1 Nivel nacional URBANO (código 1)
1.1 Pregunta P05: Origen del agua
Esta pregunta posee 4 categorias de respuesta:
1 Red pública
2 Pozo o noria
3 Camión aljibe
4 Río, vertiente, estero, canal, lago, etc.
Leemos las respuestas a la pregunta P05 del censo de viviendas 2017 y obtenemos la tabla de frecuencias por categoría:
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 1)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P05
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
categorias <- sort(unique(tabla_con_clave_u$P05 ))
categorias <- as.data.frame(categorias)
names(categorias)[1] <- "cat"
categorias <- filter(categorias, categorias$cat != 99)
categorias <- filter(categorias, categorias$cat != 98)
d_t <- filter(d,d$unlist.c. == categorias[1,1])
for(i in categorias[2,1]:categorias[nrow(categorias),1]){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
# Agregamos un cero a los códigos comunales de 4 dígitos, que queda en la columna llamada **código**:
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr )[2] <- "Red pública"
names(comuna_corr )[4] <- "Pozo o noria"
names(comuna_corr )[6] <- "Camión aljibe"
names(comuna_corr )[8] <- " Río, vertiente, estero, canal, lago, etc."
renombrar <- seq(1,(ncol(comuna_corr)-2),2)
vv <- 0
for (v in renombrar) {
vv <- vv+1
contador <- paste0("categoria_",vv)
names(comuna_corr )[v] <- contador
}
kbl(head(comuna_corr,50)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
categoria_1 | Red pública | categoria_2 | Pozo o noria | categoria_3 | Camión aljibe | categoria_4 | Río, vertiente, estero, canal, lago, etc. | código |
---|---|---|---|---|---|---|---|---|
1 | 54612 | 2 | 22 | 3 | 57 | 4 | 15 | 01101 |
1 | 26433 | 2 | 75 | 3 | 1622 | 4 | 21 | 01107 |
1 | 2617 | 2 | 20 | 3 | 75 | 4 | 1 | 01401 |
1 | 327 | 2 | 3 | 3 | 15 | 4 | 5 | 01404 |
1 | 1106 | 2 | 132 | 3 | 28 | 4 | 5 | 01405 |
1 | 95652 | 2 | 151 | 3 | 1032 | 4 | 550 | 02101 |
1 | 2629 | 2 | 2 | 3 | 255 | 4 | 1 | 02102 |
1 | 2818 | 2 | 1 | 3 | 339 | 4 | 2 | 02104 |
1 | 44502 | 2 | 33 | 3 | 299 | 4 | 31 | 02201 |
1 | 1361 | 2 | 5 | 3 | 136 | 4 | 11 | 02203 |
1 | 7504 | 2 | 2 | 3 | 31 | 4 | 1 | 02301 |
1 | 1348 | NA | NA | 3 | 2 | NA | NA | 02302 |
1 | 42747 | 2 | 142 | 3 | 1351 | 4 | 31 | 03101 |
1 | 4544 | 2 | 8 | 3 | 272 | NA | NA | 03102 |
1 | 2559 | 2 | 7 | 3 | 286 | 4 | 2 | 03103 |
1 | 3105 | NA | NA | 3 | 150 | 4 | 2 | 03201 |
1 | 3902 | 2 | 1 | 3 | 311 | 4 | 5 | 03202 |
1 | 13501 | 2 | 22 | 3 | 141 | 4 | 51 | 03301 |
1 | 1231 | 2 | 7 | 3 | 137 | 4 | 6 | 03303 |
1 | 2663 | 2 | 5 | 3 | 151 | 4 | 3 | 03304 |
1 | 60898 | 2 | 310 | 3 | 90 | 4 | 61 | 04101 |
1 | 61957 | 2 | 266 | 3 | 769 | 4 | 73 | 04102 |
1 | 2962 | 2 | 8 | 3 | 66 | 4 | 7 | 04103 |
1 | 370 | 2 | 10 | 3 | 10 | 4 | 4 | 04104 |
1 | 5321 | 2 | 9 | 3 | 10 | 4 | 10 | 04106 |
1 | 6631 | 2 | 27 | 3 | 60 | 4 | 22 | 04201 |
1 | 621 | 2 | 5 | 3 | 69 | 4 | 3 | 04202 |
1 | 5656 | 2 | 37 | 3 | 35 | 4 | 19 | 04203 |
1 | 4753 | 2 | 47 | 3 | 180 | 4 | 11 | 04204 |
1 | 26376 | 2 | 59 | 3 | 110 | 4 | 57 | 04301 |
1 | 2046 | 2 | 12 | 3 | 15 | 4 | 8 | 04302 |
1 | 4691 | 2 | 14 | 3 | 80 | 4 | 8 | 04303 |
1 | 1737 | 2 | 62 | 3 | 92 | 4 | 6 | 04304 |
1 | 94666 | 2 | 452 | 3 | 1442 | 4 | 125 | 05101 |
1 | 5629 | 2 | 41 | 3 | 22 | 4 | 3 | 05102 |
1 | 12814 | 2 | 11 | 3 | 22 | 4 | 3 | 05103 |
1 | 3511 | 2 | 1146 | 3 | 682 | 4 | 14 | 05105 |
1 | 7196 | 2 | 1365 | 3 | 99 | 4 | 14 | 05107 |
1 | 114028 | 2 | 392 | 3 | 1051 | 4 | 139 | 05109 |
1 | 2247 | 2 | 23 | 3 | 11 | 4 | 5 | 05201 |
1 | 19133 | 2 | 14 | 3 | 52 | 4 | 7 | 05301 |
1 | 3200 | 2 | 94 | 3 | 10 | 4 | 3 | 05302 |
1 | 2440 | 2 | 25 | 3 | 2 | 4 | 3 | 05303 |
1 | 3586 | 2 | 17 | 3 | 4 | 4 | 15 | 05304 |
1 | 8289 | 2 | 208 | 3 | 52 | 4 | 19 | 05401 |
1 | 3788 | 2 | 19 | 3 | 11 | 4 | 4 | 05402 |
1 | 1737 | 2 | 8 | 3 | 3 | 4 | 3 | 05403 |
1 | 1351 | 2 | 54 | 3 | 23 | 4 | 1 | 05404 |
1 | 1564 | 2 | 83 | 3 | 4 | 4 | 4 | 05405 |
1 | 24708 | 2 | 102 | 3 | 47 | 4 | 33 | 05501 |
1.2 Generación de ingresos promedios a nivel urbano y su unión con la tabla de contingencia
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_urbano_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
comuna_corr <- readRDS("cant_personas_17.rds")
df_2017_exp = merge( x = df_2017_2, y = comuna_corr, by = "código", all.x = TRUE)
df_2017_exp$Ingresos_expandidos <- df_2017_exp$promedio_i*df_2017_exp$personas
df_2017_exp <- filter(df_2017_exp, df_2017_exp$Ingresos_expandidos != 'is.na')
write_xlsx(df_2017_exp,"P05_urbano.xlsx")
kbl(head(df_2017_exp,50)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | categoria_1 | Red pública | categoria_2 | Pozo o noria | categoria_3 | Camión aljibe | categoria_4 | Río, vertiente, estero, canal, lago, etc. | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01101 | 1 | 54612 | 2 | 22 | 3 | 57 | 4 | 15 | Iquique | 375676.9 | 2017 | 1101 | 191468 | 71930106513 |
01107 | 1 | 26433 | 2 | 75 | 3 | 1622 | 4 | 21 | Alto Hospicio | 311571.7 | 2017 | 1107 | 108375 | 33766585496 |
01401 | 1 | 2617 | 2 | 20 | 3 | 75 | 4 | 1 | Pozo Almonte | 316138.5 | 2017 | 1401 | 15711 | 4966851883 |
01405 | 1 | 1106 | 2 | 132 | 3 | 28 | 4 | 5 | Pica | 330061.1 | 2017 | 1405 | 9296 | 3068247619 |
02101 | 1 | 95652 | 2 | 151 | 3 | 1032 | 4 | 550 | Antofagasta | 368221.4 | 2017 | 2101 | 361873 | 133249367039 |
02102 | 1 | 2629 | 2 | 2 | 3 | 255 | 4 | 1 | Mejillones | 369770.7 | 2017 | 2102 | 13467 | 4979702302 |
02104 | 1 | 2818 | 2 | 1 | 3 | 339 | 4 | 2 | Taltal | 383666.2 | 2017 | 2104 | 13317 | 5109282942 |
02201 | 1 | 44502 | 2 | 33 | 3 | 299 | 4 | 31 | Calama | 434325.1 | 2017 | 2201 | 165731 | 71981127235 |
02203 | 1 | 1361 | 2 | 5 | 3 | 136 | 4 | 11 | San Pedro de Atacama | 442861.0 | 2017 | 2203 | 10996 | 4869699464 |
02301 | 1 | 7504 | 2 | 2 | 3 | 31 | 4 | 1 | Tocopilla | 286187.2 | 2017 | 2301 | 25186 | 7207910819 |
02302 | 1 | 1348 | NA | NA | 3 | 2 | NA | NA | María Elena | 477748.0 | 2017 | 2302 | 6457 | 3084818966 |
03101 | 1 | 42747 | 2 | 142 | 3 | 1351 | 4 | 31 | Copiapó | 343121.0 | 2017 | 3101 | 153937 | 52819016037 |
03102 | 1 | 4544 | 2 | 8 | 3 | 272 | NA | NA | Caldera | 318653.2 | 2017 | 3102 | 17662 | 5628052276 |
03103 | 1 | 2559 | 2 | 7 | 3 | 286 | 4 | 2 | Tierra Amarilla | 333194.9 | 2017 | 3103 | 14019 | 4671058718 |
03201 | 1 | 3105 | NA | NA | 3 | 150 | 4 | 2 | Chañaral | 286389.3 | 2017 | 3201 | 12219 | 3499391196 |
03202 | 1 | 3902 | 2 | 1 | 3 | 311 | 4 | 5 | Diego de Almagro | 351583.9 | 2017 | 3202 | 13925 | 4895805596 |
03301 | 1 | 13501 | 2 | 22 | 3 | 141 | 4 | 51 | Vallenar | 315981.5 | 2017 | 3301 | 51917 | 16404810756 |
03303 | 1 | 1231 | 2 | 7 | 3 | 137 | 4 | 6 | Freirina | 289049.9 | 2017 | 3303 | 7041 | 2035200054 |
03304 | 1 | 2663 | 2 | 5 | 3 | 151 | 4 | 3 | Huasco | 337414.8 | 2017 | 3304 | 10149 | 3424422750 |
04101 | 1 | 60898 | 2 | 310 | 3 | 90 | 4 | 61 | La Serena | 279340.1 | 2017 | 4101 | 221054 | 61749247282 |
04102 | 1 | 61957 | 2 | 266 | 3 | 769 | 4 | 73 | Coquimbo | 269078.6 | 2017 | 4102 | 227730 | 61277269093 |
04103 | 1 | 2962 | 2 | 8 | 3 | 66 | 4 | 7 | Andacollo | 258539.7 | 2017 | 4103 | 11044 | 2855312920 |
04104 | 1 | 370 | 2 | 10 | 3 | 10 | 4 | 4 | La Higuera | 214257.0 | 2017 | 4104 | 4241 | 908664019 |
04106 | 1 | 5321 | 2 | 9 | 3 | 10 | 4 | 10 | Vicuña | 254177.0 | 2017 | 4106 | 27771 | 7058750373 |
04201 | 1 | 6631 | 2 | 27 | 3 | 60 | 4 | 22 | Illapel | 282139.3 | 2017 | 4201 | 30848 | 8703433491 |
04202 | 1 | 621 | 2 | 5 | 3 | 69 | 4 | 3 | Canela | 233397.3 | 2017 | 4202 | 9093 | 2122281844 |
04203 | 1 | 5656 | 2 | 37 | 3 | 35 | 4 | 19 | Los Vilos | 285214.0 | 2017 | 4203 | 21382 | 6098444926 |
04204 | 1 | 4753 | 2 | 47 | 3 | 180 | 4 | 11 | Salamanca | 262056.9 | 2017 | 4204 | 29347 | 7690585032 |
04301 | 1 | 26376 | 2 | 59 | 3 | 110 | 4 | 57 | Ovalle | 280373.5 | 2017 | 4301 | 111272 | 31197719080 |
04302 | 1 | 2046 | 2 | 12 | 3 | 15 | 4 | 8 | Combarbalá | 234537.3 | 2017 | 4302 | 13322 | 3124505460 |
04303 | 1 | 4691 | 2 | 14 | 3 | 80 | 4 | 8 | Monte Patria | 225369.1 | 2017 | 4303 | 30751 | 6930326684 |
04304 | 1 | 1737 | 2 | 62 | 3 | 92 | 4 | 6 | Punitaqui | 212496.1 | 2017 | 4304 | 10956 | 2328107498 |
05101 | 1 | 94666 | 2 | 452 | 3 | 1442 | 4 | 125 | Valparaíso | 306572.5 | 2017 | 5101 | 296655 | 90946261553 |
05102 | 1 | 5629 | 2 | 41 | 3 | 22 | 4 | 3 | Casablanca | 348088.6 | 2017 | 5102 | 26867 | 9352095757 |
05103 | 1 | 12814 | 2 | 11 | 3 | 22 | 4 | 3 | Concón | 333932.4 | 2017 | 5103 | 42152 | 14075920021 |
05105 | 1 | 3511 | 2 | 1146 | 3 | 682 | 4 | 14 | Puchuncaví | 296035.5 | 2017 | 5105 | 18546 | 5490274928 |
05107 | 1 | 7196 | 2 | 1365 | 3 | 99 | 4 | 14 | Quintero | 308224.7 | 2017 | 5107 | 31923 | 9839456903 |
05109 | 1 | 114028 | 2 | 392 | 3 | 1051 | 4 | 139 | Viña del Mar | 354715.9 | 2017 | 5109 | 334248 | 118563074323 |
05301 | 1 | 19133 | 2 | 14 | 3 | 52 | 4 | 7 | Los Andes | 355446.2 | 2017 | 5301 | 66708 | 23711104774 |
05302 | 1 | 3200 | 2 | 94 | 3 | 10 | 4 | 3 | Calle Larga | 246387.3 | 2017 | 5302 | 14832 | 3654416747 |
05303 | 1 | 2440 | 2 | 25 | 3 | 2 | 4 | 3 | Rinconada | 279807.9 | 2017 | 5303 | 10207 | 2855998928 |
05304 | 1 | 3586 | 2 | 17 | 3 | 4 | 4 | 15 | San Esteban | 219571.6 | 2017 | 5304 | 18855 | 4140022481 |
05401 | 1 | 8289 | 2 | 208 | 3 | 52 | 4 | 19 | La Ligua | 259482.3 | 2017 | 5401 | 35390 | 9183080280 |
05402 | 1 | 3788 | 2 | 19 | 3 | 11 | 4 | 4 | Cabildo | 262745.9 | 2017 | 5402 | 19388 | 5094117762 |
05403 | 1 | 1737 | 2 | 8 | 3 | 3 | 4 | 3 | Papudo | 302317.1 | 2017 | 5403 | 6356 | 1921527704 |
05404 | 1 | 1351 | 2 | 54 | 3 | 23 | 4 | 1 | Petorca | 237510.8 | 2017 | 5404 | 9826 | 2333781007 |
05405 | 1 | 1564 | 2 | 83 | 3 | 4 | 4 | 4 | Zapallar | 294389.2 | 2017 | 5405 | 7339 | 2160521991 |
05501 | 1 | 24708 | 2 | 102 | 3 | 47 | 4 | 33 | Quillota | 288694.2 | 2017 | 5501 | 90517 | 26131733924 |
05502 | 1 | 14896 | 2 | 149 | 3 | 127 | 4 | 17 | Calera | 282823.6 | 2017 | 5502 | 50554 | 14297866792 |
05503 | 1 | 3302 | 2 | 215 | 3 | 39 | 4 | 7 | Hijuelas | 268449.7 | 2017 | 5503 | 17988 | 4828872604 |
1.2.1 Estadísticas a nivel urbano
III <- seq(3,(ncol(df_2017_exp)-6),2)
df_2017_exp_subset <- df_2017_exp[,c(III,(ncol(df_2017_exp)))]
data_sum <- summary(df_2017_exp_subset)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
Red pública | Pozo o noria | Camión aljibe | Río, vertiente, estero, canal, lago, etc. | Ingresos_expandidos | |
---|---|---|---|---|---|
Min. : 278 | Min. : 1.00 | Min. : 1.00 | Min. : 1.00 | Min. :7.054e+08 | |
1st Qu.: 1842 | 1st Qu.: 11.00 | 1st Qu.: 5.00 | 1st Qu.: 3.00 | 1st Qu.:2.954e+09 | |
Median : 4484 | Median : 37.00 | Median : 15.00 | Median : 8.00 | Median :5.697e+09 | |
Mean : 15214 | Mean : 92.44 | Mean : 74.11 | Mean : 31.15 | Mean :1.784e+10 | |
3rd Qu.: 15837 | 3rd Qu.: 98.75 | 3rd Qu.: 52.00 | 3rd Qu.: 22.00 | 3rd Qu.:1.857e+10 | |
Max. :162197 | Max. :1365.00 | Max. :1622.00 | Max. :635.00 | Max. :1.870e+11 |
1.3 Correlaciones
1.3.1 Kendall
III <- seq(3,(ncol(df_2017_exp)-6),2)
df_2017_exp_subset <- df_2017_exp[,c(III,(ncol(df_2017_exp)))]
chart.Correlation(df_2017_exp_subset, histogram=TRUE, method = c( "kendall"), pch=20)
2 Nivel nacional RURAL (código 2)
2.1 Pregunta P05: Ocupación de la vivienda
Leemos las respuestas a la pregunta P05 del censo de viviendas 2017 y obtenemos la tabla de frecuencias por categoría:
tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
tabla_con_clave_u <- filter(tabla_con_clave, tabla_con_clave$AREA == 2)
b <- tabla_con_clave_u$COMUNA
c <- tabla_con_clave_u$P05
cross_tab = xtabs( ~ unlist(b) + unlist(c))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
d$anio <- "2017"
categorias <- sort(unique(tabla_con_clave_u$P05 ))
categorias <- as.data.frame(categorias)
names(categorias)[1] <- "cat"
categorias <- filter(categorias, categorias$cat != 99)
categorias <- filter(categorias, categorias$cat != 98)
d_t <- filter(d,d$unlist.c. == categorias[1,1])
for(i in categorias[2,1]:categorias[nrow(categorias),1]){
d_i <- filter(d,d$unlist.c. == i)
d_t = merge( x = d_t, y = d_i, by = "unlist.b.", all.x = TRUE)
}
# Agregamos un cero a los códigos comunales de 4 dígitos, que queda en la columna llamada **código**:
codigos <- d_t$unlist.b.
rango <- seq(1:nrow(d_t))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d_t,cadena)
comuna_corr <- comuna_corr[,-c(1),drop=FALSE]
names(comuna_corr)[ncol(comuna_corr)] <- "código"
quitar <- seq(3,(ncol(comuna_corr)-1),3)
comuna_corr <- comuna_corr[,-c(quitar),drop=FALSE]
names(comuna_corr )[2] <- "Red pública"
names(comuna_corr )[4] <- "Pozo o noria"
names(comuna_corr )[6] <- "Camión aljibe"
names(comuna_corr )[8] <- " Río, vertiente, estero, canal, lago, etc."
renombrar <- seq(1,(ncol(comuna_corr)-2),2)
vv <- 0
for (v in renombrar) {
vv <- vv+1
contador <- paste0("categoria_",vv)
names(comuna_corr )[v] <- contador
}
kbl(head(comuna_corr,50)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
categoria_1 | Red pública | categoria_2 | Pozo o noria | categoria_3 | Camión aljibe | categoria_4 | Río, vertiente, estero, canal, lago, etc. | código |
---|---|---|---|---|---|---|---|---|
1 | 337 | 2 | 8 | 3 | 409 | 4 | 12 | 01101 |
1 | 8 | 2 | 2 | 3 | 34 | NA | NA | 01107 |
1 | 689 | 2 | 370 | 3 | 209 | 4 | 66 | 01401 |
1 | 352 | 2 | 10 | 3 | 4 | 4 | 92 | 01402 |
1 | 177 | 2 | 23 | 3 | 1 | 4 | 252 | 01403 |
1 | 229 | 2 | 82 | 3 | 50 | 4 | 225 | 01404 |
1 | 204 | 2 | 69 | 3 | 28 | 4 | 23 | 01405 |
1 | 96 | NA | NA | 3 | 192 | 4 | 21 | 02101 |
1 | 56 | 2 | 1 | 3 | 77 | 4 | 1 | 02102 |
1 | 331 | NA | NA | 3 | 9 | 4 | 1 | 02103 |
1 | 37 | 2 | 1 | 3 | 256 | 4 | 4 | 02104 |
1 | 378 | 2 | 21 | 3 | 452 | 4 | 102 | 02201 |
1 | 83 | NA | NA | 3 | 10 | NA | NA | 02202 |
1 | 1141 | 2 | 32 | 3 | 48 | 4 | 104 | 02203 |
1 | 449 | 2 | 233 | 3 | 256 | 4 | 16 | 03101 |
1 | 258 | 2 | 8 | 3 | 517 | 4 | 8 | 03102 |
1 | 341 | 2 | 151 | 3 | 381 | 4 | 56 | 03103 |
1 | 229 | 2 | 4 | 3 | 175 | 4 | 1 | 03201 |
1 | 203 | NA | NA | 3 | 36 | 4 | 8 | 03202 |
1 | 955 | 2 | 127 | 3 | 478 | 4 | 358 | 03301 |
1 | 1405 | 2 | 102 | 3 | 107 | 4 | 127 | 03302 |
1 | 462 | 2 | 57 | 3 | 322 | 4 | 18 | 03303 |
1 | 199 | 2 | 110 | 3 | 176 | 4 | 10 | 03304 |
1 | 2840 | 2 | 1147 | 3 | 1262 | 4 | 465 | 04101 |
1 | 2151 | 2 | 939 | 3 | 837 | 4 | 111 | 04102 |
1 | 79 | 2 | 80 | 3 | 218 | 4 | 27 | 04103 |
1 | 741 | 2 | 145 | 3 | 155 | 4 | 14 | 04104 |
1 | 1403 | 2 | 14 | 3 | 29 | 4 | 144 | 04105 |
1 | 2884 | 2 | 191 | 3 | 151 | 4 | 127 | 04106 |
1 | 2152 | 2 | 487 | 3 | 466 | 4 | 256 | 04201 |
1 | 1283 | 2 | 463 | 3 | 585 | 4 | 345 | 04202 |
1 | 606 | 2 | 292 | 3 | 338 | 4 | 198 | 04203 |
1 | 3125 | 2 | 148 | 3 | 250 | 4 | 144 | 04204 |
1 | 5235 | 2 | 951 | 3 | 1473 | 4 | 173 | 04301 |
1 | 1620 | 2 | 434 | 3 | 537 | 4 | 171 | 04302 |
1 | 4382 | 2 | 295 | 3 | 433 | 4 | 251 | 04303 |
1 | 751 | 2 | 494 | 3 | 449 | 4 | 133 | 04304 |
1 | 1435 | 2 | 61 | 3 | 82 | 4 | 80 | 04305 |
1 | 21 | 2 | 95 | 3 | 150 | 4 | 11 | 05101 |
1 | 1612 | 2 | 1201 | 3 | 108 | 4 | 26 | 05102 |
1 | 237 | 2 | 118 | 3 | 416 | 4 | 5 | 05103 |
1 | 307 | 2 | 4 | NA | NA | 4 | 38 | 05104 |
1 | 394 | 2 | 363 | 3 | 170 | 4 | 39 | 05105 |
1 | 374 | 2 | 1060 | 3 | 93 | 4 | 63 | 05107 |
1 | 62 | 2 | 11 | 3 | 48 | 4 | 13 | 05201 |
1 | 859 | 2 | 172 | 3 | 38 | 4 | 147 | 05301 |
1 | 1092 | 2 | 145 | 3 | 66 | 4 | 13 | 05302 |
1 | 509 | 2 | 65 | 3 | 76 | 4 | 12 | 05303 |
1 | 1963 | 2 | 204 | 3 | 51 | 4 | 200 | 05304 |
1 | 2445 | 2 | 356 | 3 | 346 | 4 | 48 | 05401 |
2.2 Generación de ingresos promedios a nivel rural y su unión con la tabla de contingencia
ingresos_expandidos_2017 <- readRDS("Ingresos_expandidos_rural_17.rds")
df_2017_2 = merge( x = comuna_corr, y = ingresos_expandidos_2017, by = "código", all.x = TRUE)
comuna_corr <- readRDS("cant_personas_17.rds")
df_2017_exp = merge( x = df_2017_2, y = comuna_corr, by = "código", all.x = TRUE)
df_2017_exp$Ingresos_expandidos <- df_2017_exp$promedio_i*df_2017_exp$personas
df_2017_exp <- filter(df_2017_exp, df_2017_exp$Ingresos_expandidos != 'is.na')
write_xlsx(df_2017_exp,"P05_rural.xlsx")
kbl(head(df_2017_exp,50)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "300px")
código | categoria_1 | Red pública | categoria_2 | Pozo o noria | categoria_3 | Camión aljibe | categoria_4 | Río, vertiente, estero, canal, lago, etc. | comuna.x | promedio_i | año | comuna.y | personas | Ingresos_expandidos |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
01101 | 1 | 337 | 2 | 8 | 3 | 409 | 4 | 12 | Iquique | 272529.7 | 2017 | 1101 | 191468 | 52180713221 |
01401 | 1 | 689 | 2 | 370 | 3 | 209 | 4 | 66 | Pozo Almonte | 243272.4 | 2017 | 1401 | 15711 | 3822052676 |
01402 | 1 | 352 | 2 | 10 | 3 | 4 | 4 | 92 | Camiña | 226831.0 | 2017 | 1402 | 1250 | 283538750 |
01404 | 1 | 229 | 2 | 82 | 3 | 50 | 4 | 225 | Huara | 236599.7 | 2017 | 1404 | 2730 | 645917134 |
01405 | 1 | 204 | 2 | 69 | 3 | 28 | 4 | 23 | Pica | 269198.0 | 2017 | 1405 | 9296 | 2502464414 |
02103 | 1 | 331 | NA | NA | 3 | 9 | 4 | 1 | Sierra Gorda | 322997.9 | 2017 | 2103 | 10186 | 3290056742 |
02104 | 1 | 37 | 2 | 1 | 3 | 256 | 4 | 4 | Taltal | 288653.8 | 2017 | 2104 | 13317 | 3844002134 |
02201 | 1 | 378 | 2 | 21 | 3 | 452 | 4 | 102 | Calama | 238080.9 | 2017 | 2201 | 165731 | 39457387800 |
02203 | 1 | 1141 | 2 | 32 | 3 | 48 | 4 | 104 | San Pedro de Atacama | 271472.6 | 2017 | 2203 | 10996 | 2985112297 |
03101 | 1 | 449 | 2 | 233 | 3 | 256 | 4 | 16 | Copiapó | 251396.0 | 2017 | 3101 | 153937 | 38699138722 |
03103 | 1 | 341 | 2 | 151 | 3 | 381 | 4 | 56 | Tierra Amarilla | 287819.4 | 2017 | 3103 | 14019 | 4034940816 |
03202 | 1 | 203 | NA | NA | 3 | 36 | 4 | 8 | Diego de Almagro | 326439.0 | 2017 | 3202 | 13925 | 4545663075 |
03301 | 1 | 955 | 2 | 127 | 3 | 478 | 4 | 358 | Vallenar | 217644.6 | 2017 | 3301 | 51917 | 11299454698 |
03302 | 1 | 1405 | 2 | 102 | 3 | 107 | 4 | 127 | Alto del Carmen | 196109.9 | 2017 | 3302 | 5299 | 1039186477 |
03303 | 1 | 462 | 2 | 57 | 3 | 322 | 4 | 18 | Freirina | 202463.8 | 2017 | 3303 | 7041 | 1425547554 |
03304 | 1 | 199 | 2 | 110 | 3 | 176 | 4 | 10 | Huasco | 205839.6 | 2017 | 3304 | 10149 | 2089066548 |
04101 | 1 | 2840 | 2 | 1147 | 3 | 1262 | 4 | 465 | La Serena | 200287.4 | 2017 | 4101 | 221054 | 44274327972 |
04102 | 1 | 2151 | 2 | 939 | 3 | 837 | 4 | 111 | Coquimbo | 206027.8 | 2017 | 4102 | 227730 | 46918711304 |
04103 | 1 | 79 | 2 | 80 | 3 | 218 | 4 | 27 | Andacollo | 217096.4 | 2017 | 4103 | 11044 | 2397612293 |
04104 | 1 | 741 | 2 | 145 | 3 | 155 | 4 | 14 | La Higuera | 231674.2 | 2017 | 4104 | 4241 | 982530309 |
04105 | 1 | 1403 | 2 | 14 | 3 | 29 | 4 | 144 | Paiguano | 174868.5 | 2017 | 4105 | 4497 | 786383423 |
04106 | 1 | 2884 | 2 | 191 | 3 | 151 | 4 | 127 | Vicuña | 169077.1 | 2017 | 4106 | 27771 | 4695441470 |
04201 | 1 | 2152 | 2 | 487 | 3 | 466 | 4 | 256 | Illapel | 165639.6 | 2017 | 4201 | 30848 | 5109649759 |
04202 | 1 | 1283 | 2 | 463 | 3 | 585 | 4 | 345 | Canela | 171370.3 | 2017 | 4202 | 9093 | 1558270441 |
04203 | 1 | 606 | 2 | 292 | 3 | 338 | 4 | 198 | Los Vilos | 173238.5 | 2017 | 4203 | 21382 | 3704185607 |
04204 | 1 | 3125 | 2 | 148 | 3 | 250 | 4 | 144 | Salamanca | 193602.0 | 2017 | 4204 | 29347 | 5681637894 |
04301 | 1 | 5235 | 2 | 951 | 3 | 1473 | 4 | 173 | Ovalle | 230819.8 | 2017 | 4301 | 111272 | 25683781418 |
04302 | 1 | 1620 | 2 | 434 | 3 | 537 | 4 | 171 | Combarbalá | 172709.2 | 2017 | 4302 | 13322 | 2300832587 |
04303 | 1 | 4382 | 2 | 295 | 3 | 433 | 4 | 251 | Monte Patria | 189761.6 | 2017 | 4303 | 30751 | 5835357638 |
04304 | 1 | 751 | 2 | 494 | 3 | 449 | 4 | 133 | Punitaqui | 165862.0 | 2017 | 4304 | 10956 | 1817183694 |
04305 | 1 | 1435 | 2 | 61 | 3 | 82 | 4 | 80 | Río Hurtado | 182027.2 | 2017 | 4305 | 4278 | 778712384 |
05101 | 1 | 21 | 2 | 95 | 3 | 150 | 4 | 11 | Valparaíso | 251998.5 | 2017 | 5101 | 296655 | 74756602991 |
05102 | 1 | 1612 | 2 | 1201 | 3 | 108 | 4 | 26 | Casablanca | 252317.7 | 2017 | 5102 | 26867 | 6779018483 |
05105 | 1 | 394 | 2 | 363 | 3 | 170 | 4 | 39 | Puchuncaví | 231606.0 | 2017 | 5105 | 18546 | 4295363979 |
05107 | 1 | 374 | 2 | 1060 | 3 | 93 | 4 | 63 | Quintero | 285125.8 | 2017 | 5107 | 31923 | 9102071069 |
05301 | 1 | 859 | 2 | 172 | 3 | 38 | 4 | 147 | Los Andes | 280548.0 | 2017 | 5301 | 66708 | 18714795984 |
05302 | 1 | 1092 | 2 | 145 | 3 | 66 | 4 | 13 | Calle Larga | 234044.6 | 2017 | 5302 | 14832 | 3471349123 |
05303 | 1 | 509 | 2 | 65 | 3 | 76 | 4 | 12 | Rinconada | 246136.9 | 2017 | 5303 | 10207 | 2512319225 |
05304 | 1 | 1963 | 2 | 204 | 3 | 51 | 4 | 200 | San Esteban | 211907.3 | 2017 | 5304 | 18855 | 3995512770 |
05401 | 1 | 2445 | 2 | 356 | 3 | 346 | 4 | 48 | La Ligua | 172675.9 | 2017 | 5401 | 35390 | 6111000517 |
05402 | 1 | 1815 | 2 | 425 | 3 | 3 | 4 | 33 | Cabildo | 212985.0 | 2017 | 5402 | 19388 | 4129354103 |
05404 | 1 | 1658 | 2 | 174 | 3 | 86 | 4 | 81 | Petorca | 270139.8 | 2017 | 5404 | 9826 | 2654393853 |
05405 | 1 | 440 | 2 | 238 | 3 | 100 | 4 | 26 | Zapallar | 235661.4 | 2017 | 5405 | 7339 | 1729518700 |
05501 | 1 | 2360 | 2 | 1196 | 3 | 76 | 4 | 40 | Quillota | 212067.6 | 2017 | 5501 | 90517 | 19195726144 |
05502 | 1 | 449 | 2 | 131 | 3 | 8 | 4 | 11 | Calera | 226906.2 | 2017 | 5502 | 50554 | 11471016698 |
05503 | 1 | 1483 | 2 | 439 | 3 | 95 | 4 | 16 | Hijuelas | 215402.0 | 2017 | 5503 | 17988 | 3874650405 |
05504 | 1 | 557 | 2 | 239 | 3 | 3 | 4 | 19 | La Cruz | 243333.4 | 2017 | 5504 | 22098 | 5377180726 |
05506 | 1 | 693 | 2 | 322 | 3 | 43 | 4 | 39 | Nogales | 219800.7 | 2017 | 5506 | 22120 | 4861992055 |
05601 | 1 | 992 | 2 | 465 | 3 | 141 | 4 | 50 | San Antonio | 230261.5 | 2017 | 5601 | 91350 | 21034388728 |
05602 | 1 | 73 | 2 | 792 | 3 | 194 | 4 | 17 | Algarrobo | 218057.0 | 2017 | 5602 | 13817 | 3012893845 |
2.2.1 Estadísticas a nivel Rural
III <- seq(3,(ncol(df_2017_exp)-6),2)
df_2017_exp_subset <- df_2017_exp[,c(III,(ncol(df_2017_exp)))]
data_sum <- summary(df_2017_exp_subset)
kbl(head(data_sum)) %>%
kable_styling(bootstrap_options = c("striped", "hover")) %>%
kable_paper() %>%
scroll_box(width = "100%", height = "500px")
Red pública | Pozo o noria | Camión aljibe | Río, vertiente, estero, canal, lago, etc. | Ingresos_expandidos | |
---|---|---|---|---|---|
Min. : 8 | Min. : 1.0 | Min. : 1.0 | Min. : 1.00 | Min. :2.792e+08 | |
1st Qu.: 440 | 1st Qu.: 177.0 | 1st Qu.: 46.5 | 1st Qu.: 33.75 | 1st Qu.:1.817e+09 | |
Median : 874 | Median : 419.0 | Median : 102.5 | Median : 129.00 | Median :3.604e+09 | |
Mean :1310 | Mean : 695.5 | Mean : 175.2 | Mean : 293.00 | Mean :8.276e+09 | |
3rd Qu.:1771 | 3rd Qu.: 943.0 | 3rd Qu.: 209.2 | 3rd Qu.: 375.25 | 3rd Qu.:7.285e+09 | |
Max. :9046 | Max. :11255.0 | Max. :1824.0 | Max. :3365.00 | Max. :7.585e+10 |
2.3 Correlaciones
2.3.1 Kendall
III <- seq(3,(ncol(df_2017_exp)-6),2)
df_2017_exp_subset <- df_2017_exp[,c(III,(ncol(df_2017_exp)))]
chart.Correlation(df_2017_exp_subset, histogram=TRUE, method = c( "kendall"), pch=20)