library(leaflet)
dat <- read.csv("../Desktop/2021-05-metropolitan-street.csv")
str(dat)
## 'data.frame':    92225 obs. of  12 variables:
##  $ Crime.ID             : chr  "38c135d1f9183c468bab40d636ab2637b0d00b8d4ef6a35c3324aab3fe4d9a91" "38c135d1f9183c468bab40d636ab2637b0d00b8d4ef6a35c3324aab3fe4d9a91" "525a8e1af105dcf083faa386e4f4cef63bc0c6b0a8c39b741cd9c0d76e2d993e" "925441c6a0ccca169eeef3bb5aa2f0d9f0f7308669913aeb6837da5e48fb322f" ...
##  $ Month                : chr  "2021-05" "2021-05" "2021-05" "2021-05" ...
##  $ Reported.by          : chr  "Metropolitan Police Service" "Metropolitan Police Service" "Metropolitan Police Service" "Metropolitan Police Service" ...
##  $ Falls.within         : chr  "Metropolitan Police Service" "Metropolitan Police Service" "Metropolitan Police Service" "Metropolitan Police Service" ...
##  $ Longitude            : num  -0.664 -0.664 -1.258 0.902 -0.812 ...
##  $ Latitude             : num  50.8 50.8 53.1 51.1 51.8 ...
##  $ Location             : chr  "On or near Brooks Lane" "On or near Brooks Lane" "On or near Park Street" "On or near Waltham Close" ...
##  $ LSOA.code            : chr  "E01031433" "E01031433" "E01027967" "E01024004" ...
##  $ LSOA.name            : chr  "Arun 014B" "Arun 014B" "Ashfield 004A" "Ashford 006E" ...
##  $ Crime.type           : chr  "Violence and sexual offences" "Violence and sexual offences" "Violence and sexual offences" "Violence and sexual offences" ...
##  $ Last.outcome.category: chr  "Under investigation" "Under investigation" "Under investigation" "Under investigation" ...
##  $ Context              : logi  NA NA NA NA NA NA ...
dat <- dat[!is.na(dat$Longitude)&!is.na(dat$Latitude),]
library(leaflet)
dat %>% 
  leaflet() %>% 
  addTiles() %>% 
  addMarkers(popup=dat$Crime.type , clusterOptions=markerClusterOptions())
## Assuming "Longitude" and "Latitude" are longitude and latitude, respectively