Q5 In Chapter 4, we used logisitc regression to predict the probability of “default” using “income” and “balance” on the “Default” data set. We will now estimate the test error of this logistic regression model using the validation set approach. Do not forget to set a random seed before beginning your analysis.
a. Fit a logistic regression model that uses “income” and “balance” to predict “default”.
library(ISLR)
## Warning: package 'ISLR' was built under R version 4.0.5
attach(Default)
set.seed(1)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial")
summary(fit.glm)
##
## Call:
## glm(formula = default ~ income + balance, family = "binomial",
## data = Default)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4725 -0.1444 -0.0574 -0.0211 3.7245
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.154e+01 4.348e-01 -26.545 < 2e-16 ***
## income 2.081e-05 4.985e-06 4.174 2.99e-05 ***
## balance 5.647e-03 2.274e-04 24.836 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2920.6 on 9999 degrees of freedom
## Residual deviance: 1579.0 on 9997 degrees of freedom
## AIC: 1585
##
## Number of Fisher Scoring iterations: 8
c. Repeat the process in (b) three times, using three different splits of the observations into a training set and a validation set. Comment on the results obtained.
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0274
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
train <- sample(dim(Default)[1], dim(Default)[1] / 2)
fit.glm <- glm(default ~ income + balance, data = Default, family = "binomial", subset = train)
probs <- predict(fit.glm, newdata = Default[-train, ], type = "response")
pred.glm <- rep("No", length(probs))
pred.glm[probs > 0.5] <- "Yes"
mean(pred.glm != Default[-train, ]$default)
## [1] 0.0244
We see that the validation estimate of the test error rate can be variable, depending on precisely which observations are included in the training set and which observations are included in the validation set.
Q9 We will now consider the “Boston” housing data set, from the “MASS” library.
a. Based on this data set, provide an estimate for the population mean of “medv”. Call this estimate \(μ^\).
library(MASS)
attach(Boston)
mu.hat <- mean(medv)
mu.hat
## [1] 22.53281
b. Provide an estimate of the standard error of \(μ^\). Interpret this result.
se.hat <- sd(medv) / sqrt(dim(Boston)[1])
se.hat
## [1] 0.4088611
c. Now estimate the standard error of \(μ^\) using the bootstrap. How does this compare to your answer from (b)?
set.seed(1)
boot.fn <- function(data, index) {
mu <- mean(data[index])
return (mu)
}
boot(medv, boot.fn, 1000)
##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = medv, statistic = boot.fn, R = 1000)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 22.53281 0.007650791 0.4106622
The bootstrap estimated standard error of \(μ^\) of 0.4119 is very close to the estimate found in (b) of 0.4089.
d. Based on your bootstrap estimate from (c), provide a 95% confidence interval for the mean of “medv”. Compare it to the results obtained using t.test(Boston$medv).
t.test(medv)
##
## One Sample t-test
##
## data: medv
## t = 55.111, df = 505, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 21.72953 23.33608
## sample estimates:
## mean of x
## 22.53281
CI.mu.hat <- c(22.53 - 2 * 0.4119, 22.53 + 2 * 0.4119)
CI.mu.hat
## [1] 21.7062 23.3538
The bootstrap confidence interval is very close to the one provided by the t.test() function.
g. Based on this data set, provide an estimate for the tenth percentile of “medv” in Boston suburbs. Call this quantity \(μ^0.1\).
percent.hat <- quantile(medv, c(0.1))
percent.hat
## 10%
## 12.75