1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Parquet, piso flotante, cerámico, madera, alfombra, flexit, cubrepiso u otro similar, sobre radier o vigas de madera” del campo P03C del Censo de viviendas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 1.2 aquí).

1.1 Lectura y filtrado de la tabla censal de viviendas

Leemos la tabla Censo 2017 de viviendas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("../censo_viviendas_con_clave_17.rds")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV P01 P02 P03A P03B P03C P04 P05 CANT_HOG CANT_PER REGION_15R PROVINCIA_15R COMUNA_15R clave
15 152 15202 1 2 6 13225 1 3 1 5 3 5 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 3 1 1 5 3 5 2 3 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 4 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 5 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 6 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 8 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 9 3 1 5 3 5 1 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 10 1 1 5 3 4 1 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 11 1 2 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 12 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 13 1 1 5 3 4 1 4 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 14 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 16 1 1 5 3 5 1 3 1 3 15 152 15202 15202012006
15 152 15202 1 2 6 13225 17 1 1 5 3 5 2 4 1 8 15 152 15202 15202012006
15 152 15202 1 2 6 13225 18 3 1 5 3 5 1 1 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 19 3 1 5 3 5 1 3 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 20 1 1 5 3 5 2 1 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 21 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 22 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 24 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 25 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 26 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 27 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 28 3 1 5 3 5 1 4 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 29 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 30 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 31 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 32 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 33 1 1 5 3 5 3 4 1 4 15 152 15202 15202012006
15 152 15202 1 2 6 13225 34 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 35 3 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 36 1 1 5 3 5 3 2 1 9 15 152 15202 15202012006
15 152 15202 1 2 6 13225 37 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 38 1 1 5 3 5 99 4 1 1 15 152 15202 15202012006
15 152 15202 1 2 6 13225 39 1 1 5 3 5 1 4 1 2 15 152 15202 15202012006
15 152 15202 1 2 6 13225 40 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 41 1 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 42 3 3 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 43 3 1 5 3 5 2 1 1 5 15 152 15202 15202012006
15 152 15202 1 2 6 13225 44 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 6 13225 45 1 4 98 98 98 98 98 0 0 15 152 15202 15202012006
15 152 15202 1 2 8 13910 1 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 2 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 3 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 4 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 5 3 1 5 3 5 2 3 1 3 15 152 15202 15202012008
15 152 15202 1 2 8 13910 6 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 7 1 1 5 99 5 2 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 8 3 1 5 3 5 3 3 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 9 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 10 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 11 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 12 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 13 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 14 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 15 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 16 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 18 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 20 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 21 1 1 5 3 5 1 4 1 2 15 152 15202 15202012008
15 152 15202 1 2 8 13910 22 3 1 5 3 5 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 8 13910 23 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 24 3 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 25 3 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 26 1 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 27 1 4 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 28 3 2 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 29 1 3 98 98 98 98 98 0 0 15 152 15202 15202012008
15 152 15202 1 2 8 13910 30 1 1 5 1 4 2 4 1 1 15 152 15202 15202012008
15 152 15202 1 2 12 8394 1 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 2 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 3 3 1 5 3 5 2 3 1 4 15 152 15202 15202012012
15 152 15202 1 2 12 8394 4 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 5 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 6 3 3 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 7 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 8 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 9 3 1 5 3 5 1 4 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 10 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 11 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 12 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 13 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 14 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 15 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 16 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 17 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 18 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 19 3 1 99 99 99 99 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 20 3 1 5 3 5 3 99 1 1 15 152 15202 15202012012
15 152 15202 1 2 12 8394 21 3 1 5 99 5 1 4 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 22 3 2 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 23 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012
15 152 15202 1 2 12 8394 24 3 1 5 3 5 1 2 1 2 15 152 15202 15202012012
15 152 15202 1 2 12 8394 25 3 4 98 98 98 98 98 0 0 15 152 15202 15202012012

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)

Hagamos un subset con la 1:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 5) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 1) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20),drop=FALSE]

aterial de construcción del piso

names(tabla_con_clave_f)[2] <- "Tipo de piso"
# Ahora filtramos por Tipo de techo = 1.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Tipo de piso` == 1)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Tipo de piso`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
5101011001 1 5101 1042 2017
5101011002 1 5101 1299 2017
5101011003 1 5101 742 2017
5101011004 1 5101 743 2017
5101011005 1 5101 782 2017
5101011006 1 5101 947 2017
5101011007 1 5101 998 2017
5101021001 1 5101 28 2017
5101021002 1 5101 639 2017
5101021003 1 5101 539 2017
5101021004 1 5101 415 2017
5101031001 1 5101 473 2017
5101031002 1 5101 525 2017
5101031003 1 5101 360 2017
5101031004 1 5101 233 2017
5101031005 1 5101 156 2017
5101031006 1 5101 331 2017
5101031007 1 5101 621 2017
5101031008 1 5101 726 2017
5101031009 1 5101 307 2017
5101031010 1 5101 467 2017
5101031011 1 5101 742 2017
5101031012 1 5101 192 2017
5101041001 1 5101 72 2017
5101051001 1 5101 623 2017
5101051002 1 5101 535 2017
5101051003 1 5101 755 2017
5101051004 1 5101 846 2017
5101051005 1 5101 463 2017
5101051006 1 5101 844 2017
5101051007 1 5101 569 2017
5101061001 1 5101 489 2017
5101061002 1 5101 301 2017
5101061003 1 5101 559 2017
5101061004 1 5101 320 2017
5101061005 1 5101 498 2017
5101071001 1 5101 500 2017
5101081001 1 5101 243 2017
5101081002 1 5101 225 2017
5101081003 1 5101 196 2017
5101081004 1 5101 182 2017
5101081005 1 5101 341 2017
5101081006 1 5101 434 2017
5101081007 1 5101 557 2017
5101081008 1 5101 392 2017
5101081009 1 5101 496 2017
5101081010 1 5101 405 2017
5101081011 1 5101 350 2017
5101091001 1 5101 675 2017
5101091002 1 5101 490 2017
5101091003 1 5101 451 2017
5101091004 1 5101 514 2017
5101101001 1 5101 371 2017
5101101002 1 5101 338 2017
5101101003 1 5101 297 2017
5101101004 1 5101 244 2017
5101101005 1 5101 295 2017
5101101006 1 5101 489 2017
5101101007 1 5101 198 2017
5101101008 1 5101 711 2017
5101101009 1 5101 1027 2017
5101111001 1 5101 856 2017
5101121001 1 5101 527 2017
5101121002 1 5101 695 2017
5101121003 1 5101 525 2017
5101131001 1 5101 241 2017
5101131002 1 5101 184 2017
5101131003 1 5101 194 2017
5101131004 1 5101 257 2017
5101131005 1 5101 187 2017
5101141001 1 5101 486 2017
5101141002 1 5101 311 2017
5101141003 1 5101 332 2017
5101141004 1 5101 198 2017
5101141005 1 5101 210 2017
5101141006 1 5101 378 2017
5101151001 1 5101 181 2017
5101151002 1 5101 163 2017
5101151003 1 5101 198 2017
5101151004 1 5101 175 2017
5101151005 1 5101 151 2017
5101151006 1 5101 224 2017
5101151007 1 5101 453 2017
5101161001 1 5101 194 2017
5101161002 1 5101 212 2017
5101161003 1 5101 163 2017
5101161004 1 5101 273 2017
5101161005 1 5101 162 2017
5101161006 1 5101 342 2017
5101161007 1 5101 306 2017
5101161008 1 5101 343 2017
5101161009 1 5101 251 2017
5101161010 1 5101 340 2017
5101161011 1 5101 523 2017
5101161012 1 5101 655 2017
5101171001 1 5101 357 2017
5101171002 1 5101 381 2017
5101171003 1 5101 540 2017
5101171004 1 5101 360 2017
5101171005 1 5101 409 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
5101011001 1042 2017 05101
5101011002 1299 2017 05101
5101011003 742 2017 05101
5101011004 743 2017 05101
5101011005 782 2017 05101
5101011006 947 2017 05101
5101011007 998 2017 05101
5101021001 28 2017 05101
5101021002 639 2017 05101
5101021003 539 2017 05101
5101021004 415 2017 05101
5101031001 473 2017 05101
5101031002 525 2017 05101
5101031003 360 2017 05101
5101031004 233 2017 05101
5101031005 156 2017 05101
5101031006 331 2017 05101
5101031007 621 2017 05101
5101031008 726 2017 05101
5101031009 307 2017 05101
5101031010 467 2017 05101
5101031011 742 2017 05101
5101031012 192 2017 05101
5101041001 72 2017 05101
5101051001 623 2017 05101
5101051002 535 2017 05101
5101051003 755 2017 05101
5101051004 846 2017 05101
5101051005 463 2017 05101
5101051006 844 2017 05101
5101051007 569 2017 05101
5101061001 489 2017 05101
5101061002 301 2017 05101
5101061003 559 2017 05101
5101061004 320 2017 05101
5101061005 498 2017 05101
5101071001 500 2017 05101
5101081001 243 2017 05101
5101081002 225 2017 05101
5101081003 196 2017 05101
5101081004 182 2017 05101
5101081005 341 2017 05101
5101081006 434 2017 05101
5101081007 557 2017 05101
5101081008 392 2017 05101
5101081009 496 2017 05101
5101081010 405 2017 05101
5101081011 350 2017 05101
5101091001 675 2017 05101
5101091002 490 2017 05101
5101091003 451 2017 05101
5101091004 514 2017 05101
5101101001 371 2017 05101
5101101002 338 2017 05101
5101101003 297 2017 05101
5101101004 244 2017 05101
5101101005 295 2017 05101
5101101006 489 2017 05101
5101101007 198 2017 05101
5101101008 711 2017 05101
5101101009 1027 2017 05101
5101111001 856 2017 05101
5101121001 527 2017 05101
5101121002 695 2017 05101
5101121003 525 2017 05101
5101131001 241 2017 05101
5101131002 184 2017 05101
5101131003 194 2017 05101
5101131004 257 2017 05101
5101131005 187 2017 05101
5101141001 486 2017 05101
5101141002 311 2017 05101
5101141003 332 2017 05101
5101141004 198 2017 05101
5101141005 210 2017 05101
5101141006 378 2017 05101
5101151001 181 2017 05101
5101151002 163 2017 05101
5101151003 198 2017 05101
5101151004 175 2017 05101
5101151005 151 2017 05101
5101151006 224 2017 05101
5101151007 453 2017 05101
5101161001 194 2017 05101
5101161002 212 2017 05101
5101161003 163 2017 05101
5101161004 273 2017 05101
5101161005 162 2017 05101
5101161006 342 2017 05101
5101161007 306 2017 05101
5101161008 343 2017 05101
5101161009 251 2017 05101
5101161010 340 2017 05101
5101161011 523 2017 05101
5101161012 655 2017 05101
5101171001 357 2017 05101
5101171002 381 2017 05101
5101171003 540 2017 05101
5101171004 360 2017 05101
5101171005 409 2017 05101


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../ingresos_expandidos_urbano_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año comuna.y personas Ingresos_expandidos
01101 Iquique 375676.9 2017 1101 191468 71930106513
01107 Alto Hospicio 311571.7 2017 1107 108375 33766585496
01401 Pozo Almonte 316138.5 2017 1401 15711 4966851883
01405 Pica 330061.1 2017 1405 9296 3068247619
02101 Antofagasta 368221.4 2017 2101 361873 133249367039
02102 Mejillones 369770.7 2017 2102 13467 4979702302
02104 Taltal 383666.2 2017 2104 13317 5109282942
02201 Calama 434325.1 2017 2201 165731 71981127235
02203 San Pedro de Atacama 442861.0 2017 2203 10996 4869699464
02301 Tocopilla 286187.2 2017 2301 25186 7207910819
02302 María Elena 477748.0 2017 2302 6457 3084818966
03101 Copiapó 343121.0 2017 3101 153937 52819016037
03102 Caldera 318653.2 2017 3102 17662 5628052276
03103 Tierra Amarilla 333194.9 2017 3103 14019 4671058718
03201 Chañaral 286389.3 2017 3201 12219 3499391196
03202 Diego de Almagro 351583.9 2017 3202 13925 4895805596
03301 Vallenar 315981.5 2017 3301 51917 16404810756
03303 Freirina 289049.9 2017 3303 7041 2035200054
03304 Huasco 337414.8 2017 3304 10149 3424422750
04101 La Serena 279340.1 2017 4101 221054 61749247282
04102 Coquimbo 269078.6 2017 4102 227730 61277269093
04103 Andacollo 258539.7 2017 4103 11044 2855312920
04104 La Higuera 214257.0 2017 4104 4241 908664019
04106 Vicuña 254177.0 2017 4106 27771 7058750373
04201 Illapel 282139.3 2017 4201 30848 8703433491
04202 Canela 233397.3 2017 4202 9093 2122281844
04203 Los Vilos 285214.0 2017 4203 21382 6098444926
04204 Salamanca 262056.9 2017 4204 29347 7690585032
04301 Ovalle 280373.5 2017 4301 111272 31197719080
04302 Combarbalá 234537.3 2017 4302 13322 3124505460
04303 Monte Patria 225369.1 2017 4303 30751 6930326684
04304 Punitaqui 212496.1 2017 4304 10956 2328107498
05101 Valparaíso 306572.5 2017 5101 296655 90946261553
05102 Casablanca 348088.6 2017 5102 26867 9352095757
05103 Concón 333932.4 2017 5103 42152 14075920021
05105 Puchuncaví 296035.5 2017 5105 18546 5490274928
05107 Quintero 308224.7 2017 5107 31923 9839456903
05109 Viña del Mar 354715.9 2017 5109 334248 118563074323
05301 Los Andes 355446.2 2017 5301 66708 23711104774
05302 Calle Larga 246387.3 2017 5302 14832 3654416747
05303 Rinconada 279807.9 2017 5303 10207 2855998928
05304 San Esteban 219571.6 2017 5304 18855 4140022481
05401 La Ligua 259482.3 2017 5401 35390 9183080280
05402 Cabildo 262745.9 2017 5402 19388 5094117762
05403 Papudo 302317.1 2017 5403 6356 1921527704
05404 Petorca 237510.8 2017 5404 9826 2333781007
05405 Zapallar 294389.2 2017 5405 7339 2160521991
05501 Quillota 288694.2 2017 5501 90517 26131733924
05502 Calera 282823.6 2017 5502 50554 14297866792
05503 Hijuelas 268449.7 2017 5503 17988 4828872604

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)
comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]
r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
05101 5101011004 743 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011005 782 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011006 947 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011007 998 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101021001 28 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101021002 639 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101021003 539 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101021004 415 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031001 473 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031002 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011001 1042 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011002 1299 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011003 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031006 331 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031007 621 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031008 726 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031009 307 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031010 467 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031011 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031012 192 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101041001 72 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051001 623 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051002 535 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051003 755 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051004 846 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051005 463 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051006 844 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051007 569 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061001 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061002 301 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061003 559 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061004 320 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061005 498 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101071001 500 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081001 243 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081002 225 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081003 196 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081004 182 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081005 341 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081006 434 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081007 557 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081008 392 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081009 496 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081010 405 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081011 350 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101091001 675 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101091002 490 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101091003 451 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101091004 514 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101001 371 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031003 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031004 233 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031005 156 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101005 295 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101006 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101007 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101008 711 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101009 1027 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101111001 856 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101121001 527 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101121002 695 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101121003 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131001 241 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131002 184 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131003 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131004 257 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131005 187 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141001 486 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141002 311 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141003 332 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141004 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141005 210 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141006 378 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151001 181 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151002 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151003 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151004 175 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151005 151 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151006 224 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151007 453 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161001 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161002 212 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161003 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161004 273 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161005 162 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161006 342 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161007 306 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161008 343 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161009 251 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161010 340 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101002 338 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101003 297 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101004 244 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171002 381 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171003 540 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171004 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171005 409 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171006 288 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171007 506 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171008 85 2017 Valparaíso 306572.5 2017 5101 296655 90946261553


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos
05101 5101011004 743 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011005 782 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011006 947 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011007 998 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101021001 28 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101021002 639 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101021003 539 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101021004 415 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031001 473 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031002 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011001 1042 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011002 1299 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101011003 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031006 331 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031007 621 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031008 726 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031009 307 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031010 467 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031011 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031012 192 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101041001 72 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051001 623 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051002 535 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051003 755 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051004 846 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051005 463 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051006 844 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101051007 569 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061001 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061002 301 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061003 559 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061004 320 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101061005 498 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101071001 500 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081001 243 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081002 225 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081003 196 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081004 182 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081005 341 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081006 434 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081007 557 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081008 392 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081009 496 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081010 405 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101081011 350 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101091001 675 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101091002 490 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101091003 451 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101091004 514 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101001 371 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031003 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031004 233 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101031005 156 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101005 295 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101006 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101007 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101008 711 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101009 1027 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101111001 856 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101121001 527 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101121002 695 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101121003 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131001 241 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131002 184 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131003 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131004 257 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101131005 187 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141001 486 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141002 311 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141003 332 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141004 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141005 210 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101141006 378 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151001 181 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151002 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151003 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151004 175 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151005 151 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151006 224 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101151007 453 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161001 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161002 212 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161003 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161004 273 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161005 162 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161006 342 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161007 306 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161008 343 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161009 251 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101161010 340 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101002 338 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101003 297 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101101004 244 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171002 381 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171003 540 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171004 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171005 409 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171006 288 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171007 506 2017 Valparaíso 306572.5 2017 5101 296655 90946261553
05101 5101171008 85 2017 Valparaíso 306572.5 2017 5101 296655 90946261553


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y
5101011001 05101 1042 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3280 0.0110566 05101
5101011002 05101 1299 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3761 0.0126780 05101
5101011003 05101 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2365 0.0079722 05101
5101011004 05101 743 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2690 0.0090678 05101
5101011005 05101 782 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2518 0.0084880 05101
5101011006 05101 947 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2848 0.0096004 05101
5101011007 05101 998 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3131 0.0105543 05101
5101021001 05101 28 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 273 0.0009203 05101
5101021002 05101 639 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1881 0.0063407 05101
5101021003 05101 539 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1696 0.0057171 05101
5101021004 05101 415 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1415 0.0047699 05101
5101031001 05101 473 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1402 0.0047260 05101
5101031002 05101 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1780 0.0060002 05101
5101031003 05101 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1071 0.0036103 05101
5101031004 05101 233 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 739 0.0024911 05101
5101031005 05101 156 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 457 0.0015405 05101
5101031006 05101 331 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1051 0.0035428 05101
5101031007 05101 621 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2154 0.0072610 05101
5101031008 05101 726 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2337 0.0078778 05101
5101031009 05101 307 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1059 0.0035698 05101
5101031010 05101 467 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1678 0.0056564 05101
5101031011 05101 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2610 0.0087981 05101
5101031012 05101 192 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 659 0.0022214 05101
5101041001 05101 72 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 177 0.0005967 05101
5101051001 05101 623 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1872 0.0063104 05101
5101051002 05101 535 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1714 0.0057778 05101
5101051003 05101 755 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2345 0.0079048 05101
5101051004 05101 846 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3014 0.0101600 05101
5101051005 05101 463 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1688 0.0056901 05101
5101051006 05101 844 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3387 0.0114173 05101
5101051007 05101 569 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2233 0.0075273 05101
5101061001 05101 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1196 0.0040316 05101
5101061002 05101 301 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 878 0.0029597 05101
5101061003 05101 559 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1642 0.0055350 05101
5101061004 05101 320 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 862 0.0029057 05101
5101061005 05101 498 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1546 0.0052114 05101
5101071001 05101 500 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1265 0.0042642 05101
5101081001 05101 243 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 687 0.0023158 05101
5101081002 05101 225 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 634 0.0021372 05101
5101081003 05101 196 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 619 0.0020866 05101
5101081004 05101 182 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 620 0.0020900 05101
5101081005 05101 341 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 979 0.0033001 05101
5101081006 05101 434 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1435 0.0048373 05101
5101081007 05101 557 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1791 0.0060373 05101
5101081008 05101 392 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1274 0.0042946 05101
5101081009 05101 496 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1519 0.0051204 05101
5101081010 05101 405 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1320 0.0044496 05101
5101081011 05101 350 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1143 0.0038530 05101
5101091001 05101 675 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1689 0.0056935 05101
5101091002 05101 490 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1322 0.0044564 05101
5101091003 05101 451 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1275 0.0042979 05101
5101091004 05101 514 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 4201 0.0141612 05101
5101101001 05101 371 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1044 0.0035192 05101
5101101002 05101 338 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 988 0.0033305 05101
5101101003 05101 297 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 849 0.0028619 05101
5101101004 05101 244 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 717 0.0024169 05101
5101101005 05101 295 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 936 0.0031552 05101
5101101006 05101 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1453 0.0048979 05101
5101101007 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 604 0.0020360 05101
5101101008 05101 711 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2358 0.0079486 05101
5101101009 05101 1027 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3502 0.0118050 05101
5101111001 05101 856 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2120 0.0071463 05101
5101121001 05101 527 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1435 0.0048373 05101
5101121002 05101 695 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1941 0.0065430 05101
5101121003 05101 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1528 0.0051508 05101
5101131001 05101 241 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1170 0.0039440 05101
5101131002 05101 184 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 572 0.0019282 05101
5101131003 05101 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 638 0.0021506 05101
5101131004 05101 257 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 880 0.0029664 05101
5101131005 05101 187 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 664 0.0022383 05101
5101141001 05101 486 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1502 0.0050631 05101
5101141002 05101 311 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1122 0.0037822 05101
5101141003 05101 332 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1031 0.0034754 05101
5101141004 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 638 0.0021506 05101
5101141005 05101 210 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 704 0.0023731 05101
5101141006 05101 378 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1265 0.0042642 05101
5101151001 05101 181 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 532 0.0017933 05101
5101151002 05101 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 455 0.0015338 05101
5101151003 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 640 0.0021574 05101
5101151004 05101 175 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 543 0.0018304 05101
5101151005 05101 151 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 503 0.0016956 05101
5101151006 05101 224 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 774 0.0026091 05101
5101151007 05101 453 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1448 0.0048811 05101
5101161001 05101 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 625 0.0021068 05101
5101161002 05101 212 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 697 0.0023495 05101
5101161003 05101 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 496 0.0016720 05101
5101161004 05101 273 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 892 0.0030069 05101
5101161005 05101 162 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 518 0.0017461 05101
5101161006 05101 342 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1016 0.0034249 05101
5101161007 05101 306 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 950 0.0032024 05101
5101161008 05101 343 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1194 0.0040249 05101
5101161009 05101 251 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 856 0.0028855 05101
5101161010 05101 340 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1235 0.0041631 05101
5101161011 05101 523 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1840 0.0062025 05101
5101161012 05101 655 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2467 0.0083161 05101
5101171001 05101 357 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 932 0.0031417 05101
5101171002 05101 381 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1142 0.0038496 05101
5101171003 05101 540 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1447 0.0048777 05101
5101171004 05101 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1122 0.0037822 05101
5101171005 05101 409 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1452 0.0048946 05101


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
5101011001 05101 1042 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3280 0.0110566 05101 1005557762
5101011002 05101 1299 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3761 0.0126780 05101 1153019129
5101011003 05101 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2365 0.0079722 05101 725043935
5101011004 05101 743 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2690 0.0090678 05101 824679994
5101011005 05101 782 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2518 0.0084880 05101 771949526
5101011006 05101 947 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2848 0.0096004 05101 873118447
5101011007 05101 998 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3131 0.0105543 05101 959878461
5101021001 05101 28 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 273 0.0009203 05101 83694289
5101021002 05101 639 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1881 0.0063407 05101 576662851
5101021003 05101 539 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1696 0.0057171 05101 519946940
5101021004 05101 415 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1415 0.0047699 05101 433800071
5101031001 05101 473 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1402 0.0047260 05101 429814629
5101031002 05101 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1780 0.0060002 05101 545699029
5101031003 05101 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1071 0.0036103 05101 328339135
5101031004 05101 233 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 739 0.0024911 05101 226557069
5101031005 05101 156 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 457 0.0015405 05101 140103627
5101031006 05101 331 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1051 0.0035428 05101 322207685
5101031007 05101 621 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2154 0.0072610 05101 660357140
5101031008 05101 726 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2337 0.0078778 05101 716459905
5101031009 05101 307 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1059 0.0035698 05101 324660265
5101031010 05101 467 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1678 0.0056564 05101 514428636
5101031011 05101 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2610 0.0087981 05101 800154195
5101031012 05101 192 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 659 0.0022214 05101 202031270
5101041001 05101 72 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 177 0.0005967 05101 54263330
5101051001 05101 623 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1872 0.0063104 05101 573903698
5101051002 05101 535 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1714 0.0057778 05101 525465245
5101051003 05101 755 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2345 0.0079048 05101 718912485
5101051004 05101 846 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3014 0.0101600 05101 924009480
5101051005 05101 463 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1688 0.0056901 05101 517494360
5101051006 05101 844 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3387 0.0114173 05101 1038361018
5101051007 05101 569 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2233 0.0075273 05101 684576367
5101061001 05101 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1196 0.0040316 05101 366660696
5101061002 05101 301 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 878 0.0029597 05101 269170645
5101061003 05101 559 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1642 0.0055350 05101 503392026
5101061004 05101 320 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 862 0.0029057 05101 264265485
5101061005 05101 498 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1546 0.0052114 05101 473961067
5101071001 05101 500 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1265 0.0042642 05101 387814198
5101081001 05101 243 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 687 0.0023158 05101 210615300
5101081002 05101 225 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 634 0.0021372 05101 194366958
5101081003 05101 196 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 619 0.0020866 05101 189768370
5101081004 05101 182 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 620 0.0020900 05101 190074943
5101081005 05101 341 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 979 0.0033001 05101 300134466
5101081006 05101 434 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1435 0.0048373 05101 439931521
5101081007 05101 557 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1791 0.0060373 05101 549071327
5101081008 05101 392 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1274 0.0042946 05101 390573350
5101081009 05101 496 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1519 0.0051204 05101 465683610
5101081010 05101 405 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1320 0.0044496 05101 404675685
5101081011 05101 350 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1143 0.0038530 05101 350412354
5101091001 05101 675 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1689 0.0056935 05101 517800933
5101091002 05101 490 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1322 0.0044564 05101 405288830
5101091003 05101 451 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1275 0.0042979 05101 390879923
5101091004 05101 514 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 4201 0.0141612 05101 1287911024
5101101001 05101 371 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1044 0.0035192 05101 320061678
5101101002 05101 338 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 988 0.0033305 05101 302893619
5101101003 05101 297 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 849 0.0028619 05101 260280043
5101101004 05101 244 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 717 0.0024169 05101 219812474
5101101005 05101 295 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 936 0.0031552 05101 286951849
5101101006 05101 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1453 0.0048979 05101 445449826
5101101007 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 604 0.0020360 05101 185169783
5101101008 05101 711 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2358 0.0079486 05101 722897928
5101101009 05101 1027 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3502 0.0118050 05101 1073616854
5101111001 05101 856 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2120 0.0071463 05101 649933675
5101121001 05101 527 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1435 0.0048373 05101 439931521
5101121002 05101 695 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1941 0.0065430 05101 595057200
5101121003 05101 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1528 0.0051508 05101 468442762
5101131001 05101 241 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1170 0.0039440 05101 358689811
5101131002 05101 184 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 572 0.0019282 05101 175359463
5101131003 05101 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 638 0.0021506 05101 195593248
5101131004 05101 257 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 880 0.0029664 05101 269783790
5101131005 05101 187 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 664 0.0022383 05101 203564132
5101141001 05101 486 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1502 0.0050631 05101 460471878
5101141002 05101 311 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1122 0.0037822 05101 343974332
5101141003 05101 332 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1031 0.0034754 05101 316076236
5101141004 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 638 0.0021506 05101 195593248
5101141005 05101 210 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 704 0.0023731 05101 215827032
5101141006 05101 378 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1265 0.0042642 05101 387814198
5101151001 05101 181 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 532 0.0017933 05101 163096564
5101151002 05101 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 455 0.0015338 05101 139490482
5101151003 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 640 0.0021574 05101 196206393
5101151004 05101 175 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 543 0.0018304 05101 166468861
5101151005 05101 151 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 503 0.0016956 05101 154205962
5101151006 05101 224 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 774 0.0026091 05101 237287106
5101151007 05101 453 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1448 0.0048811 05101 443916963
5101161001 05101 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 625 0.0021068 05101 191607805
5101161002 05101 212 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 697 0.0023495 05101 213681024
5101161003 05101 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 496 0.0016720 05101 152059954
5101161004 05101 273 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 892 0.0030069 05101 273462660
5101161005 05101 162 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 518 0.0017461 05101 158804549
5101161006 05101 342 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1016 0.0034249 05101 311477648
5101161007 05101 306 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 950 0.0032024 05101 291243864
5101161008 05101 343 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1194 0.0040249 05101 366047551
5101161009 05101 251 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 856 0.0028855 05101 262426050
5101161010 05101 340 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1235 0.0041631 05101 378617023
5101161011 05101 523 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1840 0.0062025 05101 564093379
5101161012 05101 655 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2467 0.0083161 05101 756314329
5101171001 05101 357 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 932 0.0031417 05101 285725559
5101171002 05101 381 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1142 0.0038496 05101 350105782
5101171003 05101 540 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1447 0.0048777 05101 443610391
5101171004 05101 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1122 0.0037822 05101 343974332
5101171005 05101 409 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1452 0.0048946 05101 445143253

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión loess

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -559994620  -70638096     905997   53109769  756990602 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -15896297    9139167  -1.739   0.0824 .  
## Freq.x        1063846      10913  97.483   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 128600000 on 705 degrees of freedom
## Multiple R-squared:  0.9309, Adjusted R-squared:  0.9308 
## F-statistic:  9503 on 1 and 705 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

### 8.1 Modelo cuadrático

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cuadrático"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1  X^2  $$"
modelos1 <- cbind(modelo,dato,sintaxis,latex)
 
### 8.2 Modelo cúbico
 
linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "cúbico"
sintaxis <- "linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1  X^3  $$"
modelos2 <- cbind(modelo,dato,sintaxis,latex)
 
### 8.3 Modelo logarítmico
 
linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "logarítmico"
sintaxis <- "linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1 ln X  $$"
modelos3 <- cbind(modelo,dato,sintaxis,latex)
 
### 8.5 Modelo con raíz cuadrada 
 
linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz cuadrada"
sintaxis <- "linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = '\'beta_0 + '\'beta_1  '\'sqrt {X}  $$"
modelos5 <- cbind(modelo,dato,sintaxis,latex)
 
### 8.6 Modelo raíz-raíz
 
linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-raíz"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2  '\'beta_0  '\'beta_1 '\'sqrt{X}+  '\'beta_1^2 X  $$"
modelos6 <- cbind(modelo,dato,sintaxis,latex)
 
### 8.7 Modelo log-raíz
 
linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-raíz"
sintaxis <- "linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0 + '\'beta_1 '\'sqrt{X}} $$"
modelos7 <- cbind(modelo,dato,sintaxis,latex)
 
### 8.8 Modelo raíz-log
 
linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "raíz-log"
sintaxis <- "linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = {'\'beta_0}^2 + 2  '\'beta_0  '\'beta_1 '\'ln{X}+  '\'beta_1^2 ln^2X  $$"
modelos8 <- cbind(modelo,dato,sintaxis,latex)
 
### 8.9 Modelo log-log
 
linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
datos <- summary(linearMod)
dato <- datos$adj.r.squared
modelo <- "log-log"
sintaxis <- "linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)"
latex <- "$$ '\'hat Y = e^{'\'beta_0+'\'beta_1  ln{X}} $$"
modelos9 <- cbind(modelo,dato,sintaxis,latex)
 
modelos_bind <- rbind(modelos1,modelos2,modelos3,modelos5,modelos6,modelos7,modelos8,modelos9)
modelos_bind <- as.data.frame(modelos_bind)

modelos_bind <<- modelos_bind[order(modelos_bind$dato ),]
h_y_m_comuna_corr_01 <<- h_y_m_comuna_corr_01

kbl(modelos_bind) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
modelo dato sintaxis latex
3 logarítmico 0.62049560568565 linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01) \[ ''hat Y = ''beta_0 + ''beta_1 ln X \]
7 raíz-log 0.805645623553596 linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''ln{X}+ ''beta_1^2 ln^2X \]
6 log-raíz 0.839623433864429 linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) \[ ''hat Y = e^{''beta_0 + ''beta_1 ''sqrt{X}} \]
4 raíz cuadrada 0.872898393565099 linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) \[ ''hat Y = ''beta_0 + ''beta_1 ''sqrt {X} \]
1 cuadrático 0.930838753560001 linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01) \[ ''hat Y = ''beta_0 + ''beta_1 X^2 \]
2 cúbico 0.930838753560001 linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01) \[ ''hat Y = ''beta_0 + ''beta_1 X^3 \]
5 raíz-raíz 0.952458165663509 linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01) \[ ''hat Y = {''beta_0}^2 + 2 ''beta_0 ''beta_1 ''sqrt{X}+ ''beta_1^2 X \]
8 log-log 0.964750369203958 linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01) \[ ''hat Y = e^{''beta_0+''beta_1 ln{X}} \]
h_y_m_comuna_corr <- h_y_m_comuna_corr_01
metodo <- 8


switch (metodo,
        case = linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr),
        case = linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
)
summary(linearMod)
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8233 -0.1225 -0.0120  0.1034  2.4881 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.804325   0.045532   303.2   <2e-16 ***
## log(Freq.x)  1.004829   0.007229   139.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2207 on 705 degrees of freedom
## Multiple R-squared:  0.9648, Adjusted R-squared:  0.9648 
## F-statistic: 1.932e+04 on 1 and 705 DF,  p-value: < 2.2e-16
aa <- linearMod$coefficients[1]
aa
## (Intercept) 
##    13.80432
bb <- linearMod$coefficients[2]
bb
## log(Freq.x) 
##    1.004829

9 Modelo log-log (log-log)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.9648).

9.1 Diagrama de dispersión sobre log-log

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=log(h_y_m_comuna_corr$Freq.x), y=log(h_y_m_comuna_corr$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo log-log

Observemos nuevamente el resultado sobre log-log.

linearMod <- lm(log( multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8233 -0.1225 -0.0120  0.1034  2.4881 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 13.804325   0.045532   303.2   <2e-16 ***
## log(Freq.x)  1.004829   0.007229   139.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2207 on 705 degrees of freedom
## Multiple R-squared:  0.9648, Adjusted R-squared:  0.9648 
## F-statistic: 1.932e+04 on 1 and 705 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr, aes(x = log(Freq.x) , y = log(multi_pob))) + geom_point() + stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = e^{13.80432 +1.004829 \cdot ln{X}} \]


10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr$est_ing <- exp(aa+bb * log(h_y_m_comuna_corr$Freq.x))

r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
5101011001 05101 1042 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3280 0.0110566 05101 1005557762 1065573015
5101011002 05101 1299 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3761 0.0126780 05101 1153019129 1329802005
5101011003 05101 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2365 0.0079722 05101 725043935 757543007
5101011004 05101 743 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2690 0.0090678 05101 824679994 758568888
5101011005 05101 782 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2518 0.0084880 05101 771949526 798583360
5101011006 05101 947 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2848 0.0096004 05101 873118447 967976878
5101011007 05101 998 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3131 0.0105543 05101 959878461 1020365001
5101021001 05101 28 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 273 0.0009203 05101 83694289 28137696
5101021002 05101 639 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1881 0.0063407 05101 576662851 651914781
5101021003 05101 539 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1696 0.0057171 05101 519946940 549441946
5101021004 05101 415 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1415 0.0047699 05101 433800071 422505973
5101031001 05101 473 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1402 0.0047260 05101 429814629 481859303
5101031002 05101 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1780 0.0060002 05101 545699029 535102718
5101031003 05101 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1071 0.0036103 05101 328339135 366259658
5101031004 05101 233 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 739 0.0024911 05101 226557069 236553882
5101031005 05101 156 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 457 0.0015405 05101 140103627 158072888
5101031006 05101 331 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1051 0.0035428 05101 322207685 336618858
5101031007 05101 621 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2154 0.0072610 05101 660357140 633463572
5101031008 05101 726 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2337 0.0078778 05101 716459905 741129826
5101031009 05101 307 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1059 0.0035698 05101 324660265 312097986
5101031010 05101 467 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1678 0.0056564 05101 514428636 475717595
5101031011 05101 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2610 0.0087981 05101 800154195 757543007
5101031012 05101 192 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 659 0.0022214 05101 202031270 194746421
5101041001 05101 72 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 177 0.0005967 05101 54263330 72684823
5101051001 05101 623 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1872 0.0063104 05101 573903698 635513580
5101051002 05101 535 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1714 0.0057778 05101 525465245 545344838
5101051003 05101 755 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2345 0.0079048 05101 718912485 770879977
5101051004 05101 846 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3014 0.0101600 05101 924009480 864268817
5101051005 05101 463 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1688 0.0056901 05101 517494360 471623335
5101051006 05101 844 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3387 0.0114173 05101 1038361018 862215773
5101051007 05101 569 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2233 0.0075273 05101 684576367 580174863
5101061001 05101 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1196 0.0040316 05101 366660696 498239018
5101061002 05101 301 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 878 0.0029597 05101 269170645 305969186
5101061003 05101 559 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1642 0.0055350 05101 503392026 569929667
5101061004 05101 320 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 862 0.0029057 05101 264265485 325379020
5101061005 05101 498 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1546 0.0052114 05101 473961067 507453751
5101071001 05101 500 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1265 0.0042642 05101 387814198 509501579
5101081001 05101 243 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 687 0.0023158 05101 210615300 246756478
5101081002 05101 225 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 634 0.0021372 05101 194366958 228393323
5101081003 05101 196 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 619 0.0020866 05101 189768370 198823434
5101081004 05101 182 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 620 0.0020900 05101 190074943 184555701
5101081005 05101 341 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 979 0.0033001 05101 300134466 346838460
5101081006 05101 434 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1435 0.0048373 05101 439931521 441945147
5101081007 05101 557 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1791 0.0060373 05101 549071327 567880734
5101081008 05101 392 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1274 0.0042946 05101 390573350 398980111
5101081009 05101 496 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1519 0.0051204 05101 465683610 505405963
5101081010 05101 405 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1320 0.0044496 05101 404675685 412276542
5101081011 05101 350 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1143 0.0038530 05101 350412354 356037341
5101091001 05101 675 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1689 0.0056935 05101 517800933 688824662
5101091002 05101 490 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1322 0.0044564 05101 405288830 499262837
5101091003 05101 451 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1275 0.0042979 05101 390879923 459341583
5101091004 05101 514 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 4201 0.0141612 05101 1287911024 523837475
5101101001 05101 371 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1044 0.0035192 05101 320061678 377505790
5101101002 05101 338 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 988 0.0033305 05101 302893619 343772426
5101101003 05101 297 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 849 0.0028619 05101 260280043 301883647
5101101004 05101 244 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 717 0.0024169 05101 219812474 247776850
5101101005 05101 295 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 936 0.0031552 05101 286951849 299840977
5101101006 05101 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1453 0.0048979 05101 445449826 498239018
5101101007 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 604 0.0020360 05101 185169783 200862092
5101101008 05101 711 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2358 0.0079486 05101 722897928 725744054
5101101009 05101 1027 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3502 0.0118050 05101 1073616854 1050160136
5101111001 05101 856 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2120 0.0071463 05101 649933675 874534385
5101121001 05101 527 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1435 0.0048373 05101 439931521 537151067
5101121002 05101 695 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1941 0.0065430 05101 595057200 709334293
5101121003 05101 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1528 0.0051508 05101 468442762 535102718
5101131001 05101 241 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1170 0.0039440 05101 358689811 244715794
5101131002 05101 184 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 572 0.0019282 05101 175359463 186593634
5101131003 05101 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 638 0.0021506 05101 195593248 196784876
5101131004 05101 257 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 880 0.0029664 05101 269783790 261043502
5101131005 05101 187 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 664 0.0022383 05101 203564132 189650732
5101141001 05101 486 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1502 0.0050631 05101 460471878 495167622
5101141002 05101 311 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1122 0.0037822 05101 343974332 316184174
5101141003 05101 332 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1031 0.0034754 05101 316076236 337640752
5101141004 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 638 0.0021506 05101 195593248 200862092
5101141005 05101 210 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 704 0.0023731 05101 215827032 213096093
5101141006 05101 378 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1265 0.0042642 05101 387814198 384663261
5101151001 05101 181 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 532 0.0017933 05101 163096564 183536776
5101151002 05101 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 455 0.0015338 05101 139490482 165200916
5101151003 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 640 0.0021574 05101 196206393 200862092
5101151004 05101 175 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 543 0.0018304 05101 166468861 177423798
5101151005 05101 151 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 503 0.0016956 05101 154205962 152982382
5101151006 05101 224 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 774 0.0026091 05101 237287106 227373351
5101151007 05101 453 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1448 0.0048811 05101 443916963 461388433
5101161001 05101 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 625 0.0021068 05101 191607805 196784876
5101161002 05101 212 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 697 0.0023495 05101 213681024 215135426
5101161003 05101 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 496 0.0016720 05101 152059954 165200916
5101161004 05101 273 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 892 0.0030069 05101 273462660 277376123
5101161005 05101 162 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 518 0.0017461 05101 158804549 164182534
5101161006 05101 342 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1016 0.0034249 05101 311477648 347860501
5101161007 05101 306 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 950 0.0032024 05101 291243864 311076479
5101161008 05101 343 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1194 0.0040249 05101 366047551 348882556
5101161009 05101 251 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 856 0.0028855 05101 262426050 254920019
5101161010 05101 340 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1235 0.0041631 05101 378617023 345816434
5101161011 05101 523 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1840 0.0062025 05101 564093379 533054406
5101161012 05101 655 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2467 0.0083161 05101 756314329 668317965
5101171001 05101 357 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 932 0.0031417 05101 285725559 363192817
5101171002 05101 381 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1142 0.0038496 05101 350105782 387730945
5101171003 05101 540 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1447 0.0048777 05101 443610391 550466246
5101171004 05101 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1122 0.0037822 05101 343974332 366259658
5101171005 05101 409 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1452 0.0048946 05101 445143253 416368170


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr$ing_medio_zona <- h_y_m_comuna_corr$est_ing  /( h_y_m_comuna_corr$personas  * h_y_m_comuna_corr$p_poblacional)

r3_100 <- h_y_m_comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año comuna.y personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
5101011001 05101 1042 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3280 0.0110566 05101 1005557762 1065573015 324869.8
5101011002 05101 1299 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3761 0.0126780 05101 1153019129 1329802005 353576.7
5101011003 05101 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2365 0.0079722 05101 725043935 757543007 320314.2
5101011004 05101 743 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2690 0.0090678 05101 824679994 758568888 281995.9
5101011005 05101 782 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2518 0.0084880 05101 771949526 798583360 317149.9
5101011006 05101 947 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2848 0.0096004 05101 873118447 967976878 339879.5
5101011007 05101 998 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3131 0.0105543 05101 959878461 1020365001 325891.1
5101021001 05101 28 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 273 0.0009203 05101 83694289 28137696 103068.5
5101021002 05101 639 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1881 0.0063407 05101 576662851 651914781 346578.8
5101021003 05101 539 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1696 0.0057171 05101 519946940 549441946 323963.4
5101021004 05101 415 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1415 0.0047699 05101 433800071 422505973 298590.8
5101031001 05101 473 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1402 0.0047260 05101 429814629 481859303 343694.2
5101031002 05101 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1780 0.0060002 05101 545699029 535102718 300619.5
5101031003 05101 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1071 0.0036103 05101 328339135 366259658 341979.1
5101031004 05101 233 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 739 0.0024911 05101 226557069 236553882 320100.0
5101031005 05101 156 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 457 0.0015405 05101 140103627 158072888 345892.5
5101031006 05101 331 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1051 0.0035428 05101 322207685 336618858 320284.4
5101031007 05101 621 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2154 0.0072610 05101 660357140 633463572 294087.1
5101031008 05101 726 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2337 0.0078778 05101 716459905 741129826 317128.7
5101031009 05101 307 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1059 0.0035698 05101 324660265 312097986 294710.1
5101031010 05101 467 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1678 0.0056564 05101 514428636 475717595 283502.7
5101031011 05101 742 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2610 0.0087981 05101 800154195 757543007 290246.4
5101031012 05101 192 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 659 0.0022214 05101 202031270 194746421 295518.1
5101041001 05101 72 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 177 0.0005967 05101 54263330 72684823 410648.7
5101051001 05101 623 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1872 0.0063104 05101 573903698 635513580 339483.8
5101051002 05101 535 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1714 0.0057778 05101 525465245 545344838 318170.9
5101051003 05101 755 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2345 0.0079048 05101 718912485 770879977 328733.5
5101051004 05101 846 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3014 0.0101600 05101 924009480 864268817 286751.4
5101051005 05101 463 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1688 0.0056901 05101 517494360 471623335 279397.7
5101051006 05101 844 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3387 0.0114173 05101 1038361018 862215773 254566.2
5101051007 05101 569 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2233 0.0075273 05101 684576367 580174863 259818.6
5101061001 05101 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1196 0.0040316 05101 366660696 498239018 416587.8
5101061002 05101 301 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 878 0.0029597 05101 269170645 305969186 348484.3
5101061003 05101 559 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1642 0.0055350 05101 503392026 569929667 347094.8
5101061004 05101 320 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 862 0.0029057 05101 264265485 325379020 377469.9
5101061005 05101 498 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1546 0.0052114 05101 473961067 507453751 328236.6
5101071001 05101 500 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1265 0.0042642 05101 387814198 509501579 402768.0
5101081001 05101 243 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 687 0.0023158 05101 210615300 246756478 359179.7
5101081002 05101 225 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 634 0.0021372 05101 194366958 228393323 360241.8
5101081003 05101 196 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 619 0.0020866 05101 189768370 198823434 321201.0
5101081004 05101 182 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 620 0.0020900 05101 190074943 184555701 297670.5
5101081005 05101 341 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 979 0.0033001 05101 300134466 346838460 354278.3
5101081006 05101 434 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1435 0.0048373 05101 439931521 441945147 307975.7
5101081007 05101 557 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1791 0.0060373 05101 549071327 567880734 317074.7
5101081008 05101 392 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1274 0.0042946 05101 390573350 398980111 313171.2
5101081009 05101 496 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1519 0.0051204 05101 465683610 505405963 332722.8
5101081010 05101 405 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1320 0.0044496 05101 404675685 412276542 312330.7
5101081011 05101 350 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1143 0.0038530 05101 350412354 356037341 311493.7
5101091001 05101 675 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1689 0.0056935 05101 517800933 688824662 407829.9
5101091002 05101 490 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1322 0.0044564 05101 405288830 499262837 377657.2
5101091003 05101 451 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1275 0.0042979 05101 390879923 459341583 360267.9
5101091004 05101 514 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 4201 0.0141612 05101 1287911024 523837475 124693.5
5101101001 05101 371 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1044 0.0035192 05101 320061678 377505790 361595.6
5101101002 05101 338 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 988 0.0033305 05101 302893619 343772426 347947.8
5101101003 05101 297 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 849 0.0028619 05101 260280043 301883647 355575.6
5101101004 05101 244 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 717 0.0024169 05101 219812474 247776850 345574.4
5101101005 05101 295 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 936 0.0031552 05101 286951849 299840977 320342.9
5101101006 05101 489 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1453 0.0048979 05101 445449826 498239018 342903.7
5101101007 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 604 0.0020360 05101 185169783 200862092 332553.1
5101101008 05101 711 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2358 0.0079486 05101 722897928 725744054 307779.5
5101101009 05101 1027 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 3502 0.0118050 05101 1073616854 1050160136 299874.4
5101111001 05101 856 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2120 0.0071463 05101 649933675 874534385 412516.2
5101121001 05101 527 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1435 0.0048373 05101 439931521 537151067 374321.3
5101121002 05101 695 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1941 0.0065430 05101 595057200 709334293 365447.9
5101121003 05101 525 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1528 0.0051508 05101 468442762 535102718 350198.1
5101131001 05101 241 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1170 0.0039440 05101 358689811 244715794 209158.8
5101131002 05101 184 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 572 0.0019282 05101 175359463 186593634 326212.6
5101131003 05101 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 638 0.0021506 05101 195593248 196784876 308440.2
5101131004 05101 257 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 880 0.0029664 05101 269783790 261043502 296640.3
5101131005 05101 187 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 664 0.0022383 05101 203564132 189650732 285618.6
5101141001 05101 486 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1502 0.0050631 05101 460471878 495167622 329672.2
5101141002 05101 311 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1122 0.0037822 05101 343974332 316184174 281804.1
5101141003 05101 332 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1031 0.0034754 05101 316076236 337640752 327488.6
5101141004 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 638 0.0021506 05101 195593248 200862092 314830.9
5101141005 05101 210 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 704 0.0023731 05101 215827032 213096093 302693.3
5101141006 05101 378 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1265 0.0042642 05101 387814198 384663261 304081.6
5101151001 05101 181 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 532 0.0017933 05101 163096564 183536776 344993.9
5101151002 05101 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 455 0.0015338 05101 139490482 165200916 363078.9
5101151003 05101 198 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 640 0.0021574 05101 196206393 200862092 313847.0
5101151004 05101 175 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 543 0.0018304 05101 166468861 177423798 326747.3
5101151005 05101 151 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 503 0.0016956 05101 154205962 152982382 304139.9
5101151006 05101 224 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 774 0.0026091 05101 237287106 227373351 293764.0
5101151007 05101 453 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1448 0.0048811 05101 443916963 461388433 318638.4
5101161001 05101 194 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 625 0.0021068 05101 191607805 196784876 314855.8
5101161002 05101 212 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 697 0.0023495 05101 213681024 215135426 308659.1
5101161003 05101 163 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 496 0.0016720 05101 152059954 165200916 333066.4
5101161004 05101 273 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 892 0.0030069 05101 273462660 277376123 310959.8
5101161005 05101 162 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 518 0.0017461 05101 158804549 164182534 316954.7
5101161006 05101 342 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1016 0.0034249 05101 311477648 347860501 342382.4
5101161007 05101 306 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 950 0.0032024 05101 291243864 311076479 327448.9
5101161008 05101 343 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1194 0.0040249 05101 366047551 348882556 292196.4
5101161009 05101 251 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 856 0.0028855 05101 262426050 254920019 297803.8
5101161010 05101 340 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1235 0.0041631 05101 378617023 345816434 280013.3
5101161011 05101 523 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1840 0.0062025 05101 564093379 533054406 289703.5
5101161012 05101 655 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 2467 0.0083161 05101 756314329 668317965 270903.1
5101171001 05101 357 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 932 0.0031417 05101 285725559 363192817 389691.9
5101171002 05101 381 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1142 0.0038496 05101 350105782 387730945 339519.2
5101171003 05101 540 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1447 0.0048777 05101 443610391 550466246 380419.0
5101171004 05101 360 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1122 0.0037822 05101 343974332 366259658 326434.6
5101171005 05101 409 2017 Valparaíso 306572.5 2017 5101 296655 90946261553 1452 0.0048946 05101 445143253 416368170 286754.9


Guardamos:

saveRDS(h_y_m_comuna_corr, "P03C/region_05_P03C_u.rds")