fit(fit, WT_dsGFP.vs.K804R_dsBrm)
fit.WT_dsGFP.vs.K804R_dsBrm <- eBayes(fit.WT_dsGFP.vs.K804R_dsBrm)
fit.WT_dsGFP.vs.K804R_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsGFP.vs.K804R_dsBrm <- decideTests(fit.WT_dsGFP.vs.K804R_dsBrm) 
table(results.fit.WT_dsGFP.vs.K804R_dsBrm)
## results.fit.WT_dsGFP.vs.K804R_dsBrm
##   -1    0    1 
##  415 8836  350
topTable(fit.WT_dsGFP.vs.K804R_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0263041     FBgn0263041          CG43336 -4.277276  3.702348 -15.29190
## FBgn0030596     FBgn0030596          CG12398  4.165383  4.245533  14.49582
## FBgn0036368     FBgn0036368          CG10738  5.526149  4.304201  15.42192
## FBgn0050090     FBgn0050090          CG30090 -3.362595  5.714388 -13.91881
## FBgn0000212     FBgn0000212              brm  3.498311 10.532912  13.73255
## FBgn0053462     FBgn0053462          CG33462 -3.765139  7.231529 -13.68149
## FBgn0052207     FBgn0052207          CR32207 -3.602684  3.297262 -13.55672
## FBgn0034139     FBgn0034139           CG4927 -3.190312  3.472933 -13.27019
## FBgn0086251     FBgn0086251              del -2.604826  6.648684 -13.02441
## FBgn0031470     FBgn0031470          CG18557 -2.337607  7.706933 -11.94797
##                  P.Value    adj.P.Val        B
## FBgn0263041 1.019049e-10 4.891946e-07 14.58150
## FBgn0030596 2.206008e-10 7.059961e-07 14.01734
## FBgn0036368 9.013231e-11 4.891946e-07 13.98216
## FBgn0050090 3.952989e-10 7.902621e-07 13.62574
## FBgn0000212 4.793267e-10 7.902621e-07 13.44398
## FBgn0053462 5.055334e-10 7.902621e-07 13.39211
## FBgn0052207 5.761728e-10 7.902621e-07 12.91101
## FBgn0034139 7.810982e-10 9.374155e-07 12.85199
## FBgn0086251 1.018626e-09 1.086648e-06 12.68600
## FBgn0031470 3.431970e-09 3.295034e-06 11.44788
volcanoplot(fit.WT_dsGFP.vs.K804R_dsBrm, highlight = 10, names = fit.WT_dsGFP.vs.K804R_dsBrm$genes[,2], main = "WT_dsGFP vs K804R_dsBrm")

write.fit(fit.WT_dsGFP.vs.K804R_dsBrm , results = results.fit.WT_dsGFP.vs.K804R_dsBrm , file="WT_dsGFP_vs_K804R_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsGFP vs K804R_dsBrm_100
WT_dsGFP.vs.K804R_dsBrm_100 <- makeContrasts(WT_dsGFP - K804R_dsBrm_100, levels = des) 
fit.WT_dsGFP.vs.K804R_dsBrm_100 <- contrasts.fit(fit, WT_dsGFP.vs.K804R_dsBrm_100)
fit.WT_dsGFP.vs.K804R_dsBrm_100 <- eBayes(fit.WT_dsGFP.vs.K804R_dsBrm_100)
fit.WT_dsGFP.vs.K804R_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsGFP.vs.K804R_dsBrm_100 <- decideTests(fit.WT_dsGFP.vs.K804R_dsBrm_100) 
table(results.fit.WT_dsGFP.vs.K804R_dsBrm_100)
## results.fit.WT_dsGFP.vs.K804R_dsBrm_100
##   -1    0    1 
##  734 8366  501
topTable(fit.WT_dsGFP.vs.K804R_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0050090     FBgn0050090          CG30090 -4.081250 5.714388 -16.79433
## FBgn0053462     FBgn0053462          CG33462 -4.510629 7.231529 -16.09919
## FBgn0263041     FBgn0263041          CG43336 -4.261842 3.702348 -15.21125
## FBgn0036368     FBgn0036368          CG10738  4.656788 4.304201  15.05780
## FBgn0030596     FBgn0030596          CG12398  3.959030 4.245533  14.11033
## FBgn0052207     FBgn0052207          CR32207 -3.805681 3.297262 -14.35523
## FBgn0020269     FBgn0020269             mspo -2.548623 5.504223 -13.73911
## FBgn0052626     FBgn0052626          CG32626 -1.779458 8.488482 -12.79552
## FBgn0031470     FBgn0031470          CG18557 -2.491755 7.706933 -12.70690
## FBgn0086251     FBgn0086251              del -2.527504 6.648684 -12.66256
##                  P.Value    adj.P.Val        B
## FBgn0050090 2.601955e-11 2.316038e-07 16.23630
## FBgn0053462 4.824577e-11 2.316038e-07 15.70009
## FBgn0263041 1.100180e-10 2.446536e-07 14.51274
## FBgn0036368 1.274105e-10 2.446536e-07 14.10832
## FBgn0030596 3.249776e-10 4.457299e-07 13.68474
## FBgn0052207 2.538127e-10 4.061426e-07 13.63190
## FBgn0020269 4.760641e-10 5.713364e-07 13.45254
## FBgn0052626 1.309351e-09 1.214200e-06 12.42929
## FBgn0031470 1.444497e-09 1.214200e-06 12.32425
## FBgn0086251 1.517591e-09 1.214200e-06 12.28462
volcanoplot(fit.WT_dsGFP.vs.K804R_dsBrm_100, highlight = 10, names = fit.WT_dsGFP.vs.K804R_dsBrm_100$genes[,2], main = "WT_dsGFP vs K804R_dsBrm_100")

write.fit(fit.WT_dsGFP.vs.K804R_dsBrm_100 , results = results.fit.WT_dsGFP.vs.K804R_dsBrm_100 , file="WT_dsGFP_vs_K804R_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsGFP vs YN_dsGFP
WT_dsGFP.vs.YN_dsGFP <- makeContrasts(WT_dsGFP - YN_dsGFP, levels = des) 
fit.WT_dsGFP.vs.YN_dsGFP <- contrasts.fit(fit, WT_dsGFP.vs.YN_dsGFP)
fit.WT_dsGFP.vs.YN_dsGFP <- eBayes(fit.WT_dsGFP.vs.YN_dsGFP)
fit.WT_dsGFP.vs.YN_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsGFP.vs.YN_dsGFP <- decideTests(fit.WT_dsGFP.vs.YN_dsGFP) 
table(results.fit.WT_dsGFP.vs.YN_dsGFP)
## results.fit.WT_dsGFP.vs.YN_dsGFP
##   -1    0    1 
##  146 9287  168
topTable(fit.WT_dsGFP.vs.YN_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr
## FBgn0261673     FBgn0261673             nemy -2.268099  6.498878
## FBgn0060296     FBgn0060296             pain -1.691117  4.977743
## FBgn0261089     FBgn0261089         Sytalpha  3.598308  4.150789
## FBgn0031327     FBgn0031327           CG5397 -2.722804  3.658995
## FBgn0051361     FBgn0051361            dpr17  1.331277  5.651741
## FBgn0033374     FBgn0033374          CG13741 -5.042175  2.141350
## FBgn0052206     FBgn0052206          CG32206  2.628444  3.700089
## FBgn0028491     FBgn0028491           CG2930  1.478370  7.447522
## FBgn0053630     FBgn0053630          CG33630  6.741226 -1.505934
## FBgn0036368     FBgn0036368          CG10738 -1.456382  4.304201
##                      t      P.Value    adj.P.Val         B
## FBgn0261673 -12.344885 2.170718e-09 8.628522e-06 11.925365
## FBgn0060296 -12.211111 2.529630e-09 8.628522e-06 11.786440
## FBgn0261089  11.828547 3.948773e-09 8.628522e-06 11.353404
## FBgn0031327 -11.784404 4.160122e-09 8.628522e-06 11.278687
## FBgn0051361  10.738807 1.501363e-08 1.630317e-05  9.933732
## FBgn0033374 -11.077483 9.803846e-09 1.568779e-05  9.424550
## FBgn0052206   9.958996 4.173356e-08 3.124792e-05  9.036613
## FBgn0028491   9.948825 4.231049e-08 3.124792e-05  8.852938
## FBgn0053630  11.719375 4.493554e-09 8.628522e-06  8.660556
## FBgn0036368  -9.713551 5.829920e-08 3.998076e-05  8.529238
volcanoplot(fit.WT_dsGFP.vs.YN_dsGFP, highlight = 10, names = fit.WT_dsGFP.vs.YN_dsGFP$genes[,2], main = "WT_dsGFP vs YN_dsGFP")

write.fit(fit.WT_dsGFP.vs.YN_dsGFP , results = results.fit.WT_dsGFP.vs.YN_dsGFP , file="WT_dsGFP_vs_YN_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsGFP vs YN_dsBrm
WT_dsGFP.vs.YN_dsBrm <- makeContrasts(WT_dsGFP - YN_dsBrm, levels = des) 
fit.WT_dsGFP.vs.YN_dsBrm <- contrasts.fit(fit, WT_dsGFP.vs.YN_dsBrm)
fit.WT_dsGFP.vs.YN_dsBrm <- eBayes(fit.WT_dsGFP.vs.YN_dsBrm)
fit.WT_dsGFP.vs.YN_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsGFP.vs.YN_dsBrm <- decideTests(fit.WT_dsGFP.vs.YN_dsBrm) 
table(results.fit.WT_dsGFP.vs.YN_dsBrm)
## results.fit.WT_dsGFP.vs.YN_dsBrm
##   -1    0    1 
##  268 9093  240
topTable(fit.WT_dsGFP.vs.YN_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr
## FBgn0060296     FBgn0060296             pain -2.003704  4.977743
## FBgn0031327     FBgn0031327           CG5397 -3.003205  3.658995
## FBgn0030596     FBgn0030596          CG12398  3.334857  4.245533
## FBgn0261673     FBgn0261673             nemy -2.301942  6.498878
## FBgn0036368     FBgn0036368          CG10738 -1.672239  4.304201
## FBgn0261089     FBgn0261089         Sytalpha  3.551268  4.150789
## FBgn0001114     FBgn0001114              Glt  2.634787 10.599846
## FBgn0033374     FBgn0033374          CG13741 -4.796072  2.141350
## FBgn0052206     FBgn0052206          CG32206  2.816228  3.700089
## FBgn0028491     FBgn0028491           CG2930  1.438272  7.447522
##                      t      P.Value    adj.P.Val         B
## FBgn0060296 -14.388001 2.456234e-10 2.358230e-06 14.103744
## FBgn0031327 -12.978278 1.071174e-09 4.461144e-06 12.645791
## FBgn0030596  12.530323 1.759803e-09 4.461144e-06 12.126854
## FBgn0261673 -12.481827 1.858617e-09 4.461144e-06 12.089097
## FBgn0036368 -11.137816 9.096899e-09 1.718795e-05 10.446261
## FBgn0261089  10.792723 1.401900e-08 1.922806e-05 10.102650
## FBgn0001114  10.478875 2.097272e-08 2.516989e-05  9.663186
## FBgn0033374 -10.351271 2.477075e-08 2.642489e-05  8.592764
## FBgn0052206   9.515447 7.670542e-08 4.657182e-05  8.443429
## FBgn0028491   9.607713 6.746869e-08 4.657182e-05  8.394181
volcanoplot(fit.WT_dsGFP.vs.YN_dsBrm, highlight = 10, names = fit.WT_dsGFP.vs.YN_dsBrm$genes[,2], main = "WT_dsGFP vs YN_dsBrm")

write.fit(fit.WT_dsGFP.vs.YN_dsBrm , results = results.fit.WT_dsGFP.vs.YN_dsBrm , file="WT_dsGFP_vs_YN_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsGFP vs YN_dsBrm_100
WT_dsGFP.vs.YN_dsBrm_100 <- makeContrasts(WT_dsGFP - YN_dsBrm_100, levels = des) 
fit.WT_dsGFP.vs.YN_dsBrm_100 <- contrasts.fit(fit, WT_dsGFP.vs.YN_dsBrm_100)
fit.WT_dsGFP.vs.YN_dsBrm_100 <- eBayes(fit.WT_dsGFP.vs.YN_dsBrm_100)
fit.WT_dsGFP.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsGFP.vs.YN_dsBrm_100 <- decideTests(fit.WT_dsGFP.vs.YN_dsBrm_100) 
table(results.fit.WT_dsGFP.vs.YN_dsBrm_100)
## results.fit.WT_dsGFP.vs.YN_dsBrm_100
##   -1    0    1 
## 1317 7390  894
topTable(fit.WT_dsGFP.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0261673     FBgn0261673             nemy -2.469523  6.498878 -13.42050
## FBgn0003231     FBgn0003231          ref(2)P -2.396247  8.521526 -13.29526
## FBgn0053462     FBgn0053462          CG33462 -3.529354  7.231529 -13.02801
## FBgn0010041     FBgn0010041            GstD5 -4.480750  7.441080 -12.76402
## FBgn0000212     FBgn0000212              brm -3.910366 10.532912 -12.70909
## FBgn0060296     FBgn0060296             pain -1.778247  4.977743 -12.68666
## FBgn0030596     FBgn0030596          CG12398  3.482117  4.245533  12.71624
## FBgn0035996     FBgn0035996           CG3448 -1.946589  4.273045 -12.01645
## FBgn0035868     FBgn0035868           CG7194 -4.059683  5.369298 -11.79196
## FBgn0001114     FBgn0001114              Glt  2.898145 10.599846  11.59841
##                  P.Value    adj.P.Val        B
## FBgn0261673 6.653985e-10 1.773056e-06 13.12094
## FBgn0003231 7.604127e-10 1.773056e-06 12.98842
## FBgn0053462 1.014638e-09 1.773056e-06 12.70316
## FBgn0010041 1.355784e-09 1.773056e-06 12.41484
## FBgn0000212 1.440984e-09 1.773056e-06 12.33741
## FBgn0060296 1.477393e-09 1.773056e-06 12.33151
## FBgn0030596 1.429581e-09 1.773056e-06 12.26416
## FBgn0035996 3.168398e-09 3.379976e-06 11.57672
## FBgn0035868 4.123120e-09 3.951378e-06 11.31828
## FBgn0001114 5.191297e-09 3.951378e-06 11.08555
volcanoplot(fit.WT_dsGFP.vs.YN_dsBrm_100, highlight = 10, names = fit.WT_dsGFP.vs.YN_dsBrm_100$genes[,2], main = "WT_dsGFP vs YN_dsBrm_100")

write.fit(fit.WT_dsGFP.vs.YN_dsBrm_100 , results = results.fit.WT_dsGFP.vs.YN_dsBrm_100, file = "WT_dsGFP_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file
# contrast WT_dsBrm vs WT_dsBrm_100
WT_dsBrm.vs.WT_dsBrm_100 <- makeContrasts(WT_dsBrm - WT_dsBrm_100, levels = des) 
fit.WT_dsBrm.vs.WT_dsBrm_100 <- contrasts.fit(fit, WT_dsBrm.vs.WT_dsBrm_100)
fit.WT_dsBrm.vs.WT_dsBrm_100 <- eBayes(fit.WT_dsBrm.vs.WT_dsBrm_100)
fit.WT_dsBrm.vs.WT_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm.vs.WT_dsBrm_100 <- decideTests(fit.WT_dsBrm.vs.WT_dsBrm_100) 
table(results.fit.WT_dsBrm.vs.WT_dsBrm_100)
## results.fit.WT_dsBrm.vs.WT_dsBrm_100
##   -1    0    1 
##  636 8677  288
topTable(fit.WT_dsBrm.vs.WT_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0000212     FBgn0000212              brm -4.238685 10.5329124
## FBgn0053192     FBgn0053192             MtnD -8.655070 -0.6745924
## FBgn0003231     FBgn0003231          ref(2)P -2.143773  8.5215263
## FBgn0051361     FBgn0051361            dpr17  1.251866  5.6517414
## FBgn0037750     FBgn0037750            Whamy -3.659782  4.1745421
## FBgn0040260     FBgn0040260          Ugt36Bc -3.500956  2.9430625
## FBgn0031589     FBgn0031589           CG3714 -1.457274  7.1548585
## FBgn0042106     FBgn0042106          CG18754 -3.597500  2.8874345
## FBgn0028516     FBgn0028516           ZnT35C -7.529289 -1.8247788
## FBgn0035904     FBgn0035904           CG6776 -2.057723  7.2038795
##                      t      P.Value    adj.P.Val         B
## FBgn0000212 -14.134882 3.169696e-10 1.521612e-06 13.763677
## FBgn0053192 -17.039792 2.103763e-11 2.019822e-07 11.889052
## FBgn0003231 -11.828428 3.949327e-09 1.263916e-05 11.356863
## FBgn0051361  10.542641 1.931019e-08 3.707943e-05  9.738498
## FBgn0037750  -9.720582 5.773860e-08 8.843375e-05  8.721793
## FBgn0040260  -9.640492 6.447623e-08 8.843375e-05  8.599475
## FBgn0031589  -9.034895 1.518916e-07 1.553119e-04  7.647276
## FBgn0042106  -8.947836 1.723769e-07 1.553119e-04  7.545238
## FBgn0028516 -10.830223 1.336842e-08 3.208755e-05  7.495148
## FBgn0035904  -8.827465 2.056207e-07 1.553119e-04  7.346980
volcanoplot(fit.WT_dsBrm.vs.WT_dsBrm_100, highlight = 10, names = fit.WT_dsBrm.vs.WT_dsBrm_100$genes[,2], main = "WT_dsBrm vs WT_dsBrm_100")

write.fit(fit.WT_dsBrm.vs.WT_dsBrm_100 , results = results.fit.WT_dsBrm.vs.WT_dsBrm_100 , file="WT_dsBrm_vs_WT_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm vs K804R_dsGFP
WT_dsBrm.vs.K804R_dsGFP <- makeContrasts(WT_dsBrm - K804R_dsGFP, levels = des) 
fit.WT_dsBrm.vs.K804R_dsGFP <- contrasts.fit(fit, WT_dsBrm.vs.K804R_dsGFP)
fit.WT_dsBrm.vs.K804R_dsGFP <- eBayes(fit.WT_dsBrm.vs.K804R_dsGFP)
fit.WT_dsBrm.vs.K804R_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm.vs.K804R_dsGFP <- decideTests(fit.WT_dsBrm.vs.K804R_dsGFP) 
table(results.fit.WT_dsBrm.vs.K804R_dsGFP)
## results.fit.WT_dsBrm.vs.K804R_dsGFP
##   -1    0    1 
##  355 8930  316
topTable(fit.WT_dsBrm.vs.K804R_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0051361     FBgn0051361            dpr17  2.853493 5.651741  21.66417
## FBgn0261673     FBgn0261673             nemy -2.913145 6.498878 -14.57741
## FBgn0036368     FBgn0036368          CG10738  5.935277 4.304201  15.68624
## FBgn0086251     FBgn0086251              del -2.945597 6.648684 -14.38918
## FBgn0263041     FBgn0263041          CG43336 -3.612936 3.702348 -13.65563
## FBgn0052207     FBgn0052207          CR32207 -3.333527 3.297262 -12.90927
## FBgn0033724     FBgn0033724           CG8501  3.798040 7.129524  12.71624
## FBgn0052626     FBgn0052626          CG32626 -1.666198 8.488482 -12.20645
## FBgn0035608     FBgn0035608           blanks -3.395542 5.798946 -11.98711
## FBgn0259896     FBgn0259896            nimC1  5.365205 4.568158  11.79182
##                  P.Value    adj.P.Val        B
## FBgn0051361 6.017368e-13 5.777275e-09 19.93848
## FBgn0261673 2.034687e-10 5.888635e-07 14.29248
## FBgn0036368 7.042279e-11 3.380646e-07 14.18441
## FBgn0086251 2.453343e-10 5.888635e-07 14.10578
## FBgn0263041 5.193828e-10 9.973188e-07 13.24519
## FBgn0052207 1.155216e-09 1.848538e-06 12.39659
## FBgn0033724 1.429579e-09 1.960770e-06 12.34317
## FBgn0052626 2.543210e-09 3.052170e-06 11.73083
## FBgn0035608 3.278588e-09 3.497525e-06 11.53338
## FBgn0259896 4.123773e-09 3.599304e-06 11.27839
volcanoplot(fit.WT_dsBrm.vs.K804R_dsGFP, highlight = 10, names = fit.WT_dsBrm.vs.K804R_dsGFP$genes[,2], main = "WT_dsBrm vs K804R_dsGFP")

write.fit(fit.WT_dsBrm.vs.K804R_dsGFP , results = results.fit.WT_dsBrm.vs.K804R_dsGFP , file="WT_dsBrm_vs_K804R_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm vs K804R_dsBrm
WT_dsBrm.vs.K804R_dsBrm <- makeContrasts(WT_dsBrm - K804R_dsBrm, levels = des) 
fit.WT_dsBrm.vs.K804R_dsBrm <- contrasts.fit(fit, WT_dsBrm.vs.K804R_dsBrm)
fit.WT_dsBrm.vs.K804R_dsBrm <- eBayes(fit.WT_dsBrm.vs.K804R_dsBrm)
fit.WT_dsBrm.vs.K804R_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm.vs.K804R_dsBrm <- decideTests(fit.WT_dsBrm.vs.K804R_dsBrm) 
table(results.fit.WT_dsBrm.vs.K804R_dsBrm)
## results.fit.WT_dsBrm.vs.K804R_dsBrm
##   -1    0    1 
##  251 9088  262
topTable(fit.WT_dsBrm.vs.K804R_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0051361     FBgn0051361            dpr17  2.579536 5.651741  20.53532
## FBgn0036368     FBgn0036368          CG10738  5.847521 4.304201  16.34383
## FBgn0263041     FBgn0263041          CG43336 -3.823312 3.702348 -14.54223
## FBgn0086251     FBgn0086251              del -2.690613 6.648684 -13.15054
## FBgn0050090     FBgn0050090          CG30090 -3.073519 5.714388 -13.02625
## FBgn0052207     FBgn0052207          CR32207 -3.292905 3.297262 -12.82139
## FBgn0259896     FBgn0259896            nimC1  5.559806 4.568158  12.25589
## FBgn0030596     FBgn0030596          CG12398  3.370657 4.245533  11.54311
## FBgn0053462     FBgn0053462          CG33462 -3.015539 7.231529 -11.53169
## FBgn0033724     FBgn0033724           CG8501  3.201126 7.129524  11.47615
##                  P.Value    adj.P.Val        B
## FBgn0051361 1.335855e-12 1.282554e-08 19.21317
## FBgn0036368 3.871876e-11 1.858694e-07 14.79068
## FBgn0263041 2.106779e-10 6.742394e-07 14.07702
## FBgn0086251 8.884058e-10 1.952035e-06 12.81771
## FBgn0050090 1.016579e-09 1.952035e-06 12.70079
## FBgn0052207 1.272482e-09 2.036183e-06 12.30319
## FBgn0259896 2.402956e-09 3.295826e-06 11.78875
## FBgn0030596 5.547706e-09 5.480670e-06 11.00419
## FBgn0053462 5.624452e-09 5.480670e-06 10.94008
## FBgn0033724 6.014187e-09 5.480670e-06 10.86658
volcanoplot(fit.WT_dsBrm.vs.K804R_dsBrm, highlight = 10, names = fit.WT_dsBrm.vs.K804R_dsBrm$genes[,2], main = "WT_dsBrm vs K804R_dsBrm")

write.fit(fit.WT_dsBrm.vs.K804R_dsBrm , results = results.fit.WT_dsBrm.vs.K804R_dsBrm , file="WT_dsBrm_vs_K804R_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm vs K804R_dsBrm_100
WT_dsBrm.vs.K804R_dsBrm_100 <- makeContrasts(WT_dsBrm - K804R_dsBrm_100, levels = des) 
fit.WT_dsBrm.vs.K804R_dsBrm_100 <- contrasts.fit(fit, WT_dsBrm.vs.K804R_dsBrm_100)
fit.WT_dsBrm.vs.K804R_dsBrm_100 <- eBayes(fit.WT_dsBrm.vs.K804R_dsBrm_100)
fit.WT_dsBrm.vs.K804R_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm.vs.K804R_dsBrm_100 <- decideTests(fit.WT_dsBrm.vs.K804R_dsBrm_100) 
table(results.fit.WT_dsBrm.vs.K804R_dsBrm_100)
## results.fit.WT_dsBrm.vs.K804R_dsBrm_100
##   -1    0    1 
##  543 8716  342
topTable(fit.WT_dsBrm.vs.K804R_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0051361     FBgn0051361            dpr17  2.748712 5.651741  21.37574
## FBgn0050090     FBgn0050090          CG30090 -3.792174 5.714388 -15.97317
## FBgn0036368     FBgn0036368          CG10738  4.978160 4.304201  16.13016
## FBgn0263041     FBgn0263041          CG43336 -3.807879 3.702348 -14.45613
## FBgn0261673     FBgn0261673             nemy -2.836966 6.498878 -14.18438
## FBgn0052626     FBgn0052626          CG32626 -1.954287 8.488482 -14.11711
## FBgn0053462     FBgn0053462          CG33462 -3.761029 7.231529 -14.10031
## FBgn0052207     FBgn0052207          CR32207 -3.495901 3.297262 -13.64705
## FBgn0020269     FBgn0020269             mspo -2.382389 5.504223 -12.88887
## FBgn0086251     FBgn0086251              del -2.613291 6.648684 -12.79655
##                  P.Value    adj.P.Val        B
## FBgn0051361 7.349620e-13 7.056370e-09 19.72703
## FBgn0050090 5.409816e-11 1.425703e-07 15.55843
## FBgn0036368 4.691299e-11 1.425703e-07 14.95275
## FBgn0263041 2.294818e-10 3.940070e-07 13.95227
## FBgn0261673 3.014589e-10 3.940070e-07 13.90010
## FBgn0052626 3.227424e-10 3.940070e-07 13.83246
## FBgn0053462 3.283050e-10 3.940070e-07 13.81901
## FBgn0052207 5.240660e-10 5.590620e-07 13.06021
## FBgn0020269 1.181371e-09 1.134234e-06 12.54868
## FBgn0086251 1.307873e-09 1.141535e-06 12.43782
volcanoplot(fit.WT_dsBrm.vs.K804R_dsBrm_100, highlight = 10, names = fit.WT_dsBrm.vs.K804R_dsBrm_100$genes[,2], main = "WT_dsBrm vs K804R_dsBrm_100")

write.fit(fit.WT_dsBrm.vs.K804R_dsBrm_100 , results = results.fit.WT_dsBrm.vs.K804R_dsBrm_100 , file="WT_dsBrm_vs_K804R_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm vs YN_dsGFP
WT_dsBrm.vs.YN_dsGFP <- makeContrasts(WT_dsBrm - YN_dsGFP, levels = des) 
fit.WT_dsBrm.vs.YN_dsGFP <- contrasts.fit(fit, WT_dsBrm.vs.YN_dsGFP)
fit.WT_dsBrm.vs.YN_dsGFP <- eBayes(fit.WT_dsBrm.vs.YN_dsGFP)
fit.WT_dsBrm.vs.YN_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm.vs.YN_dsGFP <- decideTests(fit.WT_dsBrm.vs.YN_dsGFP) 
table(results.fit.WT_dsBrm.vs.YN_dsGFP)
## results.fit.WT_dsBrm.vs.YN_dsGFP
##   -1    0    1 
##  215 9095  291
topTable(fit.WT_dsBrm.vs.YN_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0051361     FBgn0051361            dpr17  2.494155 5.651741  20.05438
## FBgn0261673     FBgn0261673             nemy -2.792498 6.498878 -13.97583
## FBgn0060296     FBgn0060296             pain -1.755715 4.977743 -12.34115
## FBgn0031327     FBgn0031327           CG5397 -2.921703 3.658995 -12.10866
## FBgn0261089     FBgn0261089         Sytalpha  3.494094 4.150789  11.44540
## FBgn0032666     FBgn0032666           CG5758  3.704869 7.555261  11.39781
## FBgn0036454     FBgn0036454          CG17839  2.692738 5.523289  10.81811
## FBgn0011591     FBgn0011591              fng  2.532789 4.616138  10.30277
## FBgn0038611     FBgn0038611          CG14309  2.742399 5.447557  10.16806
## FBgn0000489     FBgn0000489           Pka-C3 -2.607773 3.582247 -10.09543
##                  P.Value    adj.P.Val         B
## FBgn0051361 1.900030e-12 1.824219e-08 18.855063
## FBgn0261673 3.728129e-10 1.789688e-06 13.691097
## FBgn0060296 2.179962e-09 6.833028e-06 11.944415
## FBgn0031327 2.846799e-09 6.833028e-06 11.676698
## FBgn0261089 6.242161e-09 1.058218e-05 10.901676
## FBgn0032666 6.613174e-09 1.058218e-05 10.798057
## FBgn0036454 1.357505e-08 1.448156e-05 10.114811
## FBgn0011591 2.639935e-08 2.019065e-05  9.489499
## FBgn0038611 3.154461e-08 2.019065e-05  9.251437
## FBgn0000489 3.474856e-08 2.085131e-05  9.220570
volcanoplot(fit.WT_dsBrm.vs.YN_dsGFP, highlight = 10, names = fit.WT_dsBrm.vs.YN_dsGFP$genes[,2], main = "WT_dsBrm vs YN_dsGFP")

write.fit(fit.WT_dsBrm.vs.YN_dsGFP , results = results.fit.WT_dsBrm.vs.YN_dsGFP , file="WT_dsBrm_vs_YN_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm vs YN_dsBrm
WT_dsBrm.vs.YN_dsBrm <- makeContrasts(WT_dsBrm - YN_dsBrm, levels = des) 
fit.WT_dsBrm.vs.YN_dsBrm <- contrasts.fit(fit, WT_dsBrm.vs.YN_dsBrm)
fit.WT_dsBrm.vs.YN_dsBrm <- eBayes(fit.WT_dsBrm.vs.YN_dsBrm)
fit.WT_dsBrm.vs.YN_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm.vs.YN_dsBrm <- decideTests(fit.WT_dsBrm.vs.YN_dsBrm) 
table(results.fit.WT_dsBrm.vs.YN_dsBrm)
## results.fit.WT_dsBrm.vs.YN_dsBrm
##   -1    0    1 
##  192 9209  200
topTable(fit.WT_dsBrm.vs.YN_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr          t
## FBgn0060296     FBgn0060296             pain -2.068302 4.977743 -14.461948
## FBgn0261673     FBgn0261673             nemy -2.826341 6.498878 -14.100054
## FBgn0031327     FBgn0031327           CG5397 -3.202104 3.658995 -13.252295
## FBgn0051361     FBgn0051361            dpr17  1.535688 5.651741  12.697750
## FBgn0261089     FBgn0261089         Sytalpha  3.447054 4.150789  10.444352
## FBgn0036454     FBgn0036454          CG17839  2.611623 5.523289  10.046358
## FBgn0016122     FBgn0016122             Acer  1.961736 5.306564   9.683257
## FBgn0030596     FBgn0030596          CG12398  2.540131 4.245533   9.367552
## FBgn0259240     FBgn0259240            Ten-a  2.289057 5.722983   9.416616
## FBgn0030262     FBgn0030262             Vago  4.276001 4.009945   9.380147
##                  P.Value    adj.P.Val         B
## FBgn0060296 2.281574e-10 1.576438e-06 14.165449
## FBgn0261673 3.283904e-10 1.576438e-06 13.811442
## FBgn0031327 7.962355e-10 2.548219e-06 12.943046
## FBgn0051361 1.459271e-09 3.502616e-06 12.314328
## FBgn0261089 2.193535e-08 3.510021e-05  9.663013
## FBgn0036454 3.710704e-08 5.089496e-05  9.123772
## FBgn0016122 6.078110e-08 6.256538e-05  8.600168
## FBgn0030596 9.440002e-08 6.256538e-05  8.236456
## FBgn0259240 8.809527e-08 6.256538e-05  8.233143
## FBgn0030262 9.273751e-08 6.256538e-05  8.174069
volcanoplot(fit.WT_dsBrm.vs.YN_dsBrm, highlight = 10, names = fit.WT_dsBrm.vs.YN_dsBrm$genes[,2], main = "WT_dsBrm vs YN_dsBrm")

write.fit(fit.WT_dsBrm.vs.YN_dsBrm , results = results.fit.WT_dsBrm.vs.YN_dsBrm , file="WT_dsBrm_vs_YN_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm vs YN_dsBrm_100
WT_dsBrm.vs.YN_dsBrm_100 <- makeContrasts(WT_dsBrm - YN_dsBrm_100, levels = des) 
fit.WT_dsBrm.vs.YN_dsBrm_100 <- contrasts.fit(fit, WT_dsBrm.vs.YN_dsBrm_100)
fit.WT_dsBrm.vs.YN_dsBrm_100 <- eBayes(fit.WT_dsBrm.vs.YN_dsBrm_100)
fit.WT_dsBrm.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm.vs.YN_dsBrm_100 <- decideTests(fit.WT_dsBrm.vs.YN_dsBrm_100) 
table(results.fit.WT_dsBrm.vs.YN_dsBrm_100)
## results.fit.WT_dsBrm.vs.YN_dsBrm_100
##   -1    0    1 
## 1353 7286  962
topTable(fit.WT_dsBrm.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0051361     FBgn0051361            dpr17  2.677151  5.6517414
## FBgn0000212     FBgn0000212              brm -4.836261 10.5329124
## FBgn0261673     FBgn0261673             nemy -2.993923  6.4988781
## FBgn0060296     FBgn0060296             pain -1.842845  4.9777433
## FBgn0003231     FBgn0003231          ref(2)P -2.246575  8.5215263
## FBgn0036984     FBgn0036984          CG13248 -2.892918  3.4083829
## FBgn0035996     FBgn0035996           CG3448 -2.042576  4.2730452
## FBgn0053192     FBgn0053192             MtnD -8.180466 -0.6745924
## FBgn0010041     FBgn0010041            GstD5 -3.939903  7.4410796
## FBgn0032666     FBgn0032666           CG5758  3.958691  7.5552611
##                     t      P.Value    adj.P.Val        B
## FBgn0051361  20.31046 1.573528e-12 1.510744e-08 18.81528
## FBgn0000212 -16.12764 4.702004e-11 1.574691e-07 15.52765
## FBgn0261673 -14.96439 1.394067e-10 3.346108e-07 14.58187
## FBgn0060296 -12.80663 1.293388e-09 2.483564e-06 12.44431
## FBgn0003231 -12.45863 1.907956e-09 2.739096e-06 12.07928
## FBgn0036984 -12.41829 1.997050e-09 2.739096e-06 11.93399
## FBgn0035996 -12.21484 2.518805e-09 3.022880e-06 11.77609
## FBgn0053192 -16.07748 4.920397e-11 1.574691e-07 11.43687
## FBgn0010041 -11.48027 5.984312e-09 5.636377e-06 10.94189
## FBgn0032666  11.45034 6.204941e-09 5.636377e-06 10.91390
volcanoplot(fit.WT_dsBrm.vs.YN_dsBrm_100, highlight = 10, names = fit.WT_dsBrm.vs.YN_dsBrm_100$genes[,2], main = "WT_dsBrm vs YN_dsBrm_100")

write.fit(fit.WT_dsBrm.vs.YN_dsBrm_100 , results = results.fit.WT_dsBrm.vs.YN_dsBrm_100, file = "WT_dsBrm_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file
# contrast WT_dsBrm_100 vs K804R_dsGFP
WT_dsBrm_100.vs.K804R_dsGFP <- makeContrasts(WT_dsBrm_100 - K804R_dsGFP, levels = des) 
fit.WT_dsBrm_100.vs.K804R_dsGFP <- contrasts.fit(fit, WT_dsBrm_100.vs.K804R_dsGFP)
fit.WT_dsBrm_100.vs.K804R_dsGFP <- eBayes(fit.WT_dsBrm_100.vs.K804R_dsGFP)
fit.WT_dsBrm_100.vs.K804R_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm_100.vs.K804R_dsGFP <- decideTests(fit.WT_dsBrm_100.vs.K804R_dsGFP) 
table(results.fit.WT_dsBrm_100.vs.K804R_dsGFP)
## results.fit.WT_dsBrm_100.vs.K804R_dsGFP
##   -1    0    1 
##  850 7808  943
topTable(fit.WT_dsBrm_100.vs.K804R_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0000212     FBgn0000212              brm  4.589343 10.5329124
## FBgn0086251     FBgn0086251              del -3.064802  6.6486839
## FBgn0052207     FBgn0052207          CR32207 -3.785981  3.2972615
## FBgn0034139     FBgn0034139           CG4927 -4.044425  3.4729332
## FBgn0003231     FBgn0003231          ref(2)P  2.348437  8.5215263
## FBgn0259896     FBgn0259896            nimC1  5.876306  4.5681578
## FBgn0028940     FBgn0028940          Cyp28a5  5.195220  2.5473942
## FBgn0051361     FBgn0051361            dpr17  1.601626  5.6517414
## FBgn0053192     FBgn0053192             MtnD  9.806797 -0.6745924
## FBgn0036368     FBgn0036368          CG10738  4.745430  4.3042006
##                     t      P.Value    adj.P.Val        B
## FBgn0000212  15.43362 8.914615e-11 4.279461e-07 15.07718
## FBgn0086251 -14.86868 1.529498e-10 4.894904e-07 14.57756
## FBgn0052207 -13.65988 5.170805e-10 1.136375e-06 13.00528
## FBgn0034139 -13.53131 5.918005e-10 1.136375e-06 12.91131
## FBgn0003231  13.02106 1.022346e-09 1.402221e-06 12.67435
## FBgn0259896  12.87043 1.205571e-09 1.446836e-06 12.42981
## FBgn0028940  13.10285 9.354339e-10 1.402221e-06 12.38194
## FBgn0051361  12.17288 2.643382e-09 2.537911e-06 11.72151
## FBgn0053192  16.29101 4.059195e-11 3.897233e-07 11.68593
## FBgn0036368  12.36346 2.125311e-09 2.267235e-06 11.37956
volcanoplot(fit.WT_dsBrm_100.vs.K804R_dsGFP, highlight = 10, names = fit.WT_dsBrm_100.vs.K804R_dsGFP$genes[,2], main = "WT_dsBrm_100 vs K804R_dsGFP")

write.fit(fit.WT_dsBrm_100.vs.K804R_dsGFP , results = results.fit.WT_dsBrm_100.vs.K804R_dsGFP , file="WT_dsBrm_100_vs_K804R_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm_100 vs K804R_dsBrm
WT_dsBrm_100.vs.K804R_dsBrm <- makeContrasts(WT_dsBrm_100 - K804R_dsBrm, levels = des) 
fit.WT_dsBrm_100.vs.K804R_dsBrm <- contrasts.fit(fit, WT_dsBrm_100.vs.K804R_dsBrm)
fit.WT_dsBrm_100.vs.K804R_dsBrm <- eBayes(fit.WT_dsBrm_100.vs.K804R_dsBrm)
fit.WT_dsBrm_100.vs.K804R_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm_100.vs.K804R_dsBrm <- decideTests(fit.WT_dsBrm_100.vs.K804R_dsBrm) 
table(results.fit.WT_dsBrm_100.vs.K804R_dsBrm)
## results.fit.WT_dsBrm_100.vs.K804R_dsBrm
##   -1    0    1 
##  831 7736 1034
topTable(fit.WT_dsBrm_100.vs.K804R_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0000212     FBgn0000212              brm  6.811100 10.532912  23.79409
## FBgn0086251     FBgn0086251              del -2.809818  6.648684 -13.63876
## FBgn0034139     FBgn0034139           CG4927 -4.149993  3.472933 -13.97065
## FBgn0028940     FBgn0028940          Cyp28a5  5.330929  2.547394  13.76268
## FBgn0052207     FBgn0052207          CR32207 -3.745360  3.297262 -13.57711
## FBgn0259896     FBgn0259896            nimC1  6.070907  4.568158  13.33594
## FBgn0003231     FBgn0003231          ref(2)P  2.340980  8.521526  12.91542
## FBgn0263041     FBgn0263041          CG43336 -2.699911  3.702348 -12.69586
## FBgn0036368     FBgn0036368          CG10738  4.657674  4.304201  12.81190
## FBgn0035763     FBgn0035763           CG8602  1.955211  9.088558  12.05736
##                  P.Value    adj.P.Val        B
## FBgn0000212 1.478575e-13 1.419580e-09 21.00918
## FBgn0086251 5.286341e-10 9.024128e-07 13.34334
## FBgn0034139 3.747986e-10 9.024128e-07 13.30254
## FBgn0028940 4.645411e-10 9.024128e-07 13.00467
## FBgn0052207 5.639492e-10 9.024128e-07 12.91567
## FBgn0259896 7.280617e-10 9.985886e-07 12.89126
## FBgn0003231 1.147451e-09 1.371746e-06 12.56272
## FBgn0263041 1.462337e-09 1.403990e-06 12.33800
## FBgn0036368 1.285878e-09 1.371746e-06 11.88577
## FBgn0035763 3.021220e-09 2.636976e-06 11.58720
volcanoplot(fit.WT_dsBrm_100.vs.K804R_dsBrm, highlight = 10, names = fit.WT_dsBrm_100.vs.K804R_dsBrm$genes[,2], main = "WT_dsBrm_100 vs K804R_dsBrm")

write.fit(fit.WT_dsBrm_100.vs.K804R_dsBrm , results = results.fit.WT_dsBrm_100.vs.K804R_dsBrm , file="WT_dsBrm_100_vs_K804R_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm_100 vs K804R_dsBrm_100
WT_dsBrm_100.vs.K804R_dsBrm_100 <- makeContrasts(WT_dsBrm_100 - K804R_dsBrm_100, levels = des) 
fit.WT_dsBrm_100.vs.K804R_dsBrm_100 <- contrasts.fit(fit, WT_dsBrm_100.vs.K804R_dsBrm_100)
fit.WT_dsBrm_100.vs.K804R_dsBrm_100 <- eBayes(fit.WT_dsBrm_100.vs.K804R_dsBrm_100)
fit.WT_dsBrm_100.vs.K804R_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm_100.vs.K804R_dsBrm_100 <- decideTests(fit.WT_dsBrm_100.vs.K804R_dsBrm_100) 
table(results.fit.WT_dsBrm_100.vs.K804R_dsBrm_100)
## results.fit.WT_dsBrm_100.vs.K804R_dsBrm_100
##   -1    0    1 
##  356 8876  369
topTable(fit.WT_dsBrm_100.vs.K804R_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0052207     FBgn0052207          CR32207 -3.948356 3.297262 -14.34510
## FBgn0086251     FBgn0086251              del -2.732496 6.648684 -13.28793
## FBgn0259896     FBgn0259896            nimC1  5.408860 4.568158  13.29260
## FBgn0028940     FBgn0028940          Cyp28a5  4.013318 2.547394  13.27782
## FBgn0034139     FBgn0034139           CG4927 -3.861172 3.472933 -12.89463
## FBgn0263041     FBgn0263041          CG43336 -2.684477 3.702348 -12.58686
## FBgn0052626     FBgn0052626          CG32626 -1.676630 8.488482 -12.05021
## FBgn0036368     FBgn0036368          CG10738  3.788312 4.304201  12.01552
## FBgn0051361     FBgn0051361            dpr17  1.496845 5.651741  11.65356
## FBgn0085400     FBgn0085400          CG34371 -3.537621 1.396259 -11.54572
##                  P.Value    adj.P.Val        B
## FBgn0052207 2.564003e-10 1.859574e-06 13.54850
## FBgn0086251 7.663958e-10 1.859574e-06 12.97604
## FBgn0259896 7.625803e-10 1.859574e-06 12.90942
## FBgn0028940 7.747417e-10 1.859574e-06 12.83539
## FBgn0034139 1.173926e-09 2.254172e-06 12.23923
## FBgn0263041 1.651582e-09 2.642807e-06 12.21390
## FBgn0052626 3.046387e-09 3.806588e-06 11.57786
## FBgn0036368 3.171827e-09 3.806588e-06 11.29649
## FBgn0051361 4.859961e-09 4.312373e-06 11.11221
## FBgn0085400 5.530323e-09 4.424719e-06 10.88117
volcanoplot(fit.WT_dsBrm_100.vs.K804R_dsBrm_100, highlight = 10, names = fit.WT_dsBrm_100.vs.K804R_dsBrm_100$genes[,2], main = "WT_dsBrm_100 vs K804R_dsBrm_100")

write.fit(fit.WT_dsBrm_100.vs.K804R_dsBrm_100 , results = results.fit.WT_dsBrm_100.vs.K804R_dsBrm_100 , file="WT_dsBrm_100_vs_K804R_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm_100 vs YN_dsGFP
WT_dsBrm_100.vs.YN_dsGFP <- makeContrasts(WT_dsBrm_100 - YN_dsGFP, levels = des) 
fit.WT_dsBrm_100.vs.YN_dsGFP <- contrasts.fit(fit, WT_dsBrm_100.vs.YN_dsGFP)
fit.WT_dsBrm_100.vs.YN_dsGFP <- eBayes(fit.WT_dsBrm_100.vs.YN_dsGFP)
fit.WT_dsBrm_100.vs.YN_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm_100.vs.YN_dsGFP <- decideTests(fit.WT_dsBrm_100.vs.YN_dsGFP) 
table(results.fit.WT_dsBrm_100.vs.YN_dsGFP)
## results.fit.WT_dsBrm_100.vs.YN_dsGFP
##   -1    0    1 
##  544 8104  953
topTable(fit.WT_dsBrm_100.vs.YN_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0036368     FBgn0036368          CG10738 -2.324857  4.3042006
## FBgn0053192     FBgn0053192             MtnD  8.894276 -0.6745924
## FBgn0028940     FBgn0028940          Cyp28a5  3.522897  2.5473942
## FBgn0031327     FBgn0031327           CG5397 -2.985556  3.6589947
## FBgn0003231     FBgn0003231          ref(2)P  2.193016  8.5215263
## FBgn0060296     FBgn0060296             pain -1.679472  4.9777433
## FBgn0261451     FBgn0261451             trol -2.549455  8.4369685
## FBgn0033204     FBgn0033204           CG2065  2.690088  5.3511720
## FBgn0000477     FBgn0000477          DNaseII  5.322971 -0.3213821
## FBgn0037750     FBgn0037750            Whamy  4.138524  4.1745421
##                     t      P.Value    adj.P.Val         B
## FBgn0036368 -14.35146 2.547735e-10 1.223040e-06 14.069592
## FBgn0053192  17.49939 1.423513e-11 1.366715e-07 13.362302
## FBgn0028940  12.97566 1.074239e-09 3.437923e-06 12.616715
## FBgn0031327 -12.34580 2.168451e-09 4.867492e-06 11.942838
## FBgn0003231  12.04789 3.054631e-09 4.867492e-06 11.572151
## FBgn0060296 -12.01784 3.163257e-09 4.867492e-06 11.562621
## FBgn0261451 -11.50884 5.781491e-09 5.550809e-06 10.916132
## FBgn0033204  11.24377 7.982689e-09 6.967436e-06 10.608788
## FBgn0000477  11.80588 4.055821e-09 4.867492e-06 10.411467
## FBgn0037750  10.56937 1.865534e-08 1.377768e-05  9.825601
volcanoplot(fit.WT_dsBrm_100.vs.YN_dsGFP, highlight = 10, names = fit.WT_dsBrm_100.vs.YN_dsGFP$genes[,2], main = "WT_dsBrm_100 vs YN_dsGFP")

write.fit(fit.WT_dsBrm_100.vs.YN_dsGFP , results = results.fit.WT_dsBrm_100.vs.YN_dsGFP , file="WT_dsBrm_100_vs_YN_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm_100 vs YN_dsBrm
WT_dsBrm_100.vs.YN_dsBrm <- makeContrasts(WT_dsBrm_100 - YN_dsBrm, levels = des) 
fit.WT_dsBrm_100.vs.YN_dsBrm <- contrasts.fit(fit, WT_dsBrm_100.vs.YN_dsBrm)
fit.WT_dsBrm_100.vs.YN_dsBrm <- eBayes(fit.WT_dsBrm_100.vs.YN_dsBrm)
fit.WT_dsBrm_100.vs.YN_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm_100.vs.YN_dsBrm <- decideTests(fit.WT_dsBrm_100.vs.YN_dsBrm) 
table(results.fit.WT_dsBrm_100.vs.YN_dsBrm)
## results.fit.WT_dsBrm_100.vs.YN_dsBrm
##   -1    0    1 
##  532 8277  792
topTable(fit.WT_dsBrm_100.vs.YN_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0036368     FBgn0036368          CG10738 -2.540714  4.3042006
## FBgn0000212     FBgn0000212              brm  4.323252 10.5329124
## FBgn0060296     FBgn0060296             pain -1.992059  4.9777433
## FBgn0031327     FBgn0031327           CG5397 -3.265957  3.6589947
## FBgn0003231     FBgn0003231          ref(2)P  2.276980  8.5215263
## FBgn0053192     FBgn0053192             MtnD 10.440250 -0.6745924
## FBgn0028940     FBgn0028940          Cyp28a5  3.452745  2.5473942
## FBgn0261451     FBgn0261451             trol -2.609721  8.4369685
## FBgn0033204     FBgn0033204           CG2065  2.683140  5.3511720
## FBgn0010389     FBgn0010389              htl -2.439321  6.1563975
##                     t      P.Value    adj.P.Val         B
## FBgn0036368 -15.66537 7.179890e-11 3.446706e-07 15.327435
## FBgn0000212  14.50625 2.183284e-10 6.987236e-07 14.213804
## FBgn0060296 -14.17700 3.037193e-10 7.290023e-07 13.897642
## FBgn0031327 -13.48661 6.203950e-10 1.191282e-06 13.188992
## FBgn0003231  12.62374 1.584800e-09 2.535943e-06 12.225766
## FBgn0053192  16.53741 3.260076e-11 3.129999e-07 11.588659
## FBgn0028940  12.01686 3.166885e-09 4.201999e-06 11.562115
## FBgn0261451 -11.93088 3.501301e-09 4.201999e-06 11.411645
## FBgn0033204  10.67203 1.635001e-08 1.308137e-05  9.892830
## FBgn0010389 -10.49274 2.059880e-08 1.521301e-05  9.585343
volcanoplot(fit.WT_dsBrm_100.vs.YN_dsBrm, highlight = 10, names = fit.WT_dsBrm_100.vs.YN_dsBrm$genes[,2], main = "WT_dsBrm_100 vs YN_dsBrm")

write.fit(fit.WT_dsBrm_100.vs.YN_dsBrm , results = results.fit.WT_dsBrm_100.vs.YN_dsBrm , file="WT_dsBrm_100_vs_YN_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast WT_dsBrm_100 vs YN_dsBrm_100
WT_dsBrm_100.vs.YN_dsBrm_100 <- makeContrasts(WT_dsBrm_100 - YN_dsBrm_100, levels = des) 
fit.WT_dsBrm_100.vs.YN_dsBrm_100 <- contrasts.fit(fit, WT_dsBrm_100.vs.YN_dsBrm_100)
fit.WT_dsBrm_100.vs.YN_dsBrm_100 <- eBayes(fit.WT_dsBrm_100.vs.YN_dsBrm_100)
fit.WT_dsBrm_100.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.WT_dsBrm_100.vs.YN_dsBrm_100 <- decideTests(fit.WT_dsBrm_100.vs.YN_dsBrm_100) 
table(results.fit.WT_dsBrm_100.vs.YN_dsBrm_100)
## results.fit.WT_dsBrm_100.vs.YN_dsBrm_100
##   -1    0    1 
##  163 9266  172
topTable(fit.WT_dsBrm_100.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0060296     FBgn0060296             pain -1.766603  4.9777433
## FBgn0051361     FBgn0051361            dpr17  1.425285  5.6517414
## FBgn0261673     FBgn0261673             nemy -1.844868  6.4988781
## FBgn0000477     FBgn0000477          DNaseII  4.606912 -0.3213821
## FBgn0036368     FBgn0036368          CG10738 -1.604611  4.3042006
## FBgn0261089     FBgn0261089         Sytalpha  3.546999  4.1507887
## FBgn0052207     FBgn0052207          CR32207 -2.689789  3.2972615
## FBgn0053630     FBgn0053630          CG33630  6.392781 -1.5059336
## FBgn0000489     FBgn0000489           Pka-C3 -2.091969  3.5822465
## FBgn0259211     FBgn0259211              grh -2.497452  5.9546061
##                      t      P.Value    adj.P.Val         B
## FBgn0060296 -12.492765 1.835827e-09 1.762578e-05 12.116751
## FBgn0051361  10.824667 1.346276e-08 3.437243e-05 10.097729
## FBgn0261673 -10.601434 1.790044e-08 3.437243e-05  9.788587
## FBgn0000477  10.753311 1.473893e-08 3.437243e-05  9.357924
## FBgn0036368  -9.811627 5.097162e-08 8.156308e-05  8.746673
## FBgn0261089   9.468553 8.190278e-08 9.699196e-05  8.363200
## FBgn0052207  -9.211293 1.178523e-07 9.699196e-05  7.954403
## FBgn0053630  11.110353 9.411764e-09 3.437243e-05  7.940772
## FBgn0000489  -9.060467 1.463744e-07 9.699196e-05  7.780909
## FBgn0259211  -9.106197 1.370280e-07 9.699196e-05  7.739132
volcanoplot(fit.WT_dsBrm_100.vs.YN_dsBrm_100, highlight = 10, names = fit.WT_dsBrm_100.vs.YN_dsBrm_100$genes[,2], main = "WT_dsBrm_100 vs YN_dsBrm_100")

write.fit(fit.WT_dsBrm_100.vs.YN_dsBrm_100 , results = results.fit.WT_dsBrm_100.vs.YN_dsBrm_100, file = "WT_dsBrm_100_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file
# contrast K804R_dsGFP vs K804R_dsBrm
K804R_dsGFP.vs.K804R_dsBrm <- makeContrasts(K804R_dsGFP - K804R_dsBrm, levels = des) 
fit.K804R_dsGFP.vs.K804R_dsBrm <- contrasts.fit(fit, K804R_dsGFP.vs.K804R_dsBrm)
fit.K804R_dsGFP.vs.K804R_dsBrm <- eBayes(fit.K804R_dsGFP.vs.K804R_dsBrm)
fit.K804R_dsGFP.vs.K804R_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsGFP.vs.K804R_dsBrm <- decideTests(fit.K804R_dsGFP.vs.K804R_dsBrm) 
table(results.fit.K804R_dsGFP.vs.K804R_dsBrm)
## results.fit.K804R_dsGFP.vs.K804R_dsBrm
##   -1    0    1 
##    3 9594    4
topTable(fit.K804R_dsGFP.vs.K804R_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id      logFC   AveExpr
## FBgn0000212     FBgn0000212              brm  2.2217569 10.532912
## FBgn0030332     FBgn0030332           CG9360 -1.7671135  4.831107
## FBgn0030596     FBgn0030596          CG12398  2.3674179  4.245533
## FBgn0041150     FBgn0041150             hoe1  1.2514010  5.244726
## FBgn0083959     FBgn0083959             trpm -0.8139573  7.850324
## FBgn0040091     FBgn0040091          Ugt58Fa  0.8855263  8.240297
## FBgn0082585     FBgn0082585             sprt -0.8343476  5.914105
## FBgn0028985     FBgn0028985             Spn4 -0.8425344  7.016699
## FBgn0034013     FBgn0034013            unc-5  0.9925991  6.850264
## FBgn0038346     FBgn0038346          CG14872  1.2401392  4.696065
##                     t      P.Value   adj.P.Val        B
## FBgn0000212  9.174082 1.242964e-07 0.001193370 7.711521
## FBgn0030332 -7.641396 1.282341e-06 0.004103919 5.459826
## FBgn0030596  7.762032 1.056030e-06 0.004103919 4.989534
## FBgn0041150  6.474012 9.274737e-06 0.022261689 3.762172
## FBgn0083959 -6.344204 1.169012e-05 0.022447362 3.570129
## FBgn0040091  6.044520 2.012437e-05 0.032202339 3.055370
## FBgn0082585 -5.787775 3.236446e-05 0.044390166 2.604725
## FBgn0028985 -5.577895 4.804181e-05 0.052020430 2.224052
## FBgn0034013  5.553202 5.034659e-05 0.052020430 2.180373
## FBgn0038346  5.481608 5.769951e-05 0.052020430 2.055245
volcanoplot(fit.K804R_dsGFP.vs.K804R_dsBrm, highlight = 10, names = fit.K804R_dsGFP.vs.K804R_dsBrm$genes[,2], main = "K804R_dsGFP vs K804R_dsBrm")

write.fit(fit.K804R_dsGFP.vs.K804R_dsBrm , results = results.fit.K804R_dsGFP.vs.K804R_dsBrm , file="K804R_dsGFP_vs_K804R_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast K804R_dsGFP vs K804R_dsBrm_100
K804R_dsGFP.vs.K804R_dsBrm_100 <- makeContrasts(K804R_dsGFP - K804R_dsBrm_100, levels = des) 
fit.K804R_dsGFP.vs.K804R_dsBrm_100 <- contrasts.fit(fit, K804R_dsGFP.vs.K804R_dsBrm_100)
fit.K804R_dsGFP.vs.K804R_dsBrm_100 <- eBayes(fit.K804R_dsGFP.vs.K804R_dsBrm_100)
fit.K804R_dsGFP.vs.K804R_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsGFP.vs.K804R_dsBrm_100 <- decideTests(fit.K804R_dsGFP.vs.K804R_dsBrm_100) 
table(results.fit.K804R_dsGFP.vs.K804R_dsBrm_100)
## results.fit.K804R_dsGFP.vs.K804R_dsBrm_100
##   -1    0    1 
##   75 9490   36
topTable(fit.K804R_dsGFP.vs.K804R_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0042106     FBgn0042106          CG18754 -3.142179  2.8874345
## FBgn0053192     FBgn0053192             MtnD -9.222253 -0.6745924
## FBgn0002868     FBgn0002868             MtnA -4.943571  9.1243145
## FBgn0035763     FBgn0035763           CG8602 -1.166095  9.0885578
## FBgn0030596     FBgn0030596          CG12398  2.161065  4.2455327
## FBgn0034013     FBgn0034013            unc-5  1.313766  6.8502639
## FBgn0037750     FBgn0037750            Whamy -2.908729  4.1745421
## FBgn0262146     FBgn0262146             MtnE -8.616540 -1.2739640
## FBgn0032889     FBgn0032889           CG9331 -1.265408  5.2045777
## FBgn0259923     FBgn0259923             Sep4 -1.909672  3.5168907
##                      t      P.Value    adj.P.Val        B
## FBgn0042106  -9.247642 1.118967e-07 5.371603e-04 7.861837
## FBgn0053192 -15.307597 1.004005e-10 9.639449e-07 7.851865
## FBgn0002868  -8.115303 6.044458e-07 1.450821e-03 6.416943
## FBgn0035763  -7.286951 2.293655e-06 3.255490e-03 5.058914
## FBgn0030596   7.236679 2.494178e-06 3.255490e-03 5.038217
## FBgn0034013   7.186521 2.712626e-06 3.255490e-03 4.865858
## FBgn0037750  -6.876150 4.594923e-06 4.901762e-03 4.467553
## FBgn0262146  -8.411395 3.832197e-07 1.226431e-03 4.178054
## FBgn0032889  -6.289831 1.288907e-05 1.215997e-02 3.360362
## FBgn0259923  -6.154458 1.646491e-05 1.215997e-02 3.238642
volcanoplot(fit.K804R_dsGFP.vs.K804R_dsBrm_100, highlight = 10, names = fit.K804R_dsGFP.vs.K804R_dsBrm_100$genes[,2], main = "K804R_dsGFP vs K804R_dsBrm_100")

write.fit(fit.K804R_dsGFP.vs.K804R_dsBrm_100 , results = results.fit.K804R_dsGFP.vs.K804R_dsBrm_100 , file="K804R_dsGFP_vs_K804R_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast K804R_dsGFP vs YN_dsGFP
K804R_dsGFP.vs.YN_dsGFP <- makeContrasts(K804R_dsGFP - YN_dsGFP, levels = des) 
fit.K804R_dsGFP.vs.YN_dsGFP <- contrasts.fit(fit, K804R_dsGFP.vs.YN_dsGFP)
fit.K804R_dsGFP.vs.YN_dsGFP <- eBayes(fit.K804R_dsGFP.vs.YN_dsGFP)
fit.K804R_dsGFP.vs.YN_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsGFP.vs.YN_dsGFP <- decideTests(fit.K804R_dsGFP.vs.YN_dsGFP) 
table(results.fit.K804R_dsGFP.vs.YN_dsGFP)
## results.fit.K804R_dsGFP.vs.YN_dsGFP
##   -1    0    1 
##  279 8948  374
topTable(fit.K804R_dsGFP.vs.YN_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0036368     FBgn0036368          CG10738 -7.070287 4.304201 -18.73713
## FBgn0035888     FBgn0035888           CG7120 -3.495555 5.672332 -14.98335
## FBgn0031327     FBgn0031327           CG5397 -4.938399 3.658995 -14.36434
## FBgn0263041     FBgn0263041          CG43336  3.634389 3.702348  14.29528
## FBgn0259834     FBgn0259834              out  3.302933 4.022702  13.87061
## FBgn0034225     FBgn0034225             veil  3.635333 4.854702  12.64312
## FBgn0034797     FBgn0034797           nahoda  4.010398 4.424711  12.63917
## FBgn0024250     FBgn0024250              brk  2.205101 5.626609  12.44812
## FBgn0051999     FBgn0051999          CG31999  3.944864 6.847512  12.17436
## FBgn0010389     FBgn0010389              htl -2.970471 6.156398 -12.13262
##                  P.Value    adj.P.Val        B
## FBgn0036368 5.199402e-12 4.991945e-08 15.87539
## FBgn0035888 1.368775e-10 6.469905e-07 14.66170
## FBgn0031327 2.515058e-10 6.469905e-07 13.87294
## FBgn0263041 2.695513e-10 6.469905e-07 13.84943
## FBgn0259834 4.154267e-10 7.977024e-07 13.46511
## FBgn0034225 1.550863e-09 2.136517e-06 12.27256
## FBgn0034797 1.557715e-09 2.136517e-06 12.18802
## FBgn0024250 1.930742e-09 2.317131e-06 12.05871
## FBgn0051999 2.638862e-09 2.658549e-06 11.73258
## FBgn0010389 2.769033e-09 2.658549e-06 11.67566
volcanoplot(fit.K804R_dsGFP.vs.YN_dsGFP, highlight = 10, names = fit.K804R_dsGFP.vs.YN_dsGFP$genes[,2], main = "K804R_dsGFP vs YN_dsGFP")

write.fit(fit.K804R_dsGFP.vs.YN_dsGFP , results = results.fit.K804R_dsGFP.vs.YN_dsGFP , file="K804R_dsGFP_vs_YN_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast K804R_dsGFP vs YN_dsBrm
K804R_dsGFP.vs.YN_dsBrm <- makeContrasts(K804R_dsGFP - YN_dsBrm, levels = des) 
fit.K804R_dsGFP.vs.YN_dsBrm <- contrasts.fit(fit, K804R_dsGFP.vs.YN_dsBrm)
fit.K804R_dsGFP.vs.YN_dsBrm <- eBayes(fit.K804R_dsGFP.vs.YN_dsBrm)
fit.K804R_dsGFP.vs.YN_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsGFP.vs.YN_dsBrm <- decideTests(fit.K804R_dsGFP.vs.YN_dsBrm) 
table(results.fit.K804R_dsGFP.vs.YN_dsBrm)
## results.fit.K804R_dsGFP.vs.YN_dsBrm
##   -1    0    1 
##  329 8911  361
topTable(fit.K804R_dsGFP.vs.YN_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0036368     FBgn0036368          CG10738 -7.286144 4.304201 -19.30496
## FBgn0031327     FBgn0031327           CG5397 -5.218800 3.658995 -15.16954
## FBgn0035888     FBgn0035888           CG7120 -3.426379 5.672332 -14.69849
## FBgn0033724     FBgn0033724           CG8501 -4.276723 7.129524 -14.20210
## FBgn0052626     FBgn0052626          CG32626  1.804427 8.488482  13.21846
## FBgn0259834     FBgn0259834              out  3.698088 4.022702  13.29931
## FBgn0010389     FBgn0010389              htl -3.160570 6.156398 -12.97988
## FBgn0263041     FBgn0263041          CG43336  3.389061 3.702348  13.06128
## FBgn0029002     FBgn0029002           miple2 -3.521393 7.804977 -12.54557
## FBgn0034860     FBgn0034860           CG9812 -3.132680 3.767806 -11.92842
##                  P.Value    adj.P.Val        B
## FBgn0036368 3.342810e-12 3.209432e-08 16.03101
## FBgn0031327 1.144815e-10 5.495684e-07 14.54815
## FBgn0035888 1.805970e-10 5.779706e-07 14.38477
## FBgn0033724 2.961004e-10 7.107150e-07 13.92197
## FBgn0052626 8.257074e-10 1.283293e-06 12.89174
## FBgn0259834 7.571237e-10 1.283293e-06 12.72581
## FBgn0010389 1.069299e-09 1.283293e-06 12.63928
## FBgn0263041 9.785812e-10 1.283293e-06 12.61331
## FBgn0029002 1.729906e-09 1.845425e-06 12.15350
## FBgn0034860 3.511424e-09 3.371319e-06 11.45019
volcanoplot(fit.K804R_dsGFP.vs.YN_dsBrm, highlight = 10, names = fit.K804R_dsGFP.vs.YN_dsBrm$genes[,2], main = "K804R_dsGFP vs YN_dsBrm")

write.fit(fit.K804R_dsGFP.vs.YN_dsBrm , results = results.fit.K804R_dsGFP.vs.YN_dsBrm , file="K804R_dsGFP_vs_YN_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast K804R_dsGFP vs YN_dsBrm_100
K804R_dsGFP.vs.YN_dsBrm_100 <- makeContrasts(K804R_dsGFP - YN_dsBrm_100, levels = des) 
fit.K804R_dsGFP.vs.YN_dsBrm_100 <- contrasts.fit(fit, K804R_dsGFP.vs.YN_dsBrm_100)
fit.K804R_dsGFP.vs.YN_dsBrm_100 <- eBayes(fit.K804R_dsGFP.vs.YN_dsBrm_100)
fit.K804R_dsGFP.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsGFP.vs.YN_dsBrm_100 <- decideTests(fit.K804R_dsGFP.vs.YN_dsBrm_100) 
table(results.fit.K804R_dsGFP.vs.YN_dsBrm_100)
## results.fit.K804R_dsGFP.vs.YN_dsBrm_100
##   -1    0    1 
## 1300 7219 1082
topTable(fit.K804R_dsGFP.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0000212     FBgn0000212              brm -5.186920 10.532912 -17.44322
## FBgn0036368     FBgn0036368          CG10738 -6.350041  4.304201 -16.79870
## FBgn0035888     FBgn0035888           CG7120 -3.195407  5.672332 -13.71393
## FBgn0003231     FBgn0003231          ref(2)P -2.451239  8.521526 -13.66079
## FBgn0036984     FBgn0036984          CG13248 -4.089852  3.408383 -13.92777
## FBgn0035763     FBgn0035763           CG8602 -2.207447  9.088558 -13.44500
## FBgn0263041     FBgn0263041          CG43336  3.740748  3.702348  13.20948
## FBgn0031762     FBgn0031762           CG9098 -2.588790  4.839396 -12.61738
## FBgn0051999     FBgn0051999          CG31999  4.635122  6.847512  12.56631
## FBgn0028684     FBgn0028684            Tbp-1 -1.603412  7.484029 -12.38914
##                  P.Value    adj.P.Val        B
## FBgn0000212 1.492361e-11 1.244321e-07 16.67297
## FBgn0036368 2.592065e-11 1.244321e-07 14.38472
## FBgn0035888 4.887151e-10 8.266282e-07 13.40148
## FBgn0003231 5.165888e-10 8.266282e-07 13.37166
## FBgn0036984 3.916726e-10 8.266282e-07 13.21973
## FBgn0035763 6.483271e-10 8.892269e-07 13.14678
## FBgn0263041 8.337214e-10 1.000570e-06 12.59482
## FBgn0031762 1.596109e-09 1.622651e-06 12.24036
## FBgn0051999 1.690085e-09 1.622651e-06 12.19440
## FBgn0028684 2.064185e-09 1.801658e-06 11.97830
volcanoplot(fit.K804R_dsGFP.vs.YN_dsBrm_100, highlight = 10, names = fit.K804R_dsGFP.vs.YN_dsBrm_100$genes[,2], main = "K804R_dsGFP vs YN_dsBrm_100")

write.fit(fit.K804R_dsGFP.vs.YN_dsBrm_100 , results = results.fit.K804R_dsGFP.vs.YN_dsBrm_100, file = "K804R_dsGFP_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file
# contrast K804R_dsBrm vs K804R_dsBrm_100
K804R_dsBrm.vs.K804R_dsBrm_100 <- makeContrasts(K804R_dsBrm - K804R_dsBrm_100, levels = des) 
fit.K804R_dsBrm.vs.K804R_dsBrm_100 <- contrasts.fit(fit, K804R_dsBrm.vs.K804R_dsBrm_100)
fit.K804R_dsBrm.vs.K804R_dsBrm_100 <- eBayes(fit.K804R_dsBrm.vs.K804R_dsBrm_100)
fit.K804R_dsBrm.vs.K804R_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsBrm.vs.K804R_dsBrm_100 <- decideTests(fit.K804R_dsBrm.vs.K804R_dsBrm_100) 
table(results.fit.K804R_dsBrm.vs.K804R_dsBrm_100)
## results.fit.K804R_dsBrm.vs.K804R_dsBrm_100
##   -1    0 
##   27 9574
topTable(fit.K804R_dsBrm.vs.K804R_dsBrm_100, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id      logFC    AveExpr
## FBgn0000212     FBgn0000212              brm  -3.525820 10.5329124
## FBgn0053192     FBgn0053192             MtnD -10.238050 -0.6745924
## FBgn0035763     FBgn0035763           CG8602  -1.457598  9.0885578
## FBgn0002868     FBgn0002868             MtnA  -5.177142  9.1243145
## FBgn0042106     FBgn0042106          CG18754  -2.124170  2.8874345
## FBgn0262146     FBgn0262146             MtnE  -7.256577 -1.2739640
## FBgn0031762     FBgn0031762           CG9098  -1.620793  4.8393957
## FBgn0259923     FBgn0259923             Sep4  -2.244002  3.5168907
## FBgn0033809     FBgn0033809           CG4630  -1.840155  4.3669282
## FBgn0062412     FBgn0062412            Ctr1B  -2.686749  0.7790356
##                      t      P.Value    adj.P.Val         B
## FBgn0000212 -13.830053 4.332033e-10 2.079593e-06 13.505922
## FBgn0053192 -16.205218 4.384242e-11 4.209311e-07  9.067107
## FBgn0035763  -9.126603 1.330624e-07 4.258439e-04  7.854478
## FBgn0002868  -8.497366 3.363955e-07 8.074333e-04  6.956625
## FBgn0042106  -7.794326 1.002859e-06 1.604741e-03  5.924522
## FBgn0262146  -8.307495 4.491231e-07 8.624062e-04  5.397206
## FBgn0031762  -7.230957 2.518138e-06 3.022080e-03  5.017271
## FBgn0259923  -7.118327 3.042269e-06 3.245425e-03  4.857936
## FBgn0033809  -6.759618 5.619271e-06 5.344351e-03  4.193798
## FBgn0062412  -6.710221 6.123098e-06 5.344351e-03  4.026462
volcanoplot(fit.K804R_dsBrm.vs.K804R_dsBrm_100, highlight = 10, names = fit.K804R_dsBrm.vs.K804R_dsBrm_100$genes[,2], main = "K804R_dsBrm vs K804R_dsBrm_100")

write.fit(fit.K804R_dsBrm.vs.K804R_dsBrm_100 , results = results.fit.K804R_dsBrm.vs.K804R_dsBrm_100 , file="K804R_dsBrm_vs_K804R_dsBrm_100.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast K804R_dsBrm vs YN_dsGFP
K804R_dsBrm.vs.YN_dsGFP <- makeContrasts(K804R_dsBrm - YN_dsGFP, levels = des) 
fit.K804R_dsBrm.vs.YN_dsGFP <- contrasts.fit(fit, K804R_dsBrm.vs.YN_dsGFP)
fit.K804R_dsBrm.vs.YN_dsGFP <- eBayes(fit.K804R_dsBrm.vs.YN_dsGFP)
fit.K804R_dsBrm.vs.YN_dsGFP$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsBrm.vs.YN_dsGFP <- decideTests(fit.K804R_dsBrm.vs.YN_dsGFP) 
table(results.fit.K804R_dsBrm.vs.YN_dsGFP)
## results.fit.K804R_dsBrm.vs.YN_dsGFP
##   -1    0    1 
##  441 8653  507
topTable(fit.K804R_dsBrm.vs.YN_dsGFP, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0036368     FBgn0036368          CG10738 -6.982531  4.304201 -19.57601
## FBgn0035888     FBgn0035888           CG7120 -3.428298  5.672332 -15.36133
## FBgn0000212     FBgn0000212              brm -3.984310 10.532912 -15.27899
## FBgn0263041     FBgn0263041          CG43336  3.844766  3.702348  15.22648
## FBgn0031327     FBgn0031327           CG5397 -4.937974  3.658995 -15.03581
## FBgn0010389     FBgn0010389              htl -3.573555  6.156398 -14.06380
## FBgn0034225     FBgn0034225             veil  3.728051  4.854702  12.98935
## FBgn0034860     FBgn0034860           CG9812 -3.580323  3.767806 -12.55452
## FBgn0034139     FBgn0034139           CG4927  2.675084  3.472933  12.39876
## FBgn0031762     FBgn0031762           CG9098 -2.575514  4.839396 -12.04955
##                  P.Value    adj.P.Val        B
## FBgn0036368 2.718733e-12 2.610256e-08 16.53315
## FBgn0035888 9.542804e-11 2.498790e-07 15.02293
## FBgn0000212 1.031599e-10 2.498790e-07 14.96185
## FBgn0263041 1.084350e-10 2.498790e-07 14.68046
## FBgn0031327 1.301317e-10 2.498790e-07 14.51564
## FBgn0010389 3.407422e-10 5.452443e-07 13.78355
## FBgn0034225 1.058306e-09 1.451542e-06 12.64146
## FBgn0034860 1.712592e-09 2.055325e-06 12.10118
## FBgn0034139 2.041785e-09 2.178131e-06 11.99483
## FBgn0031762 3.048723e-09 2.313814e-06 11.61509
volcanoplot(fit.K804R_dsBrm.vs.YN_dsGFP, highlight = 10, names = fit.K804R_dsBrm.vs.YN_dsGFP$genes[,2], main = "K804R_dsBrm vs YN_dsGFP")

write.fit(fit.K804R_dsBrm.vs.YN_dsGFP , results = results.fit.K804R_dsBrm.vs.YN_dsGFP , file="K804R_dsBrm_vs_YN_dsGFP.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast K804R_dsBrm vs YN_dsBrm
K804R_dsBrm.vs.YN_dsBrm <- makeContrasts(K804R_dsBrm - YN_dsBrm, levels = des) 
fit.K804R_dsBrm.vs.YN_dsBrm <- contrasts.fit(fit, K804R_dsBrm.vs.YN_dsBrm)
fit.K804R_dsBrm.vs.YN_dsBrm <- eBayes(fit.K804R_dsBrm.vs.YN_dsBrm)
fit.K804R_dsBrm.vs.YN_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsBrm.vs.YN_dsBrm <- decideTests(fit.K804R_dsBrm.vs.YN_dsBrm) 
table(results.fit.K804R_dsBrm.vs.YN_dsBrm)
## results.fit.K804R_dsBrm.vs.YN_dsBrm
##   -1    0    1 
##  372 8872  357
topTable(fit.K804R_dsBrm.vs.YN_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC  AveExpr         t
## FBgn0036368     FBgn0036368          CG10738 -7.198388 4.304201 -20.17624
## FBgn0031327     FBgn0031327           CG5397 -5.218376 3.658995 -15.87767
## FBgn0035888     FBgn0035888           CG7120 -3.359122 5.672332 -15.06442
## FBgn0010389     FBgn0010389              htl -3.763653 6.156398 -14.88734
## FBgn0263041     FBgn0263041          CG43336  3.599437 3.702348  13.96337
## FBgn0034860     FBgn0034860           CG9812 -3.811850 3.767806 -13.30058
## FBgn0033724     FBgn0033724           CG8501 -3.679808 7.129524 -13.06906
## FBgn0052626     FBgn0052626          CG32626  1.706033 8.488482  12.44857
## FBgn0034139     FBgn0034139           CG4927  3.045149 3.472933  12.22155
## FBgn0029002     FBgn0029002           miple2 -3.315487 7.804977 -11.97627
##                  P.Value    adj.P.Val        B
## FBgn0036368 1.736485e-12 1.667199e-08 16.65410
## FBgn0031327 5.903313e-11 2.833885e-07 15.18028
## FBgn0035888 1.266022e-10 3.605264e-07 14.73811
## FBgn0010389 1.502037e-10 3.605264e-07 14.59058
## FBgn0263041 3.776065e-10 7.250800e-07 13.48174
## FBgn0034860 7.560926e-10 1.209874e-06 12.83119
## FBgn0033724 9.703479e-10 1.330902e-06 12.73843
## FBgn0052626 1.929759e-09 2.315952e-06 12.04240
## FBgn0034139 2.499480e-09 2.666390e-06 11.71631
## FBgn0029002 3.320347e-09 2.891609e-06 11.49665
volcanoplot(fit.K804R_dsBrm.vs.YN_dsBrm, highlight = 10, names = fit.K804R_dsBrm.vs.YN_dsBrm$genes[,2], main = "K804R_dsBrm vs YN_dsBrm")

write.fit(fit.K804R_dsBrm.vs.YN_dsBrm , results = results.fit.K804R_dsBrm.vs.YN_dsBrm , file="K804R_dsBrm_vs_YN_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast K804R_dsBrm vs YN_dsBrm_100
K804R_dsBrm.vs.YN_dsBrm_100 <- makeContrasts(K804R_dsBrm - YN_dsBrm_100, levels = des) 
fit.K804R_dsBrm.vs.YN_dsBrm_100 <- contrasts.fit(fit, K804R_dsBrm.vs.YN_dsBrm_100)
fit.K804R_dsBrm.vs.YN_dsBrm_100 <- eBayes(fit.K804R_dsBrm.vs.YN_dsBrm_100)
fit.K804R_dsBrm.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.K804R_dsBrm.vs.YN_dsBrm_100 <- decideTests(fit.K804R_dsBrm.vs.YN_dsBrm_100) 
table(results.fit.K804R_dsBrm.vs.YN_dsBrm_100)
## results.fit.K804R_dsBrm.vs.YN_dsBrm_100
##   -1    0    1 
## 1416 7090 1095
topTable(fit.K804R_dsBrm.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC   AveExpr         t
## FBgn0000212     FBgn0000212              brm -7.408677 10.532912 -25.88168
## FBgn0036368     FBgn0036368          CG10738 -6.262285  4.304201 -17.52210
## FBgn0035763     FBgn0035763           CG8602 -2.498950  9.088558 -15.24911
## FBgn0031762     FBgn0031762           CG9098 -3.075484  4.839396 -14.39832
## FBgn0036984     FBgn0036984          CG13248 -4.193873  3.408383 -14.67526
## FBgn0035888     FBgn0035888           CG7120 -3.128151  5.672332 -14.03560
## FBgn0263041     FBgn0263041          CG43336  3.951124  3.702348  14.02934
## FBgn0003231     FBgn0003231          ref(2)P -2.443782  8.521526 -13.55108
## FBgn0028684     FBgn0028684            Tbp-1 -1.744040  7.484029 -13.47491
## FBgn0031589     FBgn0031589           CG3714 -2.076039  7.154859 -12.82514
##                  P.Value    adj.P.Val        B
## FBgn0000212 4.175868e-14 4.009251e-10 22.00361
## FBgn0036368 1.396636e-11 6.704553e-08 15.33112
## FBgn0035763 1.061274e-10 2.547322e-07 14.93548
## FBgn0031762 2.431028e-10 3.890050e-07 14.05997
## FBgn0036984 1.847652e-10 3.547861e-07 14.02647
## FBgn0035888 3.506942e-10 4.235735e-07 13.75016
## FBgn0263041 3.529411e-10 4.235735e-07 13.45691
## FBgn0003231 5.796050e-10 6.030548e-07 13.25345
## FBgn0028684 6.281166e-10 6.030548e-07 13.16002
## FBgn0031589 1.267224e-09 1.078541e-06 12.45280
volcanoplot(fit.K804R_dsBrm.vs.YN_dsBrm_100, highlight = 10, names = fit.K804R_dsBrm.vs.YN_dsBrm_100$genes[,2], main = "K804R_dsBrm vs YN_dsBrm_100")

write.fit(fit.K804R_dsBrm.vs.YN_dsBrm_100 , results = results.fit.K804R_dsBrm.vs.YN_dsBrm_100, file = "K804R_dsBrm_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file
# contrast YN_dsGFP vs YN_dsBrm
YN_dsGFP.vs.YN_dsBrm <- makeContrasts(YN_dsGFP - YN_dsBrm, levels = des) 
fit.YN_dsGFP.vs.YN_dsBrm <- contrasts.fit(fit, YN_dsGFP.vs.YN_dsBrm)
fit.YN_dsGFP.vs.YN_dsBrm <- eBayes(fit.YN_dsGFP.vs.YN_dsBrm)
fit.YN_dsGFP.vs.YN_dsBrm$genes <- gene.names.limma # add common gene names to the object
results.fit.YN_dsGFP.vs.YN_dsBrm <- decideTests(fit.YN_dsGFP.vs.YN_dsBrm) 
table(results.fit.YN_dsGFP.vs.YN_dsBrm)
## results.fit.YN_dsGFP.vs.YN_dsBrm
##   -1    0 
##    2 9599
topTable(fit.YN_dsGFP.vs.YN_dsBrm, adjust="BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id      logFC    AveExpr
## FBgn0041604     FBgn0041604              dlp -1.5429573  5.1650211
## FBgn0051361     FBgn0051361            dpr17 -0.9584672  5.6517414
## FBgn0030596     FBgn0030596          CG12398  1.6162448  4.2455327
## FBgn0000212     FBgn0000212              brm  1.4964621 10.5329124
## FBgn0038365     FBgn0038365           CG9593 -1.5216080  1.2599325
## FBgn0039178     FBgn0039178           CG6356 -1.8207375  0.9037314
## FBgn0031530     FBgn0031530           pgant2 -1.1057732  5.0898606
## FBgn0082585     FBgn0082585             sprt -0.6918791  5.9141050
## FBgn0032666     FBgn0032666           CG5758 -1.4128035  7.5552611
## FBgn0083959     FBgn0083959             trpm -0.5519640  7.8503244
##                     t      P.Value   adj.P.Val          B
## FBgn0041604 -8.425911 3.748559e-07 0.003598991 6.29681059
## FBgn0051361 -7.587428 1.399564e-06 0.006718605 5.32909144
## FBgn0030596  5.780052 3.283489e-05 0.078811937 2.12240299
## FBgn0000212  5.468639 5.914621e-05 0.113572543 1.96302638
## FBgn0038365 -5.367726 7.176936e-05 0.114842937 1.55601118
## FBgn0039178 -5.841351 2.928789e-05 0.078811937 1.11648751
## FBgn0031530 -4.765393 2.337655e-04 0.320626120 0.74808201
## FBgn0082585 -4.618062 3.140252e-04 0.376869491 0.48402820
## FBgn0032666 -4.479987 4.149189e-04 0.442372991 0.22588592
## FBgn0083959 -4.379204 5.090647e-04 0.442372991 0.02788826
volcanoplot(fit.YN_dsGFP.vs.YN_dsBrm, highlight = 10, names = fit.YN_dsGFP.vs.YN_dsBrm$genes[,2], main = "YN_dsGFP vs YN_dsBrm")

write.fit(fit.YN_dsGFP.vs.YN_dsBrm , results = results.fit.YN_dsGFP.vs.YN_dsBrm , file="YN_dsGFP_vs_YN_dsBrm.txt", digits=30, dec=",", adjust = "BH") # save the results to file

# contrast YN_dsGFP vs YN_dsBrm_100
YN_dsGFP.vs.YN_dsBrm_100 <- makeContrasts(YN_dsGFP - YN_dsBrm_100, levels = des) 
fit.YN_dsGFP.vs.YN_dsBrm_100 <- contrasts.fit(fit, YN_dsGFP.vs.YN_dsBrm_100)
fit.YN_dsGFP.vs.YN_dsBrm_100 <- eBayes(fit.YN_dsGFP.vs.YN_dsBrm_100)
fit.YN_dsGFP.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.YN_dsGFP.vs.YN_dsBrm_100 <- decideTests(fit.YN_dsGFP.vs.YN_dsBrm_100) 
table(results.fit.YN_dsGFP.vs.YN_dsBrm_100)
## results.fit.YN_dsGFP.vs.YN_dsBrm_100
##   -1    0    1 
##  869 8349  383
topTable(fit.YN_dsGFP.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0003231     FBgn0003231          ref(2)P -2.295818  8.5215263
## FBgn0053192     FBgn0053192             MtnD -8.419673 -0.6745924
## FBgn0000212     FBgn0000212              brm -3.424367 10.5329124
## FBgn0010041     FBgn0010041            GstD5 -3.655013  7.4410796
## FBgn0033205     FBgn0033205           CG2064 -2.068212  8.0155012
## FBgn0037750     FBgn0037750            Whamy -4.181621  4.1745421
## FBgn0053461     FBgn0053461          CG33461 -3.175643  3.4528936
## FBgn0035868     FBgn0035868           CG7194 -3.144751  5.3692984
## FBgn0031589     FBgn0031589           CG3714 -1.674241  7.1548585
## FBgn0035996     FBgn0035996           CG3448 -1.562237  4.2730452
##                     t      P.Value    adj.P.Val         B
## FBgn0003231 -12.67618 1.494729e-09 7.175447e-06 12.317260
## FBgn0053192 -16.53692 3.261478e-11 3.131345e-07 12.114056
## FBgn0000212 -10.95135 1.147632e-08 2.246401e-05 10.309640
## FBgn0010041 -10.82004 1.354182e-08 2.246401e-05 10.097394
## FBgn0033205 -10.73672 1.505369e-08 2.246401e-05  9.986095
## FBgn0037750 -10.66780 1.643878e-08 2.246401e-05  9.954028
## FBgn0053461 -10.47576 2.105781e-08 2.246401e-05  9.692721
## FBgn0035868 -10.48265 2.087027e-08 2.246401e-05  9.679116
## FBgn0031589 -10.37490 2.401619e-08 2.305795e-05  9.495111
## FBgn0035996 -10.29682 2.660686e-08 2.322295e-05  9.458697
volcanoplot(fit.YN_dsGFP.vs.YN_dsBrm_100, highlight = 10, names = fit.YN_dsGFP.vs.YN_dsBrm_100$genes[,2], main = "YN_dsGFP vs YN_dsBrm_100")

write.fit(fit.YN_dsGFP.vs.YN_dsBrm_100 , results = results.fit.YN_dsGFP.vs.YN_dsBrm_100, file = "YN_dsGFP_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file
# contrast YN_dsBrm vs YN_dsBrm_100
YN_dsBrm.vs.YN_dsBrm_100 <- makeContrasts(YN_dsBrm - YN_dsBrm_100, levels = des) 
fit.YN_dsBrm.vs.YN_dsBrm_100 <- contrasts.fit(fit, YN_dsBrm.vs.YN_dsBrm_100)
fit.YN_dsBrm.vs.YN_dsBrm_100 <- eBayes(fit.YN_dsBrm.vs.YN_dsBrm_100)
fit.YN_dsBrm.vs.YN_dsBrm_100$genes <- gene.names.limma # add common gene names to the object
results.fit.YN_dsBrm.vs.YN_dsBrm_100 <- decideTests(fit.YN_dsBrm.vs.YN_dsBrm_100) 
table(results.fit.YN_dsBrm.vs.YN_dsBrm_100)
## results.fit.YN_dsBrm.vs.YN_dsBrm_100
##   -1    0    1 
##  737 8505  359
topTable(fit.YN_dsBrm.vs.YN_dsBrm_100, adjust = "BH") # show the 10 genes with lowest p-values 
##             ensembl_gene_id external_gene_id     logFC    AveExpr
## FBgn0000212     FBgn0000212              brm -4.920829 10.5329124
## FBgn0003231     FBgn0003231          ref(2)P -2.379783  8.5215263
## FBgn0053192     FBgn0053192             MtnD -9.965647 -0.6745924
## FBgn0035904     FBgn0035904           CG6776 -2.427504  7.2038795
## FBgn0010041     FBgn0010041            GstD5 -3.479240  7.4410796
## FBgn0040319     FBgn0040319             Gclc -3.314343  6.5996220
## FBgn0037750     FBgn0037750            Whamy -3.898737  4.1745421
## FBgn0033205     FBgn0033205           CG2064 -1.891464  8.0155012
## FBgn0053461     FBgn0053461          CG33461 -3.077257  3.4528936
## FBgn0015283     FBgn0015283           Pros54 -1.290976  6.7563536
##                      t      P.Value    adj.P.Val         B
## FBgn0000212 -16.511361 3.336055e-11 3.134835e-07 15.865447
## FBgn0003231 -13.261368 7.885238e-10 2.523539e-06 12.952373
## FBgn0053192 -15.767902 6.530227e-11 3.134835e-07  9.765918
## FBgn0035904 -10.318584 2.585623e-08 4.651012e-05  9.453942
## FBgn0010041 -10.210498 2.981798e-08 4.651012e-05  9.322864
## FBgn0040319 -10.113734 3.391009e-08 4.651012e-05  9.194372
## FBgn0037750  -9.831985 4.957635e-08 5.315957e-05  8.870991
## FBgn0033205  -9.828211 4.983190e-08 5.315957e-05  8.795192
## FBgn0053461  -9.726872 5.724186e-08 5.454404e-05  8.704186
## FBgn0015283  -9.655394 6.316238e-08 5.454404e-05  8.538663
volcanoplot(fit.YN_dsBrm.vs.YN_dsBrm_100, highlight = 10, names = fit.YN_dsBrm.vs.YN_dsBrm_100$genes[,2], main = "YN_dsBrm vs YN_dsBrm_100")

write.fit(fit.YN_dsBrm.vs.YN_dsBrm_100 , results = results.fit.YN_dsBrm.vs.YN_dsBrm_100, file = "YN_dsBrm_vs_YN_dsBrm_100.txt", digits=30, dec = ",", adjust = "BH") # save the results to file