MUESTREO 1

library(readxl)
## Warning: package 'readxl' was built under R version 4.0.3
Datos_muestreo_1 <- read_excel("C:/Users/USER/Desktop/Kahomy/Fisiologia/Datos muestreo 1.xlsx")
View(Datos_muestreo_1)
attach(Datos_muestreo_1)
names(Datos_muestreo_1)
##  [1] "Tratamientos"                          
##  [2] "Temperatura (c°)"                      
##  [3] "Contenido relativo de clorofila (SPAD)"
##  [4] "Numero de hojas"                       
##  [5] "Estomas enves abiertos"                
##  [6] "Estomas enves cerrados"                
##  [7] "Estomas enves total"                   
##  [8] "Longitud parte aerea (cm)"             
##  [9] "Area foliar (cm2)"                     
## [10] "Peso fresco hojas (g)"                 
## [11] "Peso seco hojas (g)"                   
## [12] "CRA Peso fresco (mg)"                  
## [13] "CRA Peso a saturación (mg)"            
## [14] "CRA Peso seco (mg)"                    
## [15] "CRA (mg)"                              
## [16] "Diametro Raiz tuberosa (mm)"           
## [17] "Peso fresco raiz tuberosa"             
## [18] "Peso seco raiz tuberosa (g)"           
## [19] "Perdida de electrolitos CE 60min"      
## [20] "Perdida de electrolitos CE max"        
## [21] "Perdida de electrolitos (%)"
summary(Datos_muestreo_1)
##  Tratamientos       Temperatura (c°) Contenido relativo de clorofila (SPAD)
##  Length:16          Min.   :17.10    Min.   :28.60                         
##  Class :character   1st Qu.:18.05    1st Qu.:34.62                         
##  Mode  :character   Median :18.35    Median :36.70                         
##                     Mean   :18.52    Mean   :35.49                         
##                     3rd Qu.:19.10    3rd Qu.:38.10                         
##                     Max.   :20.10    Max.   :39.20                         
##  Numero de hojas Estomas enves abiertos Estomas enves cerrados
##  Min.   :2.0     Min.   : 9.00          Min.   : 6.0          
##  1st Qu.:3.0     1st Qu.:14.50          1st Qu.:14.0          
##  Median :4.0     Median :19.50          Median :19.0          
##  Mean   :3.5     Mean   :20.19          Mean   :19.0          
##  3rd Qu.:4.0     3rd Qu.:25.50          3rd Qu.:25.5          
##  Max.   :5.0     Max.   :35.00          Max.   :31.0          
##  Estomas enves total Longitud parte aerea (cm) Area foliar (cm2)
##  Min.   :33.00       Min.   :4.800             Min.   :50.37    
##  1st Qu.:37.75       1st Qu.:6.650             1st Qu.:59.40    
##  Median :39.00       Median :7.050             Median :62.95    
##  Mean   :39.19       Mean   :7.119             Mean   :62.79    
##  3rd Qu.:41.25       3rd Qu.:8.250             3rd Qu.:68.22    
##  Max.   :45.00       Max.   :9.200             Max.   :73.42    
##  Peso fresco hojas (g) Peso seco hojas (g) CRA Peso fresco (mg)
##  Min.   :3.194         Min.   :0.3540      Min.   :0.01210     
##  1st Qu.:5.027         1st Qu.:0.4647      1st Qu.:0.01440     
##  Median :5.487         Median :0.5265      Median :0.01570     
##  Mean   :5.547         Mean   :0.5647      Mean   :0.01537     
##  3rd Qu.:6.494         3rd Qu.:0.6727      3rd Qu.:0.01690     
##  Max.   :7.251         Max.   :0.7910      Max.   :0.01810     
##  CRA Peso a saturación (mg) CRA Peso seco (mg)    CRA (mg)     
##  Min.   :0.01830            Min.   :0.001700   Min.   :0.5896  
##  1st Qu.:0.01900            1st Qu.:0.001875   1st Qu.:0.7208  
##  Median :0.01915            Median :0.002000   Median :0.7949  
##  Mean   :0.01930            Mean   :0.002025   Mean   :0.7729  
##  3rd Qu.:0.01957            3rd Qu.:0.002200   3rd Qu.:0.8645  
##  Max.   :0.02050            Max.   :0.002500   Max.   :0.8933  
##  Diametro Raiz tuberosa (mm) Peso fresco raiz tuberosa
##  Min.   :12.10               Min.   :2.817            
##  1st Qu.:14.10               1st Qu.:3.443            
##  Median :15.10               Median :3.684            
##  Mean   :15.15               Mean   :3.566            
##  3rd Qu.:16.62               3rd Qu.:3.838            
##  Max.   :18.10               Max.   :3.971            
##  Peso seco raiz tuberosa (g) Perdida de electrolitos CE 60min
##  Min.   :0.2180              Min.   :0.04500                 
##  1st Qu.:0.2913              1st Qu.:0.05375                 
##  Median :0.3515              Median :0.08710                 
##  Mean   :0.3367              Mean   :0.13395                 
##  3rd Qu.:0.3880              3rd Qu.:0.17625                 
##  Max.   :0.4190              Max.   :0.32700                 
##  Perdida de electrolitos CE max Perdida de electrolitos (%)
##  Min.   :0.9340                 Min.   : 4.601             
##  1st Qu.:0.9780                 1st Qu.: 5.226             
##  Median :0.9935                 Median : 8.440             
##  Mean   :1.0179                 Mean   :13.407             
##  3rd Qu.:1.0337                 3rd Qu.:17.965             
##  Max.   :1.1690                 Max.   :33.436

Temperatura

boxplot(`Temperatura (c°)`~ Tratamientos)

aov1 = aov(Datos_muestreo_1$`Temperatura (c°)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov1)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3  8.795  2.9317   20.75 4.84e-05 ***
## Residuals                     12  1.695  0.1412                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Temperatura (c°)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                        diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.250 -0.5389963  1.0389963 0.7840959
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM    1.925  1.1360037  2.7139963 0.0000526
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   0.825  0.0360037  1.6139963 0.0395370
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM   1.675  0.8860037  2.4639963 0.0001994
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  0.575 -0.2139963  1.3639963 0.1886778
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -1.100 -1.8889963 -0.3110037 0.0064920
shapiro.test(Datos_muestreo_1$`Temperatura (c°)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Temperatura (c°)`
## W = 0.96371, p-value = 0.7292

Contenido relativo de clorofila

boxplot(`Contenido relativo de clorofila (SPAD)`~ Tratamientos)

aov2 = aov(Datos_muestreo_1$`Contenido relativo de clorofila (SPAD)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov2)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 182.25   60.75   108.1 5.95e-09 ***
## Residuals                     12   6.74    0.56                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Contenido relativo de clorofila (SPAD)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                        diff         lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  1.025  -0.5486226  2.5986226 0.2653743
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -7.650  -9.2236226 -6.0763774 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -1.300  -2.8736226  0.2736226 0.1193435
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -8.675 -10.2486226 -7.1013774 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -2.325  -3.8986226 -0.7513774 0.0042457
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    6.350   4.7763774  7.9236226 0.0000003
shapiro.test(Datos_muestreo_1$`Contenido relativo de clorofila (SPAD)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Contenido relativo de clorofila (SPAD)`
## W = 0.81241, p-value = 0.003999

Numero de Hojas

boxplot(`Numero de hojas`~ Tratamientos)

aov3 = aov(Datos_muestreo_1$`Numero de hojas`~Datos_muestreo_1$Tratamientos)
summary.aov(aov3)
##                               Df Sum Sq Mean Sq F value Pr(>F)  
## Datos_muestreo_1$Tratamientos  3    4.5  1.5000   3.273 0.0589 .
## Residuals                     12    5.5  0.4583                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov3)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Numero de hojas` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                       diff        lwr       upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.50 -0.9212532 1.9212532 0.7276987
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.75 -2.1712532 0.6712532 0.4316865
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.75 -2.1712532 0.6712532 0.4316865
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -1.25 -2.6712532 0.1712532 0.0918771
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -1.25 -2.6712532 0.1712532 0.0918771
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.00 -1.4212532 1.4212532 1.0000000
shapiro.test(Datos_muestreo_1$`Numero de hojas`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Numero de hojas`
## W = 0.8561, p-value = 0.01678

Estomas enves abiertos

boxplot(`Estomas enves abiertos`~ Tratamientos)

aov4 = aov(Datos_muestreo_1$`Estomas enves abiertos`~Datos_muestreo_1$Tratamientos)
summary.aov(aov4)
##                               Df Sum Sq Mean Sq F value Pr(>F)    
## Datos_muestreo_1$Tratamientos  3  870.7  290.23   58.29  2e-07 ***
## Residuals                     12   59.7    4.98                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov4)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Estomas enves abiertos` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                        diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  -7.25 -11.934455  -2.565545 0.0029815
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -19.50 -24.184455 -14.815545 0.0000002
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -14.50 -19.184455  -9.815545 0.0000046
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -12.25 -16.934455  -7.565545 0.0000264
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  -7.25 -11.934455  -2.565545 0.0029815
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM     5.00   0.315545   9.684455 0.0353363
shapiro.test(Datos_muestreo_1$`Estomas enves abiertos`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Estomas enves abiertos`
## W = 0.95969, p-value = 0.6562

Estomas enves cerrados

boxplot(`Estomas enves cerrados`~ Tratamientos)

aov5 = aov(Datos_muestreo_1$`Estomas enves cerrados`~Datos_muestreo_1$Tratamientos)
summary.aov(aov5)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3  911.5  303.83   47.66 6.11e-07 ***
## Residuals                     12   76.5    6.38                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov5)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Estomas enves cerrados` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                       diff        lwr       upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  7.00   1.699451 12.300549 0.0094818
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   20.25  14.949451 25.550549 0.0000005
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  13.75   8.449451 19.050549 0.0000286
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  13.25   7.949451 18.550549 0.0000414
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  6.75   1.449451 12.050549 0.0121057
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -6.50 -11.800549 -1.199451 0.0154675
shapiro.test(Datos_muestreo_1$`Estomas enves cerrados`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Estomas enves cerrados`
## W = 0.94559, p-value = 0.4232

Estomas enves total

boxplot(`Estomas enves total`~ Tratamientos)

aov6 = aov(Datos_muestreo_1$`Estomas enves total`~Datos_muestreo_1$Tratamientos)
summary.aov(aov6)
##                               Df Sum Sq Mean Sq F value Pr(>F)
## Datos_muestreo_1$Tratamientos  3   4.69   1.563   0.149  0.928
## Residuals                     12 125.75  10.479
TukeyHSD(aov6)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Estomas enves total` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                       diff       lwr      upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -0.25 -7.045855 6.545855 0.9995063
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM    0.75 -6.045855 7.545855 0.9872468
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.75 -7.545855 6.045855 0.9872468
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM   1.00 -5.795855 7.795855 0.9709012
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.50 -7.295855 6.295855 0.9961156
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -1.50 -8.295855 5.295855 0.9116666
shapiro.test(Datos_muestreo_1$`Estomas enves total`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Estomas enves total`
## W = 0.97808, p-value = 0.9466

Longitud de la parte aerea

boxplot(`Longitud parte aerea (cm)`~ Tratamientos)

aov7 = aov(Datos_muestreo_1$`Longitud parte aerea (cm)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov7)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 23.292   7.764   48.72 5.41e-07 ***
## Residuals                     12  1.912   0.159                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov7)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Longitud parte aerea (cm)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                        diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  1.300  0.4619097  2.1380903 0.0029301
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -2.075 -2.9130903 -1.2369097 0.0000455
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.450 -1.2880903  0.3880903 0.4175163
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -3.375 -4.2130903 -2.5369097 0.0000003
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -1.750 -2.5880903 -0.9119097 0.0002325
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    1.625  0.7869097  2.4630903 0.0004551
shapiro.test(Datos_muestreo_1$`Longitud parte aerea (cm)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Longitud parte aerea (cm)`
## W = 0.94809, p-value = 0.4601

Area foliar (cm2)

boxplot(`Area foliar (cm2)`~ Tratamientos)

aov8 = aov(Datos_muestreo_1$`Area foliar (cm2)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov8)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3  846.3  282.11   126.4 2.42e-09 ***
## Residuals                     12   26.8    2.23                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov8)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Area foliar (cm2)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                           diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM   8.55875   5.421987  11.695513 0.0000171
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -11.91240 -15.049163  -8.775637 0.0000005
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   -0.64125  -3.778013   2.495513 0.9279189
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -20.47115 -23.607913 -17.334387 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  -9.20000 -12.336763  -6.063237 0.0000081
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    11.27115   8.134387  14.407913 0.0000009
shapiro.test(Datos_muestreo_1$`Area foliar (cm2)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Area foliar (cm2)`
## W = 0.90612, p-value = 0.1008

Peso fresco hojas (g)

boxplot(`Peso fresco hojas (g)`~ Tratamientos)

aov9 = aov(Datos_muestreo_1$`Peso fresco hojas (g)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov9)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 19.934   6.645   49.77 4.81e-07 ***
## Residuals                     12  1.602   0.134                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov9)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Peso fresco hojas (g)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                          diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  1.22450  0.4574295  1.9915705 0.0023396
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -1.90375 -2.6708205 -1.1366795 0.0000445
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.36125 -1.1283205  0.4058205 0.5236522
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -3.12825 -3.8953205 -2.3611795 0.0000002
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -1.58575 -2.3528205 -0.8186795 0.0002549
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    1.54250  0.7754295  2.3095705 0.0003281
shapiro.test(Datos_muestreo_1$`Peso fresco hojas (g)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Peso fresco hojas (g)`
## W = 0.94789, p-value = 0.457

Peso seco hojas (g)

boxplot(`Peso seco hojas (g)`~ Tratamientos)

aov10 = aov(Datos_muestreo_1$`Peso seco hojas (g)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov10)
##                               Df Sum Sq Mean Sq F value  Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 0.3266 0.10887   86.08 2.2e-08 ***
## Residuals                     12 0.0152 0.00126                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov10)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Peso seco hojas (g)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                        diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.176  0.1013433  0.2506567 0.0000736
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.217 -0.2916567 -0.1423433 0.0000089
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.088 -0.1626567 -0.0133433 0.0198112
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.393 -0.4676567 -0.3183433 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.264 -0.3386567 -0.1893433 0.0000011
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.129  0.0543433  0.2036567 0.0012291
shapiro.test(Datos_muestreo_1$`Peso seco hojas (g)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Peso seco hojas (g)`
## W = 0.91962, p-value = 0.1663

CRA Peso freco (mg)

boxplot(`CRA Peso fresco (mg)`~ Tratamientos)

aov11 = aov(Datos_muestreo_1$`CRA Peso fresco (mg)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov11)
##                               Df    Sum Sq   Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 5.591e-05 1.864e-05   119.9 3.27e-09 ***
## Residuals                     12 1.860e-06 1.550e-07                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov11)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`CRA Peso fresco (mg)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                           diff           lwr           upr
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.001125  0.0002973828  0.0019526172
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.003900 -0.0047276172 -0.0030723828
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.001225 -0.0020526172 -0.0003973828
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.005025 -0.0058526172 -0.0041973828
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.002350 -0.0031776172 -0.0015223828
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.002675  0.0018473828  0.0035026172
##                                          p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM 0.0077653
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  0.0041886
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM 0.0000114
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   0.0000029
shapiro.test(Datos_muestreo_1$`CRA Peso fresco (mg)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`CRA Peso fresco (mg)`
## W = 0.91381, p-value = 0.1341

CRA Peso a saturacion (mg)

boxplot(`CRA Peso a saturación (mg)`~ Tratamientos)

aov12 = aov(Datos_muestreo_1$`CRA Peso a saturación (mg)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov12)
##                               Df    Sum Sq   Mean Sq F value Pr(>F)
## Datos_muestreo_1$Tratamientos  3 6.250e-07 2.083e-07    0.62  0.616
## Residuals                     12 4.035e-06 3.363e-07
TukeyHSD(aov12)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`CRA Peso a saturación (mg)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                           diff         lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.000100 -0.00111734 0.00131734 0.9946230
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.000425 -0.00164234 0.00079234 0.7321465
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.000075 -0.00129234 0.00114234 0.9977040
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.000525 -0.00174234 0.00069234 0.5914449
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.000175 -0.00139234 0.00104234 0.9727605
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.000350 -0.00086734 0.00156734 0.8280546
shapiro.test(Datos_muestreo_1$`CRA Peso a saturación (mg)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`CRA Peso a saturación (mg)`
## W = 0.95232, p-value = 0.5273

CRA Peso seco (mg)

boxplot(`CRA Peso seco (mg)`~ Tratamientos)

aov13 = aov(Datos_muestreo_1$`CRA Peso seco (mg)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov13)
##                               Df   Sum Sq   Mean Sq F value Pr(>F)  
## Datos_muestreo_1$Tratamientos  3 3.85e-07 1.283e-07   4.464 0.0252 *
## Residuals                     12 3.45e-07 2.875e-08                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov13)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`CRA Peso seco (mg)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                           diff           lwr           upr
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.000050 -0.0003059587  4.059587e-04
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.000325 -0.0006809587  3.095874e-05
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.000225 -0.0005809587  1.309587e-04
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.000375 -0.0007309587 -1.904126e-05
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.000275 -0.0006309587  8.095874e-05
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.000100 -0.0002559587  4.559587e-04
##                                          p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM 0.9744930
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   0.0777382
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  0.2877557
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  0.0379638
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM 0.1540794
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   0.8373821
shapiro.test(Datos_muestreo_1$`CRA Peso seco (mg)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`CRA Peso seco (mg)`
## W = 0.93626, p-value = 0.3057

CRA (mg)

boxplot(`CRA (mg)`~ Tratamientos)

aov14 = aov(Datos_muestreo_1$`CRA (mg)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov14)
##                               Df  Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 0.15357 0.05119     107 6.31e-09 ***
## Residuals                     12 0.00574 0.00048                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov14)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`CRA (mg)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                             diff         lwr         upr
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.05858252  0.01267094  0.10449411
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.20457856 -0.25049015 -0.15866698
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.06553618 -0.11144776 -0.01962459
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.26316109 -0.30907268 -0.21724950
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.12411870 -0.17003029 -0.07820711
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.13904239  0.09313080  0.18495397
##                                          p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM 0.0119477
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   0.0000001
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  0.0054760
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM 0.0000188
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   0.0000058
shapiro.test(Datos_muestreo_1$`CRA (mg)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`CRA (mg)`
## W = 0.90147, p-value = 0.08485

Diametro Raiz tuberosa (mm)

boxplot(`Diametro Raiz tuberosa (mm)`~ Tratamientos)

aov15 = aov(Datos_muestreo_1$`Diametro Raiz tuberosa (mm)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov15)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3  39.95   13.31      31 6.21e-06 ***
## Residuals                     12   5.16    0.43                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov15)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Diametro Raiz tuberosa (mm)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                        diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.950 -0.4259557  2.3259557 0.2240733
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -3.175 -4.5509557 -1.7990443 0.0000906
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -1.675 -3.0509557 -0.2990443 0.0162048
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -4.125 -5.5009557 -2.7490443 0.0000065
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -2.625 -4.0009557 -1.2490443 0.0005254
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    1.500  0.1240443  2.8759557 0.0314000
shapiro.test(Datos_muestreo_1$`Diametro Raiz tuberosa (mm)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Diametro Raiz tuberosa (mm)`
## W = 0.96842, p-value = 0.8123

Peso fresco raiz tuberosa

boxplot(`Peso fresco raiz tuberosa`~ Tratamientos)

aov16 = aov(Datos_muestreo_1$`Peso fresco raiz tuberosa`~Datos_muestreo_1$Tratamientos)
summary.aov(aov16)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 1.8369  0.6123   41.03 1.39e-06 ***
## Residuals                     12 0.1791  0.0149                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov16)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Peso fresco raiz tuberosa` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                          diff        lwr          upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.15400 -0.1024667  0.410466671 0.3273960
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.73600 -0.9924667 -0.479533329 0.0000102
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.09925 -0.3557167  0.157216671 0.6680409
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.89000 -1.1464667 -0.633533329 0.0000014
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.25325 -0.5097167  0.003216671 0.0533156
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.63675  0.3802833  0.893216671 0.0000443
shapiro.test(Datos_muestreo_1$`Peso fresco raiz tuberosa`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Peso fresco raiz tuberosa`
## W = 0.86329, p-value = 0.0215

Peso seco raiz tuberosa (g)

boxplot(`Peso seco raiz tuberosa (g)`~ Tratamientos)

aov17 = aov(Datos_muestreo_1$`Peso seco raiz tuberosa (g)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov17)
##                               Df  Sum Sq  Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 0.06459 0.021531   55.36 2.67e-07 ***
## Residuals                     12 0.00467 0.000389                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov17)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Peso seco raiz tuberosa (g)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                          diff         lwr         upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.00000 -0.04140194  0.04140194 1.0000000
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.15125 -0.19265194 -0.10984806 0.0000008
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.08500 -0.12640194 -0.04359806 0.0002716
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.15125 -0.19265194 -0.10984806 0.0000008
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.08500 -0.12640194 -0.04359806 0.0002716
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.06625  0.02484806  0.10765194 0.0022956
shapiro.test(Datos_muestreo_1$`Peso seco raiz tuberosa (g)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Peso seco raiz tuberosa (g)`
## W = 0.91316, p-value = 0.1309

Perdida de electrolitos CE 60min

boxplot(`Perdida de electrolitos CE 60min`~ Tratamientos)

aov18 = aov(Datos_muestreo_1$`Perdida de electrolitos CE 60min`~Datos_muestreo_1$Tratamientos)
summary.aov(aov18)
##                               Df  Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 0.16200 0.05400   200.9 1.61e-10 ***
## Residuals                     12 0.00323 0.00027                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov18)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Perdida de electrolitos CE 60min` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                          diff         lwr         upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -0.01200 -0.04641973  0.02241973 0.7329488
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM    0.23975  0.20533027  0.27416973 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   0.06105  0.02663027  0.09546973 0.0009866
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM   0.25175  0.21733027  0.28616973 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  0.07305  0.03863027  0.10746973 0.0002000
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -0.17870 -0.21311973 -0.14428027 0.0000000
shapiro.test(Datos_muestreo_1$`Perdida de electrolitos CE 60min`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Perdida de electrolitos CE 60min`
## W = 0.77296, p-value = 0.001218

Perdida de electrolitos CE max

boxplot(`Perdida de electrolitos CE max`~ Tratamientos)

aov19 = aov(Datos_muestreo_1$`Perdida de electrolitos CE max`~Datos_muestreo_1$Tratamientos)
summary.aov(aov19)
##                               Df  Sum Sq  Mean Sq F value Pr(>F)
## Datos_muestreo_1$Tratamientos  3 0.01142 0.003807    0.92  0.461
## Residuals                     12 0.04966 0.004138
TukeyHSD(aov19)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Perdida de electrolitos CE max` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                          diff         lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -0.03100 -0.16604659 0.10404659 0.9021378
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.06100 -0.19604659 0.07404659 0.5563111
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   0.00575 -0.12929659 0.14079659 0.9992360
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.03000 -0.16504659 0.10504659 0.9101647
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  0.03675 -0.09829659 0.17179659 0.8495212
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.06675 -0.06829659 0.20179659 0.4849496
shapiro.test(Datos_muestreo_1$`Perdida de electrolitos CE max`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Perdida de electrolitos CE max`
## W = 0.87114, p-value = 0.02831

Perdida de electrolitos (%)

boxplot(`Perdida de electrolitos (%)`~ Tratamientos)

aov20 = aov(Datos_muestreo_1$`Perdida de electrolitos (%)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov20)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 1725.6   575.2   163.8 5.33e-10 ***
## Residuals                     12   42.1     3.5                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov20)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Perdida de electrolitos (%)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                            diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  -1.090731  -5.025001   2.843539 0.8425227
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM    24.782498  20.848228  28.716769 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM    5.854823   1.920553   9.789094 0.0040223
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM   25.873229  21.938959  29.807500 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM   6.945555   3.011284  10.879825 0.0010265
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -18.927675 -22.861945 -14.993405 0.0000000
shapiro.test(Datos_muestreo_1$`Perdida de electrolitos (%)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Perdida de electrolitos (%)`
## W = 0.76141, p-value = 0.0008749

MUESTREO 2

library(readxl)
datos2 <- read_excel("C:/Users/USER/Desktop/Kahomy/Fisiologia/datos2.xlsx")
View(datos2)
attach(datos2)
## The following objects are masked from Datos_muestreo_1:
## 
##     Contenido relativo de clorofila (SPAD), Tratamientos
names(datos2)
##  [1] "Tratamientos"                          
##  [2] "DDS"                                   
##  [3] "Repetición"                            
##  [4] "TEMPERATURA (°C)"                      
##  [5] "Abierto"                               
##  [6] "Cerrado"                               
##  [7] "Total"                                 
##  [8] "Contenido relativo de clorofila (SPAD)"
##  [9] "#Hojas"                                
## [10] "Longitud (cm)"                         
## [11] "Área foliar (cm2)"                     
## [12] "Peso fresco hojas"                     
## [13] "Peso seco hojas"                       
## [14] "Peso fresco"                           
## [15] "Peso a saturación"                     
## [16] "Peso seco"                             
## [17] "CRA"                                   
## [18] "Diámetro (mm)"                         
## [19] "Peso fresco raiz"                      
## [20] "Peso seco raiz"                        
## [21] "CE 60 min"                             
## [22] "CE max"                                
## [23] "% PE"
w = factor(Tratamientos)
summary(datos2)
##  Tratamientos            DDS       Repetición   TEMPERATURA (°C)
##  Length:16          Min.   :34   Min.   :1.00   Min.   :17.20   
##  Class :character   1st Qu.:34   1st Qu.:1.75   1st Qu.:17.60   
##  Mode  :character   Median :34   Median :2.50   Median :17.90   
##                     Mean   :34   Mean   :2.50   Mean   :18.20   
##                     3rd Qu.:34   3rd Qu.:3.25   3rd Qu.:18.68   
##                     Max.   :34   Max.   :4.00   Max.   :19.50   
##                     NA's   :12                                  
##     Abierto         Cerrado          Total      
##  Min.   :12.00   Min.   :18.00   Min.   :38.00  
##  1st Qu.:15.75   1st Qu.:20.75   1st Qu.:39.75  
##  Median :18.00   Median :22.00   Median :41.00  
##  Mean   :18.06   Mean   :22.88   Mean   :40.94  
##  3rd Qu.:21.00   3rd Qu.:24.75   3rd Qu.:42.00  
##  Max.   :24.00   Max.   :29.00   Max.   :44.00  
##                                                 
##  Contenido relativo de clorofila (SPAD)     #Hojas      Longitud (cm)   
##  Min.   :32.90                          Min.   :3.000   Min.   : 8.500  
##  1st Qu.:34.80                          1st Qu.:4.000   1st Qu.: 9.000  
##  Median :37.50                          Median :4.000   Median : 9.450  
##  Mean   :36.88                          Mean   :4.312   Mean   : 9.425  
##  3rd Qu.:38.90                          3rd Qu.:5.000   3rd Qu.: 9.925  
##  Max.   :40.10                          Max.   :5.000   Max.   :10.300  
##                                                                         
##  Área foliar (cm2) Peso fresco hojas Peso seco hojas   Peso fresco     
##  Min.   : 71.38    Min.   :5.142     Min.   :0.5162   Min.   :0.01190  
##  1st Qu.: 79.08    1st Qu.:5.807     1st Qu.:0.6882   1st Qu.:0.01380  
##  Median : 88.61    Median :6.424     Median :0.7709   Median :0.01540  
##  Mean   : 87.31    Mean   :6.400     Mean   :0.7155   Mean   :0.01503  
##  3rd Qu.: 97.53    3rd Qu.:6.948     3rd Qu.:0.7922   3rd Qu.:0.01650  
##  Max.   :101.38    Max.   :7.672     Max.   :0.8152   Max.   :0.01730  
##                                                                        
##  Peso a saturación   Peso seco             CRA         Diámetro (mm)  
##  Min.   :0.01690   Min.   :0.001800   Min.   :0.6667   Min.   :14.90  
##  1st Qu.:0.01767   1st Qu.:0.001975   1st Qu.:0.7346   1st Qu.:17.35  
##  Median :0.01790   Median :0.002050   Median :0.8469   Median :21.50  
##  Mean   :0.01784   Mean   :0.002063   Mean   :0.8201   Mean   :20.68  
##  3rd Qu.:0.01830   3rd Qu.:0.002125   3rd Qu.:0.8980   3rd Qu.:24.32  
##  Max.   :0.01840   Max.   :0.002300   Max.   :0.9379   Max.   :25.20  
##                                                                       
##  Peso fresco raiz Peso seco raiz     CE 60 min          CE max      
##  Min.   :6.018    Min.   :0.4728   Min.   :0.0648   Min.   :0.9674  
##  1st Qu.:6.364    1st Qu.:0.5537   1st Qu.:0.0845   1st Qu.:0.9833  
##  Median :6.750    Median :0.6551   Median :0.1210   Median :0.9863  
##  Mean   :6.747    Mean   :0.6367   Mean   :0.1451   Mean   :1.0176  
##  3rd Qu.:7.207    3rd Qu.:0.7402   3rd Qu.:0.1778   3rd Qu.:1.0412  
##  Max.   :7.372    Max.   :0.7631   Max.   :0.2746   Max.   :1.1037  
##                                                                     
##       % PE       
##  Min.   : 6.641  
##  1st Qu.: 8.584  
##  Median :11.875  
##  Mean   :14.225  
##  3rd Qu.:16.597  
##  Max.   :27.907  
## 

TEMPERATURA

boxplot(datos2$`TEMPERATURA (°C)`~datos2$Tratamientos)

at2 <- aov(datos2$`TEMPERATURA (°C)`~datos2$Tratamientos)
summary(at2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3  6.585  2.1950   12.69 0.000495 ***
## Residuals           12  2.075  0.1729                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(at2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`TEMPERATURA (°C)` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##           diff        lwr        upr     p adj
## T_B-T_A -0.075 -0.9479697  0.7979697 0.9938647
## T_C-T_A  1.500  0.6270303  2.3729697 0.0012876
## T_D-T_A  0.175 -0.6979697  1.0479697 0.9316078
## T_C-T_B  1.575  0.7020303  2.4479697 0.0008534
## T_D-T_B  0.250 -0.6229697  1.1229697 0.8296760
## T_D-T_C -1.325 -2.1979697 -0.4520303 0.0034636

ESTOMAS

ABIERTOS

boxplot(datos2$Abierto~datos2$Tratamientos)

aa2 <- aov(datos2$Abierto~datos2$Tratamientos)
summary(aa2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 170.69   56.90   21.17 4.39e-05 ***
## Residuals           12  32.25    2.69                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aa2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$Abierto ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##          diff        lwr       upr     p adj
## T_B-T_A  1.50  -1.941557  4.941557 0.5835354
## T_C-T_A -7.00 -10.441557 -3.558443 0.0002958
## T_D-T_A -3.25  -6.691557  0.191557 0.0663935
## T_C-T_B -8.50 -11.941557 -5.058443 0.0000467
## T_D-T_B -4.75  -8.191557 -1.308443 0.0069751
## T_D-T_C  3.75   0.308443  7.191557 0.0314862

CERRRADOS

boxplot(datos2$Cerrado~datos2$Tratamientos)

ac2 <- aov(datos2$Cerrado~datos2$Tratamientos)
summary(ac2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3  145.2   48.42   17.88 0.000101 ***
## Residuals           12   32.5    2.71                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ac2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$Cerrado ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##          diff        lwr       upr     p adj
## T_B-T_A -0.25 -3.7048707  3.204871 0.9963019
## T_C-T_A  7.25  3.7951293 10.704871 0.0002220
## T_D-T_A  2.50 -0.9548707  5.954871 0.1931528
## T_C-T_B  7.50  4.0451293 10.954871 0.0001619
## T_D-T_B  2.75 -0.7048707  6.204871 0.1379278
## T_D-T_C -4.75 -8.2048707 -1.295129 0.0071684

TOTAL

boxplot(datos2$Total~datos2$Tratamientos)

ato2 <- aov(datos2$Total~datos2$Tratamientos)
summary(ato2)
##                     Df Sum Sq Mean Sq F value Pr(>F)
## datos2$Tratamientos  3   8.19   2.729   0.845  0.495
## Residuals           12  38.75   3.229
TukeyHSD(ato2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$Total ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##          diff       lwr      upr     p adj
## T_B-T_A  1.25 -2.522471 5.022471 0.7611627
## T_C-T_A  0.25 -3.522471 4.022471 0.9971496
## T_D-T_A -0.75 -4.522471 3.022471 0.9331175
## T_C-T_B -1.00 -4.772471 2.772471 0.8589504
## T_D-T_B -2.00 -5.772471 1.772471 0.4278967
## T_D-T_C -1.00 -4.772471 2.772471 0.8589504

CONTENIDO RELATIVO DE CLOROFILA

boxplot(datos2$`Contenido relativo de clorofila (SPAD)` ~datos2$Tratamientos)

acl2 <- aov(datos2$`Contenido relativo de clorofila (SPAD)` ~datos2$Tratamientos)
summary(acl2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3  89.57  29.857   57.23 2.21e-07 ***
## Residuals           12   6.26   0.522                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(acl2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Contenido relativo de clorofila (SPAD)` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##          diff        lwr       upr     p adj
## T_B-T_A -0.25 -1.7662726  1.266273 0.9599563
## T_C-T_A -5.75 -7.2662726 -4.233727 0.0000005
## T_D-T_A -3.30 -4.8162726 -1.783727 0.0001581
## T_C-T_B -5.50 -7.0162726 -3.983727 0.0000008
## T_D-T_B -3.05 -4.5662726 -1.533727 0.0003272
## T_D-T_C  2.45  0.9337274  3.966273 0.0021247

Numero de hojas

boxplot(datos2$`#Hojas` ~datos2$Tratamientos)

ah2 <- aov(datos2$`#Hojas`~datos2$Tratamientos)
summary(ah2)
##                     Df Sum Sq Mean Sq F value Pr(>F)  
## datos2$Tratamientos  3  3.688  1.2292   3.933 0.0363 *
## Residuals           12  3.750  0.3125                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ah2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`#Hojas` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##          diff        lwr         upr     p adj
## T_B-T_A -0.25 -1.4235612  0.92356121 0.9195619
## T_C-T_A -1.25 -2.4235612 -0.07643879 0.0357458
## T_D-T_A -0.25 -1.4235612  0.92356121 0.9195619
## T_C-T_B -1.00 -2.1735612  0.17356121 0.1051568
## T_D-T_B  0.00 -1.1735612  1.17356121 1.0000000
## T_D-T_C  1.00 -0.1735612  2.17356121 0.1051568

Longitud

boxplot(datos2$`Longitud (cm)`~datos2$Tratamientos)

al2 <- aov(datos2$`Longitud (cm)`~datos2$Tratamientos)
summary(al2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3   4.59  1.5300   31.66 5.56e-06 ***
## Residuals           12   0.58  0.0483                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(al2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Longitud (cm)` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##                  diff        lwr        upr     p adj
## T_B-T_A  6.000000e-01  0.1384656  1.0615344 0.0105486
## T_C-T_A -9.000000e-01 -1.3615344 -0.4384656 0.0004326
## T_D-T_A  1.776357e-15 -0.4615344  0.4615344 1.0000000
## T_C-T_B -1.500000e+00 -1.9615344 -1.0384656 0.0000028
## T_D-T_B -6.000000e-01 -1.0615344 -0.1384656 0.0105486
## T_D-T_C  9.000000e-01  0.4384656  1.3615344 0.0004326

Área foliar

boxplot(datos2$`Área foliar (cm2)` ~datos2$Tratamientos)

aaf2 <- aov(datos2$`Área foliar (cm2)` ~datos2$Tratamientos)
summary(aaf2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 1799.4   599.8   161.2 5.85e-10 ***
## Residuals           12   44.7     3.7                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aaf2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Área foliar (cm2)` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##              diff         lwr        upr     p adj
## T_B-T_A   3.92675  -0.1231428   7.976643 0.0584041
## T_C-T_A -23.00150 -27.0513928 -18.951607 0.0000000
## T_D-T_A -12.31975 -16.3696428  -8.269857 0.0000056
## T_C-T_B -26.92825 -30.9781428 -22.878357 0.0000000
## T_D-T_B -16.24650 -20.2963928 -12.196607 0.0000003
## T_D-T_C  10.68175   6.6318572  14.731643 0.0000242

Peso fresco hojas

boxplot(datos2$`Peso fresco hojas`~datos2$Tratamientos)

apfh2 <- aov(datos2$`Peso fresco hojas`~datos2$Tratamientos)
summary(apfh2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 10.570   3.523   213.9 1.11e-10 ***
## Residuals           12  0.198   0.016                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apfh2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Peso fresco hojas` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##             diff       lwr       upr     p adj
## T_B-T_A  0.75125  0.481786  1.020714 0.0000138
## T_C-T_A -1.46350 -1.732964 -1.194036 0.0000000
## T_D-T_A -0.61250 -0.881964 -0.343036 0.0001047
## T_C-T_B -2.21475 -2.484214 -1.945286 0.0000000
## T_D-T_B -1.36375 -1.633214 -1.094286 0.0000000
## T_D-T_C  0.85100  0.581536  1.120464 0.0000037

Peso seco hojas

boxplot(datos2$`Peso seco hojas` ~datos2$Tratamientos)

apsh2 <- aov(datos2$`Peso seco hojas` ~datos2$Tratamientos)
summary(apsh2)
##                     Df  Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 0.20131  0.0671   693.5 1.04e-13 ***
## Residuals           12 0.00116  0.0001                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apsh2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Peso seco hojas` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##              diff         lwr         upr     p adj
## T_B-T_A  0.002850 -0.01780097  0.02350097 0.9757421
## T_C-T_A -0.269650 -0.29030097 -0.24899903 0.0000000
## T_D-T_A -0.046725 -0.06737597 -0.02607403 0.0001094
## T_C-T_B -0.272500 -0.29315097 -0.25184903 0.0000000
## T_D-T_B -0.049575 -0.07022597 -0.02892403 0.0000617
## T_D-T_C  0.222925  0.20227403  0.24357597 0.0000000

Peso fresco

boxplot(datos2$`Peso fresco` ~datos2$Tratamientos)

apf2 <- aov(datos2$`Peso fresco`~datos2$Tratamientos)
summary(apf2)
##                     Df    Sum Sq   Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 4.817e-05 1.606e-05   95.14 1.24e-08 ***
## Residuals           12 2.020e-06 1.690e-07                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apf2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Peso fresco` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##              diff          lwr           upr     p adj
## T_B-T_A -0.000150 -0.001012388  0.0007123878 0.9535545
## T_C-T_A -0.004275 -0.005137388 -0.0034126122 0.0000000
## T_D-T_A -0.002075 -0.002937388 -0.0012126122 0.0000603
## T_C-T_B -0.004125 -0.004987388 -0.0032626122 0.0000000
## T_D-T_B -0.001925 -0.002787388 -0.0010626122 0.0001244
## T_D-T_C  0.002200  0.001337612  0.0030623878 0.0000338

Peso saturación

boxplot(datos2$`Peso a saturación` ~datos2$Tratamientos)

apsa2 <- aov(datos2$`Peso a saturación` ~datos2$Tratamientos)
summary(apsa2)
##                     Df    Sum Sq   Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 3.207e-06 1.069e-06   22.51 3.23e-05 ***
## Residuals           12 5.700e-07 4.750e-08                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apsa2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Peso a saturación` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##             diff           lwr           upr     p adj
## T_B-T_A -0.00020 -0.0006575384  0.0002575384 0.5813409
## T_C-T_A -0.00115 -0.0016075384 -0.0006924616 0.0000392
## T_D-T_A -0.00020 -0.0006575384  0.0002575384 0.5813409
## T_C-T_B -0.00095 -0.0014075384 -0.0004924616 0.0002449
## T_D-T_B  0.00000 -0.0004575384  0.0004575384 1.0000000
## T_D-T_C  0.00095  0.0004924616  0.0014075384 0.0002449

Peso seco

boxplot(datos2$`Peso seco` ~datos2$Tratamientos)

aps2<- aov(datos2$`Peso seco`~datos2$Tratamientos)
summary(aps2)
##                     Df    Sum Sq   Mean Sq F value  Pr(>F)   
## datos2$Tratamientos  3 2.425e-07 8.083e-08   8.435 0.00276 **
## Residuals           12 1.150e-07 9.580e-09                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aps2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Peso seco` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##              diff           lwr           upr     p adj
## T_B-T_A  0.000100 -0.0001055129  3.055129e-04 0.4975804
## T_C-T_A -0.000225 -0.0004305129 -1.948713e-05 0.0306483
## T_D-T_A -0.000125 -0.0003305129  8.051287e-05 0.3173297
## T_C-T_B -0.000325 -0.0005305129 -1.194871e-04 0.0025196
## T_D-T_B -0.000225 -0.0004305129 -1.948713e-05 0.0306483
## T_D-T_C  0.000100 -0.0001055129  3.055129e-04 0.4975804

Contenido relativo de agua

boxplot(datos2$CRA ~datos2$Tratamientos)

acra2 <- aov(datos2$CRA ~datos2$Tratamientos)
summary(acra2)
##                     Df  Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 0.12709 0.04236   73.44 5.45e-08 ***
## Residuals           12 0.00692 0.00058                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(acra2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$CRA ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##                 diff         lwr         upr     p adj
## T_B-T_A  0.001010114 -0.04941072  0.05143095 0.9999199
## T_C-T_A -0.212053654 -0.26247449 -0.16163282 0.0000002
## T_D-T_A -0.117251990 -0.16767282 -0.06683116 0.0000840
## T_C-T_B -0.213063767 -0.26348460 -0.16264294 0.0000002
## T_D-T_B -0.118262104 -0.16868294 -0.06784127 0.0000773
## T_D-T_C  0.094801664  0.04438083  0.14522250 0.0005971

Diametro

boxplot(datos2$`Diámetro (mm)`~datos2$Tratamientos)

ad2 <- aov(datos2$`Diámetro (mm)` ~datos2$Tratamientos)
summary(ad2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 248.85   82.95   646.4 1.58e-13 ***
## Residuals           12   1.54    0.13                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ad2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Diámetro (mm)` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##          diff         lwr       upr     p adj
## T_B-T_A  0.90   0.1479435  1.652057 0.0180402
## T_C-T_A -8.65  -9.4020565 -7.897943 0.0000000
## T_D-T_A -5.55  -6.3020565 -4.797943 0.0000000
## T_C-T_B -9.55 -10.3020565 -8.797943 0.0000000
## T_D-T_B -6.45  -7.2020565 -5.697943 0.0000000
## T_D-T_C  3.10   2.3479435  3.852057 0.0000002

Peso fresco raíz

boxplot(datos2$`Peso fresco raiz` ~datos2$Tratamientos)

apfr2 <- aov(datos2$`Peso fresco raiz`  ~datos2$Tratamientos)
summary(apfr2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3  3.763  1.2544   201.9 1.56e-10 ***
## Residuals           12  0.075  0.0062                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apfr2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Peso fresco raiz` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##              diff         lwr        upr     p adj
## T_B-T_A  0.199125  0.03365031  0.3645997 0.0174276
## T_C-T_A -0.981575 -1.14704969 -0.8161003 0.0000000
## T_D-T_A -0.695575 -0.86104969 -0.5301003 0.0000002
## T_C-T_B -1.180700 -1.34617469 -1.0152253 0.0000000
## T_D-T_B -0.894700 -1.06017469 -0.7292253 0.0000000
## T_D-T_C  0.286000  0.12052531  0.4514747 0.0012264

Peso seco raíz

boxplot(datos2$`Peso seco raiz` ~datos2$Tratamientos)

apsr2 <- aov(datos2$`Peso seco raiz` ~datos2$Tratamientos)
summary(apsr2)
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 0.1915 0.06384   851.2 3.06e-14 ***
## Residuals           12 0.0009 0.00008                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apsr2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`Peso seco raiz` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##              diff         lwr         upr     p adj
## T_B-T_A  0.029950  0.01176828  0.04813172 0.0018198
## T_C-T_A -0.241450 -0.25963172 -0.22326828 0.0000000
## T_D-T_A -0.139775 -0.15795672 -0.12159328 0.0000000
## T_C-T_B -0.271400 -0.28958172 -0.25321828 0.0000000
## T_D-T_B -0.169725 -0.18790672 -0.15154328 0.0000000
## T_D-T_C  0.101675  0.08349328  0.11985672 0.0000000

CE min

boxplot(datos2$`CE 60 min`~datos2$Tratamientos)

acm2 <- aov(datos2$`CE 60 min` ~datos2$Tratamientos)
summary(acm2)
##                     Df  Sum Sq  Mean Sq F value   Pr(>F)    
## datos2$Tratamientos  3 0.08659 0.028864   189.6 2.26e-10 ***
## Residuals           12 0.00183 0.000152                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(acm2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`CE 60 min` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##              diff         lwr          upr     p adj
## T_B-T_A -0.018865 -0.04476929  0.007039295 0.1891219
## T_C-T_A  0.169935  0.14403071  0.195839295 0.0000000
## T_D-T_A  0.055710  0.02980571  0.081614295 0.0001767
## T_C-T_B  0.188800  0.16289571  0.214704295 0.0000000
## T_D-T_B  0.074575  0.04867071  0.100479295 0.0000099
## T_D-T_C -0.114225 -0.14012929 -0.088320705 0.0000001

CE max

boxplot(datos2$`CE max` ~datos2$Tratamientos)

acmax2 <- aov(datos2$`CE max`~datos2$Tratamientos)
summary(acmax2)
##                     Df  Sum Sq  Mean Sq F value Pr(>F)
## datos2$Tratamientos  3 0.00408 0.001359   0.508  0.684
## Residuals           12 0.03210 0.002675
TukeyHSD(acmax2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`CE max` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##              diff         lwr        upr     p adj
## T_B-T_A -0.037875 -0.14645207 0.07070207 0.7326288
## T_C-T_A -0.001700 -0.11027707 0.10687707 0.9999618
## T_D-T_A -0.001425 -0.11000207 0.10715207 0.9999775
## T_C-T_B  0.036175 -0.07240207 0.14475207 0.7582241
## T_D-T_B  0.036450 -0.07212707 0.14502707 0.7541305
## T_D-T_C  0.000275 -0.10830207 0.10885207 0.9999998

%PE

boxplot(datos2$`% PE` ~datos2$Tratamientos)

ape2 <- aov(datos2$`% PE`~datos2$Tratamientos)
summary(ape2)
##                     Df Sum Sq Mean Sq F value Pr(>F)    
## datos2$Tratamientos  3  820.5  273.48     108  6e-09 ***
## Residuals           12   30.4    2.53                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ape2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = datos2$`% PE` ~ datos2$Tratamientos)
## 
## $`datos2$Tratamientos`
##               diff        lwr       upr     p adj
## T_B-T_A  -1.539030  -4.879886  1.801827 0.5410214
## T_C-T_A  16.715169  13.374312 20.056026 0.0000000
## T_D-T_A   5.457216   2.116360  8.798073 0.0019473
## T_C-T_B  18.254199  14.913342 21.595055 0.0000000
## T_D-T_B   6.996246   3.655389 10.337103 0.0002263
## T_D-T_C -11.257953 -14.598809 -7.917096 0.0000019

MUESTREO 3

library(readxl)
datos3 <- data.frame(read_excel("C:/Users/USER/Desktop/Kahomy/Fisiologia/datos3.xlsx"))
View(datos3)
attach(datos3)
## The following objects are masked from datos2:
## 
##     Abierto, Cerrado, CRA, DDS, Repetición, Total, Tratamientos
## The following object is masked from Datos_muestreo_1:
## 
##     Tratamientos
names(datos3)
##  [1] "Tratamientos"                          
##  [2] "DDS"                                   
##  [3] "Repetición"                            
##  [4] "TEMPERATURA...C."                      
##  [5] "Abierto"                               
##  [6] "Cerrado"                               
##  [7] "Total"                                 
##  [8] "Contenido.relativo.de.clorofila..SPAD."
##  [9] "X.Hojas"                               
## [10] "Longitud..cm."                         
## [11] "Área.foliar..cm2."                     
## [12] "Peso.fresco.hojas"                     
## [13] "Peso.seco.hojas"                       
## [14] "Peso.fresco"                           
## [15] "Peso.a.saturación"                     
## [16] "Peso.seco"                             
## [17] "CRA"                                   
## [18] "Diámetro..mm."                         
## [19] "Peso.fresco.raiz"                      
## [20] "Peso.seco.raiz"                        
## [21] "CE.60.min"                             
## [22] "CE.max"                                
## [23] "X..PE"
f = factor(Tratamientos)
summary(datos3)
##  Tratamientos            DDS       Repetición   TEMPERATURA...C.
##  Length:16          Min.   :41   Min.   :1.00   Min.   :17.10   
##  Class :character   1st Qu.:41   1st Qu.:1.75   1st Qu.:17.20   
##  Mode  :character   Median :41   Median :2.50   Median :17.60   
##                     Mean   :41   Mean   :2.50   Mean   :17.80   
##                     3rd Qu.:41   3rd Qu.:3.25   3rd Qu.:18.02   
##                     Max.   :41   Max.   :4.00   Max.   :19.10   
##                     NA's   :12                                  
##     Abierto         Cerrado          Total      
##  Min.   :14.00   Min.   :20.00   Min.   :39.00  
##  1st Qu.:16.00   1st Qu.:21.00   1st Qu.:41.00  
##  Median :19.00   Median :23.00   Median :42.00  
##  Mean   :18.94   Mean   :23.31   Mean   :42.25  
##  3rd Qu.:21.25   3rd Qu.:24.50   3rd Qu.:43.25  
##  Max.   :24.00   Max.   :28.00   Max.   :45.00  
##                                                 
##  Contenido.relativo.de.clorofila..SPAD.    X.Hojas      Longitud..cm.  
##  Min.   :35.80                          Min.   :5.000   Min.   : 9.90  
##  1st Qu.:37.92                          1st Qu.:6.000   1st Qu.:11.40  
##  Median :38.95                          Median :6.500   Median :12.20  
##  Mean   :38.64                          Mean   :6.375   Mean   :11.87  
##  3rd Qu.:39.73                          3rd Qu.:7.000   3rd Qu.:12.60  
##  Max.   :41.10                          Max.   :7.000   Max.   :13.20  
##                                                                        
##  Área.foliar..cm2. Peso.fresco.hojas Peso.seco.hojas   Peso.fresco     
##  Min.   :128.4     Min.   :6.297     Min.   :0.7180   Min.   :0.01210  
##  1st Qu.:133.8     1st Qu.:7.504     1st Qu.:0.7817   1st Qu.:0.01620  
##  Median :146.2     Median :8.092     Median :0.8190   Median :0.01770  
##  Mean   :144.8     Mean   :7.870     Mean   :0.8424   Mean   :0.01671  
##  3rd Qu.:157.0     3rd Qu.:8.463     3rd Qu.:0.9038   3rd Qu.:0.01823  
##  Max.   :157.5     Max.   :9.012     Max.   :0.9810   Max.   :0.01840  
##                                                                        
##  Peso.a.saturación   Peso.seco             CRA         Diámetro..mm.  
##  Min.   :0.01890   Min.   :0.001900   Min.   :0.5714   Min.   :23.90  
##  1st Qu.:0.01935   1st Qu.:0.002100   1st Qu.:0.7731   1st Qu.:29.23  
##  Median :0.01970   Median :0.002100   Median :0.8942   Median :33.00  
##  Mean   :0.01971   Mean   :0.002131   Mean   :0.8304   Mean   :31.35  
##  3rd Qu.:0.01980   3rd Qu.:0.002200   3rd Qu.:0.9173   3rd Qu.:35.10  
##  Max.   :0.02180   Max.   :0.002400   Max.   :0.9357   Max.   :35.40  
##                                                                       
##  Peso.fresco.raiz Peso.seco.raiz    CE.60.min           CE.max     
##  Min.   : 8.372   Min.   :1.249   Min.   :0.07400   Min.   :0.982  
##  1st Qu.:10.318   1st Qu.:1.534   1st Qu.:0.09135   1st Qu.:1.028  
##  Median :11.608   Median :1.627   Median :0.09950   Median :1.056  
##  Mean   :10.961   Mean   :1.541   Mean   :0.11396   Mean   :1.067  
##  3rd Qu.:12.149   3rd Qu.:1.635   3rd Qu.:0.13150   3rd Qu.:1.123  
##  Max.   :12.472   Max.   :1.673   Max.   :0.17500   Max.   :1.174  
##                                                                    
##      X..PE       
##  Min.   : 7.411  
##  1st Qu.: 8.397  
##  Median : 9.564  
##  Mean   :10.708  
##  3rd Qu.:11.858  
##  Max.   :16.427  
## 

TEMPERATURA

boxplot(TEMPERATURA...C.~Tratamientos)

at <- aov(TEMPERATURA...C.~Tratamientos)
summary(at)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3  6.755  2.2517   47.82 5.99e-07 ***
## Residuals    12  0.565  0.0471                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(at)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = TEMPERATURA...C. ~ Tratamientos)
## 
## $Tratamientos
##           diff         lwr        upr     p adj
## T_B-T_A  0.100 -0.35552722  0.5555272 0.9129199
## T_C-T_A  1.625  1.16947278  2.0805272 0.0000010
## T_D-T_A  0.375 -0.08052722  0.8305272 0.1210275
## T_C-T_B  1.525  1.06947278  1.9805272 0.0000020
## T_D-T_B  0.275 -0.18052722  0.7305272 0.3231858
## T_D-T_C -1.250 -1.70552722 -0.7944728 0.0000162

ESTOMAS

ABIERTOS

boxplot(Abierto~Tratamientos)

aa <- aov(Abierto~Tratamientos)
summary(aa)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3 149.19   49.73    43.4 1.02e-06 ***
## Residuals    12  13.75    1.15                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aa)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Abierto ~ Tratamientos)
## 
## $Tratamientos
##          diff        lwr       upr     p adj
## T_B-T_A  1.25 -0.9971986  3.497199 0.3887108
## T_C-T_A -6.25 -8.4971986 -4.002801 0.0000141
## T_D-T_A -4.25 -6.4971986 -2.002801 0.0005672
## T_C-T_B -7.50 -9.7471986 -5.252801 0.0000021
## T_D-T_B -5.50 -7.7471986 -3.252801 0.0000510
## T_D-T_C  2.00 -0.2471986  4.247199 0.0872142

CERRRADOS

boxplot(Cerrado~Tratamientos)

ac <- aov(Cerrado~Tratamientos)
summary(ac)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3  78.19  26.062   33.81 3.92e-06 ***
## Residuals    12   9.25   0.771                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ac)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Cerrado ~ Tratamientos)
## 
## $Tratamientos
##          diff        lwr       upr     p adj
## T_B-T_A  0.25 -1.5931513  2.093151 0.9769109
## T_C-T_A  5.50  3.6568487  7.343151 0.0000068
## T_D-T_A  2.50  0.6568487  4.343151 0.0078842
## T_C-T_B  5.25  3.4068487  7.093151 0.0000110
## T_D-T_B  2.25  0.4068487  4.093151 0.0159207
## T_D-T_C -3.00 -4.8431513 -1.156849 0.0020041

TOTAL

boxplot(Total~Tratamientos)

ato <- aov(Total~Tratamientos)
summary(ato)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## Tratamientos  3   22.5   7.500   3.673 0.0437 *
## Residuals    12   24.5   2.042                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ato)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Total ~ Tratamientos)
## 
## $Tratamientos
##          diff       lwr        upr     p adj
## T_B-T_A  1.50 -1.499668  4.4996678 0.4755365
## T_C-T_A -0.75 -3.749668  2.2496678 0.8781579
## T_D-T_A -1.75 -4.749668  1.2496678 0.3502697
## T_C-T_B -2.25 -5.249668  0.7496678 0.1710975
## T_D-T_B -3.25 -6.249668 -0.2503322 0.0325098
## T_D-T_C -1.00 -3.999668  1.9996678 0.7579067

CONTENIDO RELATIVO DE CLOROFILA

boxplot(Contenido.relativo.de.clorofila..SPAD.~Tratamientos)

acl <- aov(Contenido.relativo.de.clorofila..SPAD.~Tratamientos)
summary(acl)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3  29.73   9.909   21.05 4.52e-05 ***
## Residuals    12   5.65   0.471                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(acl)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Contenido.relativo.de.clorofila..SPAD. ~ Tratamientos)
## 
## $Tratamientos
##          diff       lwr        upr     p adj
## T_B-T_A -0.50 -1.940504  0.9405036 0.7354886
## T_C-T_A -3.55 -4.990504 -2.1094964 0.0000477
## T_D-T_A -1.10 -2.540504  0.3405036 0.1606648
## T_C-T_B -3.05 -4.490504 -1.6094964 0.0002044
## T_D-T_B -0.60 -2.040504  0.8405036 0.6169737
## T_D-T_C  2.45  1.009496  3.8905036 0.0014014

Numero de hojas

boxplot(X.Hojas~Tratamientos)

ah <- aov(X.Hojas~Tratamientos)
summary(ah)
##              Df Sum Sq Mean Sq F value Pr(>F)  
## Tratamientos  3   4.25  1.4167   4.857 0.0195 *
## Residuals    12   3.50  0.2917                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ah)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = X.Hojas ~ Tratamientos)
## 
## $Tratamientos
##          diff        lwr        upr     p adj
## T_B-T_A  0.00 -1.1337678  1.1337678 1.0000000
## T_C-T_A -1.25 -2.3837678 -0.1162322 0.0294480
## T_D-T_A -0.25 -1.3837678  0.8837678 0.9118967
## T_C-T_B -1.25 -2.3837678 -0.1162322 0.0294480
## T_D-T_B -0.25 -1.3837678  0.8837678 0.9118967
## T_D-T_C  1.00 -0.1337678  2.1337678 0.0907414

Longitud

boxplot(Longitud..cm.~Tratamientos)

al <- aov(Longitud..cm.~Tratamientos)
summary(al)
##              Df Sum Sq Mean Sq F value  Pr(>F)    
## Tratamientos  3 20.682   6.894   429.8 1.8e-12 ***
## Residuals    12  0.192   0.016                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(al)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Longitud..cm. ~ Tratamientos)
## 
## $Tratamientos
##           diff        lwr        upr     p adj
## T_B-T_A  0.650  0.3841079  0.9158921 0.0000516
## T_C-T_A -2.400 -2.6658921 -2.1341079 0.0000000
## T_D-T_A -0.475 -0.7408921 -0.2091079 0.0009285
## T_C-T_B -3.050 -3.3158921 -2.7841079 0.0000000
## T_D-T_B -1.125 -1.3908921 -0.8591079 0.0000002
## T_D-T_C  1.925  1.6591079  2.1908921 0.0000000

Área foliar

boxplot(Área.foliar..cm2. ~Tratamientos)

aaf <- aov(Área.foliar..cm2. ~Tratamientos)
summary(aaf)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## Tratamientos  3   2465   821.7    2468 <2e-16 ***
## Residuals    12      4     0.3                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aaf)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Área.foliar..cm2. ~ Tratamientos)
## 
## $Tratamientos
##              diff         lwr        upr     p adj
## T_B-T_A   0.47450  -0.7367955   1.685795 0.6598772
## T_C-T_A -27.14000 -28.3512955 -25.928705 0.0000000
## T_D-T_A -21.35225 -22.5635455 -20.140955 0.0000000
## T_C-T_B -27.61450 -28.8257955 -26.403205 0.0000000
## T_D-T_B -21.82675 -23.0380455 -20.615455 0.0000000
## T_D-T_C   5.78775   4.5764545   6.999045 0.0000000

Peso fresco hojas

boxplot(Peso.fresco.hojas~Tratamientos)

apfh <- aov(Peso.fresco.hojas~Tratamientos)
summary(apfh)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## Tratamientos  3 14.949   4.983    4623 <2e-16 ***
## Residuals    12  0.013   0.001                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apfh)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.fresco.hojas ~ Tratamientos)
## 
## $Tratamientos
##             diff        lwr        upr p adj
## T_B-T_A  0.65150  0.5825762  0.7204238     0
## T_C-T_A -1.97350 -2.0424238 -1.9045762     0
## T_D-T_A -0.41325 -0.4821738 -0.3443262     0
## T_C-T_B -2.62500 -2.6939238 -2.5560762     0
## T_D-T_B -1.06475 -1.1336738 -0.9958262     0
## T_D-T_C  1.56025  1.4913262  1.6291738     0

Peso seco hojas

boxplot(Peso.seco.hojas ~Tratamientos)

apsh <- aov(Peso.seco.hojas ~Tratamientos)
summary(apsh)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3 0.1369 0.04565   116.5 3.86e-09 ***
## Residuals    12 0.0047 0.00039                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apsh)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.seco.hojas ~ Tratamientos)
## 
## $Tratamientos
##            diff         lwr         upr     p adj
## T_B-T_A  0.1190  0.07744864  0.16055136 0.0000104
## T_C-T_A -0.1380 -0.17955136 -0.09644864 0.0000022
## T_D-T_A -0.0455 -0.08705136 -0.00394864 0.0306151
## T_C-T_B -0.2570 -0.29855136 -0.21544864 0.0000000
## T_D-T_B -0.1645 -0.20605136 -0.12294864 0.0000003
## T_D-T_C  0.0925  0.05094864  0.13405136 0.0001277

Peso fresco

boxplot(Peso.fresco ~Tratamientos)

apf <- aov(Peso.fresco ~Tratamientos)
summary(apf)
##              Df    Sum Sq  Mean Sq F value   Pr(>F)    
## Tratamientos  3 7.199e-05 2.40e-05    94.8 1.27e-08 ***
## Residuals    12 3.040e-06 2.53e-07                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apf)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.fresco ~ Tratamientos)
## 
## $Tratamientos
##              diff           lwr           upr     p adj
## T_B-T_A  0.000175 -0.0008812051  0.0012312051 0.9594066
## T_C-T_A -0.004950 -0.0060062051 -0.0038937949 0.0000000
## T_D-T_A -0.000400 -0.0014562051  0.0006562051 0.6822407
## T_C-T_B -0.005125 -0.0061812051 -0.0040687949 0.0000000
## T_D-T_B -0.000575 -0.0016312051  0.0004812051 0.4062416
## T_D-T_C  0.004550  0.0034937949  0.0056062051 0.0000001

Peso saturación

boxplot(Peso.a.saturación ~Tratamientos)

apsa <- aov(Peso.a.saturación ~Tratamientos)
summary(apsa)
##              Df    Sum Sq   Mean Sq F value Pr(>F)
## Tratamientos  3 1.572e-06 5.242e-07   1.326  0.312
## Residuals    12 4.745e-06 3.954e-07
TukeyHSD(apsa)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.a.saturación ~ Tratamientos)
## 
## $Tratamientos
##              diff          lwr          upr     p adj
## T_B-T_A -0.000525 -0.001845104 0.0007951042 0.6495753
## T_C-T_A -0.000275 -0.001595104 0.0010451042 0.9242015
## T_D-T_A -0.000850 -0.002170104 0.0004701042 0.2738980
## T_C-T_B  0.000250 -0.001070104 0.0015701042 0.9413589
## T_D-T_B -0.000325 -0.001645104 0.0009951042 0.8828427
## T_D-T_C -0.000575 -0.001895104 0.0007451042 0.5840143

Peso seco

boxplot(Peso.seco ~Tratamientos)

aps<- aov(Peso.seco ~Tratamientos)
summary(aps)
##              Df    Sum Sq   Mean Sq F value Pr(>F)
## Tratamientos  3 5.187e-08 1.729e-08   1.137  0.373
## Residuals    12 1.825e-07 1.521e-08
TukeyHSD(aps)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.seco ~ Tratamientos)
## 
## $Tratamientos
##              diff           lwr          upr     p adj
## T_B-T_A -0.000025 -0.0002838937 0.0002338937 0.9913571
## T_C-T_A -0.000050 -0.0003088937 0.0002088937 0.9381530
## T_D-T_A  0.000100 -0.0001588937 0.0003588937 0.6692981
## T_C-T_B -0.000025 -0.0002838937 0.0002338937 0.9913571
## T_D-T_B  0.000125 -0.0001338937 0.0003838937 0.5038115
## T_D-T_C  0.000150 -0.0001088937 0.0004088937 0.3557899

Contenido relativo de agua

boxplot(CRA ~Tratamientos)

acra <- aov(CRA ~Tratamientos)
summary(acra)
##              Df  Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3 0.24458 0.08153   83.52 2.62e-08 ***
## Residuals    12 0.01171 0.00098                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(acra)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CRA ~ Tratamientos)
## 
## $Tratamientos
##                diff         lwr         upr     p adj
## T_B-T_A  0.03473929 -0.03085103  0.10032962 0.4286922
## T_C-T_A -0.26664129 -0.33223162 -0.20105096 0.0000002
## T_D-T_A  0.01769151 -0.04789881  0.08328184 0.8527621
## T_C-T_B -0.30138059 -0.36697091 -0.23579026 0.0000001
## T_D-T_B -0.01704778 -0.08263811  0.04854255 0.8656867
## T_D-T_C  0.28433280  0.21874248  0.34992313 0.0000001

Diametro

boxplot(Diámetro..mm. ~Tratamientos)

ad <- aov(Diámetro..mm. ~Tratamientos)
summary(ad)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## Tratamientos  3  317.5  105.83    2374 <2e-16 ***
## Residuals    12    0.5    0.04                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ad)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Diámetro..mm. ~ Tratamientos)
## 
## $Tratamientos
##            diff         lwr         upr     p adj
## T_B-T_A  -0.050  -0.4932686   0.3932686 0.9864131
## T_C-T_A -10.925 -11.3682686 -10.4817314 0.0000000
## T_D-T_A  -4.125  -4.5682686  -3.6817314 0.0000000
## T_C-T_B -10.875 -11.3182686 -10.4317314 0.0000000
## T_D-T_B  -4.075  -4.5182686  -3.6317314 0.0000000
## T_D-T_C   6.800   6.3567314   7.2432686 0.0000000

Peso fresco raíz

boxplot(Peso.fresco.raiz ~Tratamientos)

apfr <- aov(Peso.fresco.raiz ~Tratamientos)
summary(apfr)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3  38.31  12.771    1518 9.65e-16 ***
## Residuals    12   0.10   0.008                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apfr)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.fresco.raiz ~ Tratamientos)
## 
## $Tratamientos
##             diff        lwr         upr    p adj
## T_B-T_A -0.20375 -0.3962966 -0.01120345 0.037054
## T_C-T_A -3.88525 -4.0777966 -3.69270345 0.000000
## T_D-T_A -1.22350 -1.4160466 -1.03095345 0.000000
## T_C-T_B -3.68150 -3.8740466 -3.48895345 0.000000
## T_D-T_B -1.01975 -1.2122966 -0.82720345 0.000000
## T_D-T_C  2.66175  2.4692034  2.85429655 0.000000

Peso seco raíz

boxplot(Peso.seco.raiz ~Tratamientos)

apsr <- aov(Peso.seco.raiz ~Tratamientos)
summary(apsr)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3 0.4190  0.1397   713.2 8.81e-14 ***
## Residuals    12 0.0024  0.0002                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(apsr)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Peso.seco.raiz ~ Tratamientos)
## 
## $Tratamientos
##             diff         lwr          upr     p adj
## T_B-T_A  0.01350 -0.01587969  0.042879686 0.5430053
## T_C-T_A -0.37200 -0.40137969 -0.342620314 0.0000000
## T_D-T_A -0.00975 -0.03912969  0.019629686 0.7603361
## T_C-T_B -0.38550 -0.41487969 -0.356120314 0.0000000
## T_D-T_B -0.02325 -0.05262969  0.006129686 0.1409882
## T_D-T_C  0.36225  0.33287031  0.391629686 0.0000000

CE min

boxplot(CE.60.min ~Tratamientos)

acm <- aov(CE.60.min ~Tratamientos)
summary(acm)
##              Df   Sum Sq  Mean Sq F value   Pr(>F)    
## Tratamientos  3 0.017172 0.005724   97.86 1.06e-08 ***
## Residuals    12 0.000702 0.000058                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(acm)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CE.60.min ~ Tratamientos)
## 
## $Tratamientos
##             diff           lwr         upr     p adj
## T_B-T_A  0.01510 -0.0009557585  0.03115576 0.0677050
## T_C-T_A  0.08650  0.0704442415  0.10255576 0.0000000
## T_D-T_A  0.02825  0.0121942415  0.04430576 0.0010559
## T_C-T_B  0.07140  0.0553442415  0.08745576 0.0000001
## T_D-T_B  0.01315 -0.0029057585  0.02920576 0.1235070
## T_D-T_C -0.05825 -0.0743057585 -0.04219424 0.0000008

CE max

boxplot(CE.max ~Tratamientos)

acmax <- aov(CE.max ~Tratamientos)
summary(acmax)
##              Df  Sum Sq  Mean Sq F value Pr(>F)
## Tratamientos  3 0.00222 0.000740   0.164  0.918
## Residuals    12 0.05413 0.004511
TukeyHSD(acmax)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = CE.max ~ Tratamientos)
## 
## $Tratamientos
##             diff        lwr       upr     p adj
## T_B-T_A -0.01875 -0.1597477 0.1222477 0.9781786
## T_C-T_A -0.02950 -0.1704977 0.1114977 0.9233202
## T_D-T_A -0.00400 -0.1449977 0.1369977 0.9997731
## T_C-T_B -0.01075 -0.1517477 0.1302477 0.9956846
## T_D-T_B  0.01475 -0.1262477 0.1557477 0.9890834
## T_D-T_C  0.02550 -0.1154977 0.1664977 0.9482912

%PE

boxplot(X..PE ~Tratamientos)

ape <- aov(X..PE ~Tratamientos)
summary(ape)
##              Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamientos  3 163.59   54.53   264.5 3.18e-11 ***
## Residuals    12   2.47    0.21                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(ape)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = X..PE ~ Tratamientos)
## 
## $Tratamientos
##              diff        lwr       upr     p adj
## T_B-T_A  1.564843  0.6117023  2.517983 0.0018695
## T_C-T_A  8.459442  7.5063020  9.412583 0.0000000
## T_D-T_A  2.627077  1.6739370  3.580218 0.0000155
## T_C-T_B  6.894600  5.9414595  7.847740 0.0000000
## T_D-T_B  1.062235  0.1090945  2.015375 0.0276773
## T_D-T_C -5.832365 -6.7855052 -4.879225 0.0000000

MUESTREO 4

library(readxl)
Datos_muestreo_4 <- read_excel("C:/Users/USER/Desktop/Kahomy/Fisiologia/Datos muestreo 4.xlsx")
View(Datos_muestreo_4)
attach(Datos_muestreo_4)
## The following object is masked from datos3:
## 
##     Tratamientos
## The following objects are masked from datos2:
## 
##     Contenido relativo de clorofila (SPAD), Tratamientos
## The following objects are masked from Datos_muestreo_1:
## 
##     Area foliar (cm2), Contenido relativo de clorofila (SPAD), CRA
##     (mg), CRA Peso a saturación (mg), CRA Peso fresco (mg), CRA Peso
##     seco (mg), Diametro Raiz tuberosa (mm), Estomas enves abiertos,
##     Estomas enves cerrados, Estomas enves total, Longitud parte aerea
##     (cm), Numero de hojas, Perdida de electrolitos (%), Perdida de
##     electrolitos CE 60min, Perdida de electrolitos CE max, Peso fresco
##     hojas (g), Peso fresco raiz tuberosa, Peso seco hojas (g), Peso
##     seco raiz tuberosa (g), Temperatura (c°), Tratamientos
names(Datos_muestreo_4)
##  [1] "Tratamientos"                          
##  [2] "Temperatura (c°)"                      
##  [3] "Estomas enves abiertos"                
##  [4] "Estomas enves cerrados"                
##  [5] "Estomas enves total"                   
##  [6] "Contenido relativo de clorofila (SPAD)"
##  [7] "Numero de hojas"                       
##  [8] "Longitud parte aerea (cm)"             
##  [9] "Area foliar (cm2)"                     
## [10] "Peso fresco hojas (g)"                 
## [11] "Peso seco hojas (g)"                   
## [12] "CRA Peso fresco (mg)"                  
## [13] "CRA Peso a saturación (mg)"            
## [14] "CRA Peso seco (mg)"                    
## [15] "CRA (mg)"                              
## [16] "Diametro Raiz tuberosa (mm)"           
## [17] "Peso fresco raiz tuberosa"             
## [18] "Peso seco raiz tuberosa (g)"           
## [19] "Perdida de electrolitos CE 60min"      
## [20] "Perdida de electrolitos CE max"        
## [21] "Perdida de electrolitos (%)"
summary(Datos_muestreo_4)
##  Tratamientos       Temperatura (c°) Estomas enves abiertos
##  Length:16          Min.   :16.90    Min.   :19.00         
##  Class :character   1st Qu.:17.30    1st Qu.:21.00         
##  Mode  :character   Median :17.50    Median :23.00         
##                     Mean   :17.63    Mean   :22.62         
##                     3rd Qu.:17.77    3rd Qu.:24.00         
##                     Max.   :18.60    Max.   :25.00         
##  Estomas enves cerrados Estomas enves total
##  Min.   :18.00          Min.   :40.00      
##  1st Qu.:20.75          1st Qu.:42.00      
##  Median :21.00          Median :44.00      
##  Mean   :21.25          Mean   :43.88      
##  3rd Qu.:23.00          3rd Qu.:45.00      
##  Max.   :24.00          Max.   :48.00      
##  Contenido relativo de clorofila (SPAD) Numero de hojas
##  Min.   :37.20                          Min.   :6.0    
##  1st Qu.:38.62                          1st Qu.:7.0    
##  Median :39.85                          Median :7.5    
##  Mean   :39.48                          Mean   :7.5    
##  3rd Qu.:40.23                          3rd Qu.:8.0    
##  Max.   :41.20                          Max.   :9.0    
##  Longitud parte aerea (cm) Area foliar (cm2) Peso fresco hojas (g)
##  Min.   :13.10             Min.   :184.9     Min.   : 8.739       
##  1st Qu.:14.03             1st Qu.:200.4     1st Qu.: 9.695       
##  Median :14.61             Median :218.7     Median :10.219       
##  Mean   :14.35             Mean   :213.6     Mean   :10.036       
##  3rd Qu.:14.72             3rd Qu.:230.9     3rd Qu.:10.637       
##  Max.   :15.20             Max.   :234.2     Max.   :10.935       
##  Peso seco hojas (g) CRA Peso fresco (mg) CRA Peso a saturación (mg)
##  Min.   :0.889       Min.   :0.01210      Min.   :0.01820           
##  1st Qu.:1.006       1st Qu.:0.01588      1st Qu.:0.01837           
##  Median :1.149       Median :0.01725      Median :0.01920           
##  Mean   :1.110       Mean   :0.01653      Mean   :0.01935           
##  3rd Qu.:1.209       3rd Qu.:0.01825      3rd Qu.:0.01980           
##  Max.   :1.302       Max.   :0.01930      Max.   :0.02180           
##  CRA Peso seco (mg)    CRA (mg)      Diametro Raiz tuberosa (mm)
##  Min.   :0.001700   Min.   :0.5833   Min.   :35.70              
##  1st Qu.:0.001900   1st Qu.:0.7736   1st Qu.:43.40              
##  Median :0.002100   Median :0.9088   Median :47.10              
##  Mean   :0.002031   Mean   :0.8389   Mean   :44.74              
##  3rd Qu.:0.002100   3rd Qu.:0.9335   3rd Qu.:48.42              
##  Max.   :0.002300   Max.   :0.9556   Max.   :49.20              
##  Peso fresco raiz tuberosa Peso seco raiz tuberosa (g)
##  Min.   :15.39             Min.   :1.638              
##  1st Qu.:17.99             1st Qu.:1.866              
##  Median :19.20             Median :1.976              
##  Mean   :18.52             Mean   :1.943              
##  3rd Qu.:19.73             3rd Qu.:2.096              
##  Max.   :20.12             Max.   :2.184              
##  Perdida de electrolitos CE 60min Perdida de electrolitos CE max
##  Min.   :0.05930                  Min.   :0.978                 
##  1st Qu.:0.07340                  1st Qu.:1.010                 
##  Median :0.09115                  Median :1.055                 
##  Mean   :0.09733                  Mean   :1.051                 
##  3rd Qu.:0.12275                  3rd Qu.:1.101                 
##  Max.   :0.15200                  Max.   :1.131                 
##  Perdida de electrolitos (%)
##  Min.   : 5.785             
##  1st Qu.: 6.814             
##  Median : 8.639             
##  Mean   : 9.297             
##  3rd Qu.:12.394             
##  Max.   :14.829

Temperatura

boxplot(`Temperatura (c°)`~ Tratamientos)

aov1 = aov(Datos_muestreo_4$`Temperatura (c°)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov1)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3  3.992  1.3306   44.05 9.41e-07 ***
## Residuals                     12  0.363  0.0302                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Temperatura (c°)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                        diff         lwr       upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.300 -0.06487501  0.664875 0.1216268
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM    1.250  0.88512499  1.614875 0.0000016
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   0.075 -0.28987501  0.439875 0.9268586
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM   0.950  0.58512499  1.314875 0.0000276
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.225 -0.58987501  0.139875 0.3066660
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -1.175 -1.53987501 -0.810125 0.0000030
shapiro.test(Datos_muestreo_4$`Temperatura (c°)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Temperatura (c°)`
## W = 0.85445, p-value = 0.01585

Contenido relativo de clorofila

boxplot(`Contenido relativo de clorofila (SPAD)`~ Tratamientos)

aov2 = aov(Datos_muestreo_4$`Contenido relativo de clorofila (SPAD)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov2)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3 18.845   6.282   29.39 8.21e-06 ***
## Residuals                     12  2.565   0.214                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Contenido relativo de clorofila (SPAD)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                        diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.875 -0.0955855  1.8455855 0.0823471
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -1.925 -2.8955855 -0.9544145 0.0003716
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   0.550 -0.4205855  1.5205855 0.3736650
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -2.800 -3.7705855 -1.8294145 0.0000097
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.325 -1.2955855  0.6455855 0.7555175
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    2.475  1.5044145  3.4455855 0.0000340
shapiro.test(Datos_muestreo_4$`Contenido relativo de clorofila (SPAD)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Contenido relativo de clorofila (SPAD)`
## W = 0.88537, p-value = 0.04708

Numero de Hojas

boxplot(`Numero de hojas`~ Tratamientos)

aov3 = aov(Datos_muestreo_4$`Numero de hojas`~Datos_muestreo_4$Tratamientos)
summary.aov(aov3)
##                               Df Sum Sq Mean Sq F value  Pr(>F)   
## Datos_muestreo_4$Tratamientos  3      5   1.667   6.667 0.00671 **
## Residuals                     12      3   0.250                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov3)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Numero de hojas` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                      diff        lwr         upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.5 -0.5496651  1.54966506 0.5146067
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -1.0 -2.0496651  0.04966506 0.0636452
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.5 -1.5496651  0.54966506 0.5146067
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -1.5 -2.5496651 -0.45033494 0.0054319
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -1.0 -2.0496651  0.04966506 0.0636452
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.5 -0.5496651  1.54966506 0.5146067
shapiro.test(Datos_muestreo_4$`Numero de hojas`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Numero de hojas`
## W = 0.8555, p-value = 0.01643

Estomas enves abiertos

boxplot(`Estomas enves abiertos`~ Tratamientos)

aov4 = aov(Datos_muestreo_4$`Estomas enves abiertos`~Datos_muestreo_4$Tratamientos)
summary.aov(aov4)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3  39.25  13.083   12.56 0.000519 ***
## Residuals                     12  12.50   1.042                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov4)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Estomas enves abiertos` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                       diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.25 -1.8926198  2.3926198 0.9850160
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -3.50 -5.6426198 -1.3573802 0.0019470
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -2.25 -4.3926198 -0.1073802 0.0386320
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -3.75 -5.8926198 -1.6073802 0.0011041
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -2.50 -4.6426198 -0.3573802 0.0210808
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    1.25 -0.8926198  3.3926198 0.3502697
shapiro.test(Datos_muestreo_4$`Estomas enves abiertos`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Estomas enves abiertos`
## W = 0.93701, p-value = 0.314

Estomas enves cerrados

boxplot(`Estomas enves cerrados`~ Tratamientos)

aov5 = aov(Datos_muestreo_4$`Estomas enves cerrados`~Datos_muestreo_4$Tratamientos)
summary.aov(aov5)
##                               Df Sum Sq Mean Sq F value Pr(>F)  
## Datos_muestreo_4$Tratamientos  3   18.5   6.167    3.02 0.0716 .
## Residuals                     12   24.5   2.042                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov5)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Estomas enves cerrados` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                       diff        lwr      upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.50 -2.4996678 3.499668 0.9587232
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM    2.75 -0.2496678 5.749668 0.0762928
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   1.75 -1.2496678 4.749668 0.3502697
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM   2.25 -0.7496678 5.249668 0.1710975
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  1.25 -1.7496678 4.249668 0.6166413
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -1.00 -3.9996678 1.999668 0.7579067
shapiro.test(Datos_muestreo_4$`Estomas enves cerrados`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Estomas enves cerrados`
## W = 0.93157, p-value = 0.2581

Estomas enves total

boxplot(`Estomas enves total`~ Tratamientos)

aov6 = aov(Datos_muestreo_4$`Estomas enves total`~Datos_muestreo_4$Tratamientos)
summary.aov(aov6)
##                               Df Sum Sq Mean Sq F value Pr(>F)
## Datos_muestreo_4$Tratamientos  3   5.25   1.750   0.385  0.766
## Residuals                     12  54.50   4.542
TukeyHSD(aov6)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Estomas enves total` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                       diff       lwr      upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.75 -3.723922 5.223922 0.9580640
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.75 -5.223922 3.723922 0.9580640
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.50 -4.973922 3.973922 0.9867729
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -1.50 -5.973922 2.973922 0.7548267
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -1.25 -5.723922 3.223922 0.8395264
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.25 -4.223922 4.723922 0.9982822
shapiro.test(Datos_muestreo_4$`Estomas enves total`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Estomas enves total`
## W = 0.96308, p-value = 0.7179

Longitud de la parte aerea

boxplot(`Longitud parte aerea (cm)`~ Tratamientos)

aov7 = aov(Datos_muestreo_4$`Longitud parte aerea (cm)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov7)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3  6.354  2.1181   69.27 7.58e-08 ***
## Residuals                     12  0.367  0.0306                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov7)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Longitud parte aerea (cm)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                          diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.25925 -0.1078551  0.6263551 0.2089134
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -1.39075 -1.7578551 -1.0236449 0.0000005
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.24075 -0.6078551  0.1263551 0.2604027
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -1.65000 -2.0171051 -1.2828949 0.0000001
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.50000 -0.8671051 -0.1328949 0.0076587
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    1.15000  0.7828949  1.5171051 0.0000041
shapiro.test(Datos_muestreo_4$`Longitud parte aerea (cm)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Longitud parte aerea (cm)`
## W = 0.84691, p-value = 0.01227

Area foliar (cm2)

boxplot(`Area foliar (cm2)`~ Tratamientos)

aov8 = aov(Datos_muestreo_4$`Area foliar (cm2)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov8)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3   5771  1923.7    1041 9.19e-15 ***
## Residuals                     12     22     1.8                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov8)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Area foliar (cm2)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                           diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM   0.74900  -2.104285   3.602285 0.8623255
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -45.10850 -47.961785 -42.255215 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -23.97925 -26.832535 -21.125965 0.0000000
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -45.85750 -48.710785 -43.004215 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -24.72825 -27.581535 -21.874965 0.0000000
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    21.12925  18.275965  23.982535 0.0000000
shapiro.test(Datos_muestreo_4$`Area foliar (cm2)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Area foliar (cm2)`
## W = 0.80518, p-value = 0.003193

Peso fresco hojas (g)

boxplot(`Peso fresco hojas (g)`~ Tratamientos)

aov9 = aov(Datos_muestreo_1$`Peso fresco hojas (g)`~Datos_muestreo_1$Tratamientos)
summary.aov(aov9)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_1$Tratamientos  3 19.934   6.645   49.77 4.81e-07 ***
## Residuals                     12  1.602   0.134                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov9)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_1$`Peso fresco hojas (g)` ~ Datos_muestreo_1$Tratamientos)
## 
## $`Datos_muestreo_1$Tratamientos`
##                                          diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  1.22450  0.4574295  1.9915705 0.0023396
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -1.90375 -2.6708205 -1.1366795 0.0000445
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.36125 -1.1283205  0.4058205 0.5236522
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -3.12825 -3.8953205 -2.3611795 0.0000002
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -1.58575 -2.3528205 -0.8186795 0.0002549
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    1.54250  0.7754295  2.3095705 0.0003281
shapiro.test(Datos_muestreo_1$`Peso fresco hojas (g)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_1$`Peso fresco hojas (g)`
## W = 0.94789, p-value = 0.457

Peso seco hojas (g)

boxplot(`Peso seco hojas (g)`~ Tratamientos)

aov10 = aov(Datos_muestreo_4$`Peso seco hojas (g)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov10)
##                               Df Sum Sq Mean Sq F value  Pr(>F)    
## Datos_muestreo_4$Tratamientos  3 0.3220 0.10732   126.5 2.4e-09 ***
## Residuals                     12 0.0102 0.00085                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov10)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Peso seco hojas (g)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                          diff        lwr          upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -0.06475 -0.1259007 -0.003599315 0.0369250
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.37000 -0.4311507 -0.308849315 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.20150 -0.2626507 -0.140349315 0.0000024
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.30525 -0.3664007 -0.244099315 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.13675 -0.1979007 -0.075599315 0.0001223
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.16850  0.1073493  0.229650685 0.0000155
shapiro.test(Datos_muestreo_4$`Peso seco hojas (g)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Peso seco hojas (g)`
## W = 0.89138, p-value = 0.05858

CRA Peso freco (mg)

boxplot(`CRA Peso fresco (mg)`~ Tratamientos)

aov11 = aov(Datos_muestreo_4$`CRA Peso fresco (mg)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov11)
##                               Df    Sum Sq   Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3 9.101e-05 3.034e-05   101.1 8.75e-09 ***
## Residuals                     12 3.600e-06 3.000e-07                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov11)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`CRA Peso fresco (mg)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                          diff           lwr           upr
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.00055 -0.0005998505  0.0016998505
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.00550 -0.0066498505 -0.0043501495
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.00095 -0.0020998505  0.0001998505
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.00605 -0.0071998505 -0.0049001495
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.00150 -0.0026498505 -0.0003501495
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.00455  0.0034001495  0.0056998505
##                                          p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM 0.5112991
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  0.1193002
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM 0.0103054
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   0.0000003
shapiro.test(Datos_muestreo_4$`CRA Peso fresco (mg)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`CRA Peso fresco (mg)`
## W = 0.80197, p-value = 0.002893

CRA Peso a saturacion (mg)

boxplot(`CRA Peso a saturación (mg)`~ Tratamientos)

aov12 = aov(Datos_muestreo_4$`CRA Peso a saturación (mg)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov12)
##                               Df    Sum Sq   Mean Sq F value Pr(>F)
## Datos_muestreo_4$Tratamientos  3 5.735e-06 1.912e-06   2.119  0.151
## Residuals                     12 1.083e-05 9.021e-07
TukeyHSD(aov12)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`CRA Peso a saturación (mg)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                           diff          lwr          upr
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -0.000625 -0.002618903 0.0013689032
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.000800 -0.002793903 0.0011939032
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.001675 -0.003668903 0.0003189032
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.000175 -0.002168903 0.0018189032
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.001050 -0.003043903 0.0009439032
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -0.000875 -0.002868903 0.0011189032
##                                          p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM 0.7893737
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   0.6434750
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  0.1115315
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  0.9934675
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM 0.4333883
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   0.5783836
shapiro.test(Datos_muestreo_4$`CRA Peso a saturación (mg)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`CRA Peso a saturación (mg)`
## W = 0.89882, p-value = 0.07696

CRA Peso seco (mg)

boxplot(`CRA Peso seco (mg)`~ Tratamientos)

aov13 = aov(Datos_muestreo_4$`CRA Peso seco (mg)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov13)
##                               Df    Sum Sq   Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3 3.319e-07 1.106e-07   10.84 0.000987 ***
## Residuals                     12 1.225e-07 1.021e-08                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov13)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`CRA Peso seco (mg)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                           diff           lwr           upr
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.000050 -1.621085e-04  2.621085e-04
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.000325 -5.371085e-04 -1.128915e-04
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.000100 -3.121085e-04  1.121085e-04
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.000375 -5.871085e-04 -1.628915e-04
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.000150 -3.621085e-04  6.210854e-05
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.000225  1.289146e-05  4.371085e-04
##                                          p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM 0.8951748
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   0.0032213
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  0.5227964
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  0.0010140
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM 0.2079957
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   0.0365606
shapiro.test(Datos_muestreo_4$`CRA Peso seco (mg)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`CRA Peso seco (mg)`
## W = 0.93676, p-value = 0.3112

CRA (mg)

boxplot(`CRA (mg)`~ Tratamientos)

aov14 = aov(Datos_muestreo_4$`CRA (mg)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov14)
##                               Df  Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3 0.28289 0.09430   108.2 5.92e-09 ***
## Residuals                     12 0.01046 0.00087                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov14)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`CRA (mg)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                             diff          lwr         upr
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.06090023 -0.001067927  0.12286838
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.27231898 -0.334287130 -0.21035082
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   0.03121809 -0.030750061  0.09318625
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.33321920 -0.395187357 -0.27125105
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.02968213 -0.091650287  0.03228602
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.30353707  0.241568916  0.36550522
##                                          p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM 0.0546091
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   0.0000001
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  0.4695200
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM 0.5101868
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   0.0000000
shapiro.test(Datos_muestreo_4$`CRA (mg)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`CRA (mg)`
## W = 0.73532, p-value = 0.0004251

Diametro Raiz tuberosa (mm)

boxplot(`Diametro Raiz tuberosa (mm)`~ Tratamientos)

aov15 = aov(Datos_muestreo_4$`Diametro Raiz tuberosa (mm)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov15)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3  428.7  142.91    1563 8.12e-16 ***
## Residuals                     12    1.1    0.09                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov15)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Diametro Raiz tuberosa (mm)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                         diff         lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM   0.475  -0.1598811   1.109881 0.1726158
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -12.300 -12.9348811 -11.665119 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   -2.200  -2.8348811  -1.565119 0.0000014
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -12.775 -13.4098811 -12.140119 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  -2.675  -3.3098811  -2.040119 0.0000002
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    10.100   9.4651189  10.734881 0.0000000
shapiro.test(Datos_muestreo_4$`Diametro Raiz tuberosa (mm)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Diametro Raiz tuberosa (mm)`
## W = 0.7066, p-value = 0.0001997

Peso fresco raiz tuberosa

boxplot(`Peso fresco raiz tuberosa`~ Tratamientos)

aov16 = aov(Datos_muestreo_4$`Peso fresco raiz tuberosa`~Datos_muestreo_4$Tratamientos)
summary.aov(aov16)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3  48.65  16.218    1401 1.56e-15 ***
## Residuals                     12   0.14   0.012                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov16)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Peso fresco raiz tuberosa` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                         diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM  0.4420  0.2161065  0.6678935 0.0004196
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -4.0055 -4.2313935 -3.7796065 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.7305 -0.9563935 -0.5046065 0.0000029
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -4.4475 -4.6733935 -4.2216065 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -1.1725 -1.3983935 -0.9466065 0.0000000
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    3.2750  3.0491065  3.5008935 0.0000000
shapiro.test(Datos_muestreo_4$`Peso fresco raiz tuberosa`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Peso fresco raiz tuberosa`
## W = 0.75056, p-value = 0.0006452

Peso seco raiz tuberosa (g)

boxplot(`Peso seco raiz tuberosa (g)`~ Tratamientos)

aov17 = aov(Datos_muestreo_4$`Peso seco raiz tuberosa (g)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov17)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3 0.5084 0.16946   106.3 6.55e-09 ***
## Residuals                     12 0.0191 0.00159                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov17)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Peso seco raiz tuberosa (g)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                          diff         lwr         upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -0.00875 -0.09255794  0.07505794 0.9891460
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.44050 -0.52430794 -0.35669206 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  -0.16825 -0.25205794 -0.08444206 0.0003331
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.43175 -0.51555794 -0.34794206 0.0000000
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM -0.15950 -0.24330794 -0.07569206 0.0005367
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.27225  0.18844206  0.35605794 0.0000028
shapiro.test(Datos_muestreo_4$`Peso seco raiz tuberosa (g)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Peso seco raiz tuberosa (g)`
## W = 0.85469, p-value = 0.01598

Perdida de electrolitos CE 60min

boxplot(`Perdida de electrolitos CE 60min`~ Tratamientos)

aov18 = aov(Datos_muestreo_4$`Perdida de electrolitos CE 60min`~Datos_muestreo_4$Tratamientos)
summary.aov(aov18)
##                               Df   Sum Sq  Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3 0.011973 0.003991   44.73 8.64e-07 ***
## Residuals                     12 0.001071 0.000089                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov18)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Perdida de electrolitos CE 60min` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                           diff         lwr         upr
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -0.013825 -0.03365374  0.00600374
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM    0.058175  0.03834626  0.07800374
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   0.024675  0.00484626  0.04450374
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM   0.072000  0.05217126  0.09182874
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  0.038500  0.01867126  0.05832874
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -0.033500 -0.05332874 -0.01367126
##                                          p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM 0.2174409
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   0.0000081
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM  0.0140769
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  0.0000008
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM 0.0004495
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   0.0014806
shapiro.test(Datos_muestreo_4$`Perdida de electrolitos CE 60min`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Perdida de electrolitos CE 60min`
## W = 0.92821, p-value = 0.2284

Perdida de electrolitos CE max

boxplot(`Perdida de electrolitos CE max`~ Tratamientos)

aov19 = aov(Datos_muestreo_4$`Perdida de electrolitos CE max`~Datos_muestreo_4$Tratamientos)
summary.aov(aov19)
##                               Df  Sum Sq   Mean Sq F value Pr(>F)
## Datos_muestreo_4$Tratamientos  3 0.00284 0.0009472   0.308  0.819
## Residuals                     12 0.03686 0.0030715
TukeyHSD(aov19)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Perdida de electrolitos CE max` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                          diff         lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -0.01550 -0.13184682 0.10084682 0.9780651
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM   -0.03050 -0.14684682 0.08584682 0.8627911
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   0.00275 -0.11359682 0.11909682 0.9998686
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM  -0.01500 -0.13134682 0.10134682 0.9800298
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  0.01825 -0.09809682 0.13459682 0.9651646
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM    0.03325 -0.08309682 0.14959682 0.8305251
shapiro.test(Datos_muestreo_4$`Perdida de electrolitos CE max`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Perdida de electrolitos CE max`
## W = 0.91412, p-value = 0.1356

Perdida de electrolitos (%)

boxplot(`Perdida de electrolitos (%)`~ Tratamientos)

aov20 = aov(Datos_muestreo_4$`Perdida de electrolitos (%)`~Datos_muestreo_4$Tratamientos)
summary.aov(aov20)
##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Datos_muestreo_4$Tratamientos  3 116.71   38.90   38.43 1.97e-06 ***
## Residuals                     12  12.15    1.01                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov20)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Datos_muestreo_4$`Perdida de electrolitos (%)` ~ Datos_muestreo_4$Tratamientos)
## 
## $`Datos_muestreo_4$Tratamientos`
##                                           diff        lwr        upr     p adj
## 100% CM - Tr 20 mM-100% CM - Tr 0 mM -1.224266 -3.3364757  0.8879436 0.3554778
## 50% CM - Tr 0 mM-100% CM - Tr 0 mM    5.862960  3.7507499  7.9751692 0.0000144
## 50% CM - Tr 20 mM-100% CM - Tr 0 mM   2.342664  0.2304546  4.4548739 0.0284576
## 50% CM - Tr 0 mM-100% CM - Tr 20 mM   7.087226  4.9750159  9.1994352 0.0000020
## 50% CM - Tr 20 mM-100% CM - Tr 20 mM  3.566930  1.4547206  5.6791400 0.0014860
## 50% CM - Tr 20 mM-50% CM - Tr 0 mM   -3.520295 -5.6325049 -1.4080856 0.0016550
shapiro.test(Datos_muestreo_4$`Perdida de electrolitos (%)`)
## 
##  Shapiro-Wilk normality test
## 
## data:  Datos_muestreo_4$`Perdida de electrolitos (%)`
## W = 0.88526, p-value = 0.04691