Community Composition

Broad FG Models

Grass

## 
## Model selection based on AICc:
## 
##            K    AICc Delta_AICc AICcWt Cum.Wt       LL
## GrassT     7 2284.82       0.00   0.70   0.70 -1135.21
## GrassTG    8 2286.67       1.85   0.28   0.97 -1135.08
## GrassInt  11 2291.24       6.41   0.03   1.00 -1134.14
## GrassNull  4 2300.77      15.94   0.00   1.00 -1146.31
## GrassG     5 2302.58      17.75   0.00   1.00 -1146.18
## Data: VegIntT
## Models:
## GrassT: Grass ~ TSF + (1 | Pasture/Year)
## GrassTG: Grass ~ Management + TSF + (1 | Pasture/Year)
## GrassInt: Grass ~ Management * TSF + (1 | Pasture/Year)
##          npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## GrassT      7 2284.4 2310.1 -1135.2   2270.4                     
## GrassTG     8 2286.2 2315.6 -1135.1   2270.2 0.2669  1     0.6054
## GrassInt   11 2290.3 2330.7 -1134.1   2268.3 1.8719  3     0.5994
## Data: VegIntT
## Models:
## GrassNull: Grass ~ 1 + (1 | Pasture/Year)
## GrassT: Grass ~ TSF + (1 | Pasture/Year)
##           npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)    
## GrassNull    4 2300.6 2315.3 -1146.3   2292.6                        
## GrassT       7 2284.4 2310.1 -1135.2   2270.4  22.2  3  5.928e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## GrassNull: Grass ~ 1 + (1 | Pasture/Year)
## GrassG: Grass ~ Management + (1 | Pasture/Year)
##           npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## GrassNull    4 2300.6 2315.3 -1146.3   2292.6                     
## GrassG       5 2302.4 2320.7 -1146.2   2292.4 0.2605  1     0.6098
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0         5.6310     2.7853   2.022   0.1702
## 3 Years Since Fire - Recently Burned == 0  14.8883     4.8923   3.043   0.0117
## Not Yet Burned - Recently Burned == 0       5.7808     2.7374   2.112   0.1409
## 3 Years Since Fire - Intermediate == 0      9.2573     4.6779   1.979   0.1857
## Not Yet Burned - Intermediate == 0          0.1498     2.8720   0.052   0.9999
## Not Yet Burned - 3 Years Since Fire == 0   -9.1076     5.0888  -1.790   0.2658
##                                            
## Intermediate - Recently Burned == 0        
## 3 Years Since Fire - Recently Burned == 0 *
## Not Yet Burned - Recently Burned == 0      
## 3 Years Since Fire - Intermediate == 0     
## Not Yet Burned - Intermediate == 0         
## Not Yet Burned - 3 Years Since Fire == 0   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = Grass ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0         4.2658     2.3396   1.823  0.25097
## 3 Years Since Fire - Recently Burned == 0   7.8114     4.0465   1.930  0.20503
## Not Yet Burned - Recently Burned == 0       8.3345     2.2779   3.659  0.00163
## 3 Years Since Fire - Intermediate == 0      3.5456     3.8896   0.912  0.79056
## Not Yet Burned - Intermediate == 0          4.0687     2.3606   1.724  0.29914
## Not Yet Burned - 3 Years Since Fire == 0    0.5231     4.1578   0.126  0.99925
##                                             
## Intermediate - Recently Burned == 0         
## 3 Years Since Fire - Recently Burned == 0   
## Not Yet Burned - Recently Burned == 0     **
## 3 Years Since Fire - Intermediate == 0      
## Not Yet Burned - Intermediate == 0          
## Not Yet Burned - 3 Years Since Fire == 0    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Forb

## 
## Model selection based on AICc:
## 
##           K   AICc Delta_AICc AICcWt Cum.Wt      LL
## ForbInt  11 584.39       0.00   0.97   0.97 -280.72
## ForbTG    8 592.50       8.11   0.02   0.99 -288.00
## ForbT     7 594.78      10.39   0.01   0.99 -290.19
## ForbG     5 595.42      11.03   0.00   1.00 -292.61
## ForbNull  4 597.76      13.36   0.00   1.00 -294.81
## Data: VegIntT
## Models:
## ForbT: log(Forb + 1) ~ TSF + (1 | Pasture/Year)
## ForbTG: log(Forb + 1) ~ Management + TSF + (1 | Pasture/Year)
## ForbInt: log(Forb + 1) ~ Management * TSF + (1 | Pasture/Year)
##         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## ForbT      7 594.39 620.10 -290.19   580.39                        
## ForbTG     8 591.99 621.38 -288.00   575.99  4.393  1   0.036088 * 
## ForbInt   11 583.45 623.85 -280.72   561.45 14.547  3   0.002247 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## ForbNull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## ForbT: log(Forb + 1) ~ TSF + (1 | Pasture/Year)
##          npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## ForbNull    4 597.62 612.31 -294.81   589.62                       
## ForbT       7 594.39 620.10 -290.19   580.39 9.2304  3    0.02638 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## ForbNull: log(Forb + 1) ~ 1 + (1 | Pasture/Year)
## ForbG: log(Forb + 1) ~ Management + (1 | Pasture/Year)
##          npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## ForbNull    4 597.62 612.31 -294.81   589.62                       
## ForbG       5 595.21 613.58 -292.61   585.21 4.4024  1    0.03589 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        0.06834    0.14221   0.481  0.96164
## 3 Years Since Fire - Recently Burned == 0  0.06272    0.24570   0.255  0.99387
## Not Yet Burned - Recently Burned == 0     -0.51435    0.13882  -3.705  0.00101
## 3 Years Since Fire - Intermediate == 0    -0.00562    0.23727  -0.024  0.99999
## Not Yet Burned - Intermediate == 0        -0.58269    0.13914  -4.188  < 0.001
## Not Yet Burned - 3 Years Since Fire == 0  -0.57707    0.24838  -2.323  0.08730
##                                              
## Intermediate - Recently Burned == 0          
## 3 Years Since Fire - Recently Burned == 0    
## Not Yet Burned - Recently Burned == 0     ** 
## 3 Years Since Fire - Intermediate == 0       
## Not Yet Burned - Intermediate == 0        ***
## Not Yet Burned - 3 Years Since Fire == 0  .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                            Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        0.154284   0.127821   1.207    0.609
## 3 Years Since Fire - Recently Burned == 0  0.041831   0.223277   0.187    0.998
## Not Yet Burned - Recently Burned == 0      0.161269   0.124948   1.291    0.555
## 3 Years Since Fire - Intermediate == 0    -0.112453   0.213182  -0.527    0.950
## Not Yet Burned - Intermediate == 0         0.006985   0.132814   0.053    1.000
## Not Yet Burned - 3 Years Since Fire == 0   0.119438   0.233176   0.512    0.954
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Forb + 1) ~ Management + (1 | Pasture/Year), 
##     data = VegIntT, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)  
## Sheep - Cattle == 0  -0.7356     0.2887  -2.548   0.0108 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Legume

## 
## Model selection based on AICc:
## 
##             K   AICc Delta_AICc AICcWt Cum.Wt      LL
## LegumeInt  11 686.86       0.00   0.94   0.94 -331.95
## LegumeTG    8 692.29       5.43   0.06   1.00 -337.89
## LegumeT     7 699.52      12.66   0.00   1.00 -342.56
## LegumeG     5 701.15      14.29   0.00   1.00 -345.47
## LegumeNull  4 707.05      20.19   0.00   1.00 -349.45
## Data: VegIntT
## Models:
## LegumeT: log(Legume + 1) ~ TSF + (1 | Pasture/Year)
## LegumeTG: log(Legume + 1) ~ Management + TSF + (1 | Pasture/Year)
## LegumeInt: log(Legume + 1) ~ Management * TSF + (1 | Pasture/Year)
##           npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## LegumeT      7 699.12 724.83 -342.56   685.12                        
## LegumeTG     8 691.78 721.17 -337.89   675.78  9.341  1   0.002241 **
## LegumeInt   11 685.91 726.32 -331.95   663.91 11.870  3   0.007843 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## LegumeNull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## LegumeT: log(Legume + 1) ~ TSF + (1 | Pasture/Year)
##            npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## LegumeNull    4 706.91 721.60 -349.45   698.91                        
## LegumeT       7 699.12 724.83 -342.56   685.12 13.789  3   0.003207 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## LegumeNull: log(Legume + 1) ~ 1 + (1 | Pasture/Year)
## LegumeG: log(Legume + 1) ~ Management + (1 | Pasture/Year)
##            npar    AIC   BIC  logLik deviance  Chisq Df Pr(>Chisq)   
## LegumeNull    4 706.91 721.6 -349.45   698.91                        
## LegumeG       5 700.94 719.3 -345.47   690.94 7.9722  1    0.00475 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        -0.4947     0.1894  -2.612   0.0412
## 3 Years Since Fire - Recently Burned == 0  -0.6114     0.3270  -1.870   0.2305
## Not Yet Burned - Recently Burned == 0       0.2222     0.1849   1.202   0.6138
## 3 Years Since Fire - Intermediate == 0     -0.1166     0.3159  -0.369   0.9820
## Not Yet Burned - Intermediate == 0          0.7169     0.1848   3.880   <0.001
## Not Yet Burned - 3 Years Since Fire == 0    0.8336     0.3300   2.526   0.0524
##                                              
## Intermediate - Recently Burned == 0       *  
## 3 Years Since Fire - Recently Burned == 0    
## Not Yet Burned - Recently Burned == 0        
## 3 Years Since Fire - Intermediate == 0       
## Not Yet Burned - Intermediate == 0        ***
## Not Yet Burned - 3 Years Since Fire == 0  .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                            Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        0.119839   0.118645   1.010    0.732
## 3 Years Since Fire - Recently Burned == 0  0.125368   0.209352   0.599    0.929
## Not Yet Burned - Recently Burned == 0      0.027319   0.116484   0.235    0.995
## 3 Years Since Fire - Intermediate == 0     0.005529   0.198394   0.028    1.000
## Not Yet Burned - Intermediate == 0        -0.092520   0.126978  -0.729    0.880
## Not Yet Burned - 3 Years Since Fire == 0  -0.098050   0.222231  -0.441    0.970
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(Legume + 1) ~ Management + (1 | Pasture/Year), 
##     data = VegIntT, REML = FALSE)
## 
## Linear Hypotheses:
##                     Estimate Std. Error z value Pr(>|z|)   
## Sheep - Cattle == 0  -0.7225     0.2296  -3.146  0.00165 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Species Ordination1

Setup1

## 
## Call:
## metaMDS(comm = SpHRECProp10, distance = "euclidean", k = 3, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(SpHRECProp10) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.09874177 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(SpHRECProp10)'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       3.24            3.08            1.17
## Proportion Explained             0.32            0.30            0.11
## Cumulative Proportion            0.32            0.62            0.73
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.83            0.76            0.51
## Proportion Explained             0.08            0.07            0.05
## Cumulative Proportion            0.81            0.89            0.94
##                       importance.MDS7 importance.MDS8
## Eigenvalue                       0.40            0.26
## Proportion Explained             0.04            0.03
## Cumulative Proportion            0.97            1.00

Env Fit

## 
## ***VECTORS
## 
##             NMDS1    NMDS2    NMDS3     r2 Pr(>r)  
## BGCover   0.55657 -0.31890  0.76716 0.0502  0.212  
## GCover   -0.45693 -0.71673  0.52679 0.0200  0.578  
## LitCover -0.32055  0.48312  0.81476 0.0072  0.746  
## LitMean  -0.09014 -0.37847  0.92121 0.0059  0.692  
## MaxDead   0.49540 -0.38826  0.77706 0.0677  0.392  
## MaxLive  -0.20036 -0.31241  0.92858 0.0538  0.314  
## VOR_Mean -0.62195 -0.44996  0.64087 0.0653  0.086 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## TSFRB            -0.0118  0.0093  0.0083
## TSF1yr2yr         0.0747 -0.0236 -0.0128
## TSF2yr3yr         0.1014 -0.0698 -0.0187
## TSF3yr4yr         0.0732 -0.0751 -0.0242
## TSFUnburned      -0.0755  0.0414  0.0111
## ManagementCattle -0.0046  0.0737 -0.0290
## ManagementSheep   0.0046 -0.0737  0.0290
## 
## Goodness of fit:
##                r2 Pr(>r)
## TSF        0.0799  0.146
## Management 0.0746  1.000
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##               NMDS1   NMDS2   NMDS3
## TSFRB       -0.0118  0.0093  0.0083
## TSF1yr2yr    0.0747 -0.0236 -0.0128
## TSF2yr3yr    0.1014 -0.0698 -0.0187
## TSF3yr4yr    0.0732 -0.0751 -0.0242
## TSFUnburned -0.0755  0.0414  0.0111
## 
## Goodness of fit:
##         r2 Pr(>r)
## TSF 0.0799  0.134
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Species Ordination2

Setup2

## 
## Call:
## metaMDS(comm = SpHRECProp10Int, distance = "euclidean", k = 3,      trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(SpHRECProp10Int) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.09811867 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(SpHRECProp10Int)'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       3.24            3.08            1.17
## Proportion Explained             0.32            0.30            0.11
## Cumulative Proportion            0.32            0.62            0.73
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.83            0.76            0.51
## Proportion Explained             0.08            0.07            0.05
## Cumulative Proportion            0.81            0.89            0.94
##                       importance.MDS7 importance.MDS8
## Eigenvalue                       0.40            0.26
## Proportion Explained             0.04            0.03
## Cumulative Proportion            0.97            1.00

Env Fit2

## 
## ***VECTORS
## 
##             NMDS1    NMDS2    NMDS3     r2 Pr(>r)
## BGCover   0.54694 -0.30016  0.78151 0.0532  0.218
## GCover   -0.41190 -0.73755  0.53512 0.0214  0.530
## LitCover -0.46669  0.75971  0.45282 0.0048  0.874
## LitMean  -0.11634 -0.67360  0.72988 0.0018  0.922
## MaxDead   0.63843 -0.41882  0.64576 0.0530  0.482
## MaxLive  -0.18096 -0.31953  0.93014 0.0529  0.360
## VOR_Mean -0.62348 -0.49023  0.60906 0.0612  0.136
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned    -0.0122  0.0066  0.0166
## TSFIntermediate        0.0865 -0.0387 -0.0192
## TSF3 Years Since Fire  0.0769 -0.0671 -0.0429
## TSFNot Yet Burned     -0.0768  0.0390  0.0121
## ManagementCattle      -0.0084  0.0758 -0.0386
## ManagementSheep        0.0084 -0.0758  0.0386
## 
## Goodness of fit:
##                r2 Pr(>r)  
## TSF        0.0784  0.086 .
## Management 0.0862  1.000  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned    -0.0122  0.0066  0.0166
## TSFIntermediate        0.0865 -0.0387 -0.0192
## TSF3 Years Since Fire  0.0769 -0.0671 -0.0429
## TSFNot Yet Burned     -0.0768  0.0390  0.0121
## 
## Goodness of fit:
##         r2 Pr(>r)  
## TSF 0.0784  0.066 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Functional Group Ordination1

Setup

## 
## Call:
## metaMDS(comm = FGFineHREC, distance = "euclidean", k = 3, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(sqrt(FGFineHREC)) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.06718037 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(sqrt(FGFineHREC))'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       3.07            1.18            0.87
## Proportion Explained             0.51            0.20            0.15
## Cumulative Proportion            0.51            0.70            0.85
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.47            0.24            0.19
## Proportion Explained             0.08            0.04            0.03
## Cumulative Proportion            0.93            0.97            1.00

Env Fit

## 
## ***VECTORS
## 
##             NMDS1    NMDS2    NMDS3     r2 Pr(>r)  
## BGCover   0.61005  0.72930  0.30977 0.0276  0.530  
## GCover   -0.96483  0.02107  0.26204 0.0385  0.680  
## LitCover  0.00500 -0.71263  0.70152 0.0875  0.084 .
## LitMean  -0.18004 -0.59738  0.78149 0.0980  0.114  
## MaxDead   0.10794 -0.23779  0.96530 0.0950  0.052 .
## MaxLive   0.20291  0.92066 -0.33349 0.1217  0.994  
## VOR_Mean -0.05783  0.94683 -0.31649 0.0657  0.984  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## TSFRB             0.0178  0.0059 -0.0133
## TSF1yr2yr         0.0234  0.0397 -0.0007
## TSF2yr3yr         0.0650  0.0342  0.0210
## TSF3yr4yr        -0.1017  0.0501  0.0550
## TSFUnburned      -0.0283 -0.0435 -0.0070
## ManagementCattle  0.0408  0.0008 -0.0462
## ManagementSheep  -0.0408 -0.0008  0.0462
## 
## Goodness of fit:
##                r2 Pr(>r)
## TSF        0.0643  0.172
## Management 0.0745  1.000
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Functional Group Ordination2

Setup2

## 
## Call:
## metaMDS(comm = FGFineHRECInt, distance = "euclidean", k = 3,      trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(sqrt(FGFineHRECInt)) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.06718037 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(sqrt(FGFineHRECInt))'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       3.07            1.18            0.87
## Proportion Explained             0.51            0.20            0.15
## Cumulative Proportion            0.51            0.70            0.85
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.47            0.24            0.19
## Proportion Explained             0.08            0.04            0.03
## Cumulative Proportion            0.93            0.97            1.00

Env Fit2

## 
## ***VECTORS
## 
##             NMDS1    NMDS2    NMDS3     r2 Pr(>r)  
## BGCover   0.50202  0.86189  0.07155 0.0266  0.528  
## GCover   -0.72234 -0.54895  0.42057 0.0350  0.730  
## LitCover  0.00162 -0.71862  0.69540 0.0877  0.070 .
## LitMean  -0.16832 -0.64780  0.74298 0.0991  0.106  
## MaxDead   0.11749 -0.21456  0.96962 0.0900  0.076 .
## MaxLive   0.19964  0.93052 -0.30703 0.1234  0.992  
## VOR_Mean -0.00510  0.96599 -0.25851 0.0576  0.988  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned     0.0178  0.0059 -0.0133
## TSFIntermediate        0.0400  0.0375  0.0080
## TSF3 Years Since Fire -0.1017  0.0501  0.0550
## TSFNot Yet Burned     -0.0283 -0.0435 -0.0070
## ManagementCattle       0.0408  0.0008 -0.0462
## ManagementSheep       -0.0408 -0.0008  0.0462
## 
## Goodness of fit:
##                r2 Pr(>r)
## TSF        0.0610  0.116
## Management 0.0745  1.000
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499

Structural Patterns

Models and Graphs

VOR

## 
## Model selection based on AICc:
## 
##          K    AICc Delta_AICc AICcWt Cum.Wt       LL
## VORT     8 2594.21       0.00   0.61   0.61 -1289.10
## VORTG    9 2595.29       1.07   0.36   0.97 -1288.63
## VORInt  12 2600.36       6.15   0.03   1.00 -1288.16
## VORNull  5 2653.78      59.57   0.00   1.00 -1321.88
## VORG     6 2654.80      60.58   0.00   1.00 -1321.39
## Data: VegInt
## Models:
## VORT: log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture/Year)
## VORTG: log(VOR_Mean + 1) ~ Management + TSF + (1 | Transect/Pasture/Year)
## VORInt: log(VOR_Mean + 1) ~ Management * TSF + (1 | Transect/Pasture/Year)
##        npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## VORT      8 2594.2 2648.2 -1289.1   2578.2                     
## VORTG     9 2595.3 2656.0 -1288.6   2577.3 0.9320  1     0.3344
## VORInt   12 2600.3 2681.3 -1288.2   2576.3 0.9482  3     0.8138
## Data: VegInt
## Models:
## VORNull: log(VOR_Mean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## VORT: log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture/Year)
##         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## VORNull    5 2653.8 2687.5 -1321.9   2643.8                         
## VORT       8 2594.2 2648.2 -1289.1   2578.2 65.579  3  3.772e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegInt
## Models:
## VORNull: log(VOR_Mean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## VORG: log(VOR_Mean + 1) ~ Management + (1 | Transect/Pasture/Year)
##         npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## VORNull    5 2653.8 2687.5 -1321.9   2643.8                     
## VORG       6 2654.8 2695.3 -1321.4   2642.8 0.9878  1     0.3203
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture/Year), 
##     data = subset(VegInt, Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        0.36795    0.08111   4.536  < 0.001
## 3 Years Since Fire - Recently Burned == 0  0.45807    0.13826   3.313  0.00503
## Not Yet Burned - Recently Burned == 0      0.22702    0.07870   2.885  0.01940
## 3 Years Since Fire - Intermediate == 0     0.09012    0.13405   0.672  0.90360
## Not Yet Burned - Intermediate == 0        -0.14094    0.07770  -1.814  0.25585
## Not Yet Burned - 3 Years Since Fire == 0  -0.23105    0.13801  -1.674  0.32535
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ** 
## Not Yet Burned - Recently Burned == 0     *  
## 3 Years Since Fire - Intermediate == 0       
## Not Yet Burned - Intermediate == 0           
## Not Yet Burned - 3 Years Since Fire == 0     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(VOR_Mean + 1) ~ TSF + (1 | Transect/Pasture/Year), 
##     data = subset(VegInt, Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        0.46189    0.05985   7.718  < 0.001
## 3 Years Since Fire - Recently Burned == 0  0.53707    0.10142   5.295  < 0.001
## Not Yet Burned - Recently Burned == 0      0.26485    0.05786   4.578  < 0.001
## 3 Years Since Fire - Intermediate == 0     0.07519    0.09865   0.762  0.86617
## Not Yet Burned - Intermediate == 0        -0.19703    0.05681  -3.469  0.00282
## Not Yet Burned - 3 Years Since Fire == 0  -0.27222    0.10074  -2.702  0.03254
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0       
## Not Yet Burned - Intermediate == 0        ** 
## Not Yet Burned - 3 Years Since Fire == 0  *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

MaxLive

## 
## Model selection based on AICc:
## 
##              K     AICc Delta_AICc AICcWt Cum.Wt        LL
## MaxLiveT     8 23400.51       0.00   0.55   0.55 -11692.25
## MaxLiveTG    9 23401.14       0.63   0.40   0.94 -11691.56
## MaxLiveInt  12 23405.09       4.58   0.06   1.00 -11690.52
## MaxLiveNull  5 23424.65      24.13   0.00   1.00 -11707.32
## MaxLiveG     6 23425.21      24.69   0.00   1.00 -11706.60
## Data: VegInt
## Models:
## MaxLiveT: MaxLive ~ TSF + (1 | Transect/Pasture/Year)
## MaxLiveTG: MaxLive ~ Management + TSF + (1 | Transect/Pasture/Year)
## MaxLiveInt: MaxLive ~ Management * TSF + (1 | Transect/Pasture/Year)
##            npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)
## MaxLiveT      8 23401 23455 -11692    23385                     
## MaxLiveTG     9 23401 23462 -11692    23383 1.3791  1     0.2403
## MaxLiveInt   12 23405 23486 -11690    23381 2.0709  3     0.5578
## Data: VegInt
## Models:
## MaxLiveNull: MaxLive ~ 1 + (1 | Transect/Pasture/Year)
## MaxLiveT: MaxLive ~ TSF + (1 | Transect/Pasture/Year)
##             npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
## MaxLiveNull    5 23425 23458 -11707    23415                         
## MaxLiveT       8 23401 23455 -11692    23385 30.145  3  1.287e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegInt
## Models:
## MaxLiveNull: MaxLive ~ 1 + (1 | Transect/Pasture/Year)
## MaxLiveG: MaxLive ~ Management + (1 | Transect/Pasture/Year)
##             npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)
## MaxLiveNull    5 23425 23458 -11707    23415                     
## MaxLiveG       6 23425 23466 -11707    23413 1.4438  1     0.2295
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture/Year), data = subset(VegInt, 
##     Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0         1.2495     0.4475   2.792   0.0251
## 3 Years Since Fire - Recently Burned == 0   0.7213     0.7637   0.944   0.7727
## Not Yet Burned - Recently Burned == 0       0.3810     0.4344   0.877   0.8096
## 3 Years Since Fire - Intermediate == 0     -0.5283     0.7399  -0.714   0.8870
## Not Yet Burned - Intermediate == 0         -0.8685     0.4303  -2.018   0.1724
## Not Yet Burned - 3 Years Since Fire == 0   -0.3403     0.7639  -0.445   0.9691
##                                            
## Intermediate - Recently Burned == 0       *
## 3 Years Since Fire - Recently Burned == 0  
## Not Yet Burned - Recently Burned == 0      
## 3 Years Since Fire - Intermediate == 0     
## Not Yet Burned - Intermediate == 0         
## Not Yet Burned - 3 Years Since Fire == 0   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxLive ~ TSF + (1 | Transect/Pasture/Year), data = subset(VegInt, 
##     Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0         2.0142     0.3541   5.688  < 0.001
## 3 Years Since Fire - Recently Burned == 0   1.3092     0.5902   2.218  0.11164
## Not Yet Burned - Recently Burned == 0       0.8260     0.3407   2.424  0.06791
## 3 Years Since Fire - Intermediate == 0     -0.7050     0.5783  -1.219  0.60306
## Not Yet Burned - Intermediate == 0         -1.1883     0.3197  -3.717  0.00102
## Not Yet Burned - 3 Years Since Fire == 0   -0.4833     0.5702  -0.848  0.82501
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0    
## Not Yet Burned - Recently Burned == 0     .  
## 3 Years Since Fire - Intermediate == 0       
## Not Yet Burned - Intermediate == 0        ** 
## Not Yet Burned - 3 Years Since Fire == 0     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

MaxDead

## 
## Model selection based on AICc:
## 
##              K     AICc Delta_AICc AICcWt Cum.Wt        LL
## MaxDeadT     8 22488.89       0.00   0.44   0.44 -11236.43
## MaxDeadTG    9 22489.00       0.11   0.42   0.86 -11235.48
## MaxDeadInt  12 22491.17       2.29   0.14   1.00 -11233.56
## MaxDeadNull  5 22655.00     166.11   0.00   1.00 -11322.49
## MaxDeadG     6 22655.57     166.68   0.00   1.00 -11321.78
## Data: VegInt
## Models:
## MaxDeadT: MaxDead ~ TSF + (1 | Transect/Pasture/Year)
## MaxDeadTG: MaxDead ~ Management + TSF + (1 | Transect/Pasture/Year)
## MaxDeadInt: MaxDead ~ Management * TSF + (1 | Transect/Pasture/Year)
##            npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)
## MaxDeadT      8 22489 22543 -11236    22473                     
## MaxDeadTG     9 22489 22550 -11236    22471 1.8975  1     0.1684
## MaxDeadInt   12 22491 22572 -11234    22467 3.8427  3     0.2790
## Data: VegInt
## Models:
## MaxDeadNull: MaxDead ~ 1 + (1 | Transect/Pasture/Year)
## MaxDeadT: MaxDead ~ TSF + (1 | Transect/Pasture/Year)
##             npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)    
## MaxDeadNull    5 22655 22689 -11322    22645                         
## MaxDeadT       8 22489 22543 -11236    22473 172.12  3  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegInt
## Models:
## MaxDeadNull: MaxDead ~ 1 + (1 | Transect/Pasture/Year)
## MaxDeadG: MaxDead ~ Management + (1 | Transect/Pasture/Year)
##             npar   AIC   BIC logLik deviance  Chisq Df Pr(>Chisq)
## MaxDeadNull    5 22655 22689 -11322    22645                     
## MaxDeadG       6 22656 22696 -11322    22644 1.4323  1     0.2314
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxDead ~ TSF + (1 | Transect/Pasture/Year), data = subset(VegInt, 
##     Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0         1.8297     0.1891   9.676  < 0.001
## 3 Years Since Fire - Recently Burned == 0   3.9464     0.3226  12.232  < 0.001
## Not Yet Burned - Recently Burned == 0       1.1975     0.1833   6.532  < 0.001
## 3 Years Since Fire - Intermediate == 0      2.1167     0.3129   6.765  < 0.001
## Not Yet Burned - Intermediate == 0         -0.6322     0.1817  -3.479  0.00252
## Not Yet Burned - 3 Years Since Fire == 0   -2.7489     0.3226  -8.521  < 0.001
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    ***
## Not Yet Burned - Intermediate == 0        ** 
## Not Yet Burned - 3 Years Since Fire == 0  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = MaxDead ~ TSF + (1 | Transect/Pasture/Year), data = subset(VegInt, 
##     Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0         2.2072     0.2848   7.749  < 1e-04
## 3 Years Since Fire - Recently Burned == 0   4.4893     0.4817   9.320  < 1e-04
## Not Yet Burned - Recently Burned == 0       1.0447     0.2752   3.796 0.000747
## 3 Years Since Fire - Intermediate == 0      2.2821     0.4690   4.866  < 1e-04
## Not Yet Burned - Intermediate == 0         -1.1624     0.2686  -4.327  < 1e-04
## Not Yet Burned - 3 Years Since Fire == 0   -3.4446     0.4768  -7.225  < 1e-04
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    ***
## Not Yet Burned - Intermediate == 0        ***
## Not Yet Burned - 3 Years Since Fire == 0  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Litter Depth

## 
## Model selection based on AICc:
## 
##              K    AICc Delta_AICc AICcWt Cum.Wt       LL
## LitMeanT     8 3696.29       0.00   0.61   0.61 -1840.14
## LitMeanTG    9 3697.35       1.06   0.36   0.97 -1839.66
## LitMeanInt  12 3702.22       5.92   0.03   1.00 -1839.08
## LitMeanNull  5 3785.41      89.12   0.00   1.00 -1887.70
## LitMeanG     6 3786.75      90.46   0.00   1.00 -1887.37
## Data: VegInt
## Models:
## LitMeanT: log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year)
## LitMeanTG: log(LitMean + 1) ~ Management + TSF + (1 | Transect/Pasture/Year)
## LitMeanInt: log(LitMean + 1) ~ Management * TSF + (1 | Transect/Pasture/Year)
##            npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## LitMeanT      8 3696.3 3750.3 -1840.1   3680.3                     
## LitMeanTG     9 3697.3 3758.1 -1839.7   3679.3 0.9450  1     0.3310
## LitMeanInt   12 3702.2 3783.2 -1839.1   3678.2 1.1575  3     0.7632
## Data: VegInt
## Models:
## LitMeanNull: log(LitMean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## LitMeanT: log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year)
##             npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## LitMeanNull    5 3785.4 3819.2 -1887.7   3775.4                         
## LitMeanT       8 3696.3 3750.3 -1840.1   3680.3 95.133  3  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegInt
## Models:
## LitMeanNull: log(LitMean + 1) ~ 1 + (1 | Transect/Pasture/Year)
## LitMeanG: log(LitMean + 1) ~ Management + (1 | Transect/Pasture/Year)
##             npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## LitMeanNull    5 3785.4 3819.2 -1887.7   3775.4                     
## LitMeanG       6 3786.7 3827.3 -1887.4   3774.7 0.6632  1     0.4154
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year), 
##     data = subset(VegInt, Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        0.25694    0.06162   4.170   <0.001
## 3 Years Since Fire - Recently Burned == 0  0.78343    0.10471   7.482   <0.001
## Not Yet Burned - Recently Burned == 0      0.38347    0.05970   6.423   <0.001
## 3 Years Since Fire - Intermediate == 0     0.52649    0.10174   5.175   <0.001
## Not Yet Burned - Intermediate == 0         0.12653    0.05848   2.164    0.126
## Not Yet Burned - 3 Years Since Fire == 0  -0.39996    0.10400  -3.846   <0.001
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    ***
## Not Yet Burned - Intermediate == 0           
## Not Yet Burned - 3 Years Since Fire == 0  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(LitMean + 1) ~ TSF + (1 | Transect/Pasture/Year), 
##     data = subset(VegInt, Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        0.35508    0.08163   4.350  < 0.001
## 3 Years Since Fire - Recently Burned == 0  0.88995    0.13605   6.541  < 0.001
## Not Yet Burned - Recently Burned == 0      0.40763    0.07855   5.190  < 0.001
## 3 Years Since Fire - Intermediate == 0     0.53487    0.13330   4.012  < 0.001
## Not Yet Burned - Intermediate == 0         0.05255    0.07369   0.713  0.88733
## Not Yet Burned - 3 Years Since Fire == 0  -0.48232    0.13144  -3.670  0.00128
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    ***
## Not Yet Burned - Intermediate == 0           
## Not Yet Burned - 3 Years Since Fire == 0  ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Bare Ground

## 
## Model selection based on AICc:
## 
##              K   AICc Delta_AICc AICcWt Cum.Wt      LL
## BGCoverT     7 662.21       0.00   0.71   0.71 -323.90
## BGCoverTG    8 664.19       1.99   0.26   0.97 -323.84
## BGCoverInt  11 668.66       6.46   0.03   1.00 -322.86
## BGCoverNull  4 751.39      89.18   0.00   1.00 -371.62
## BGCoverG     5 753.33      91.13   0.00   1.00 -371.56
## Data: VegIntT
## Models:
## BGCoverT: log(BGCover + 1) ~ TSF + (1 | Pasture/Year)
## BGCoverTG: log(BGCover + 1) ~ Management + TSF + (1 | Pasture/Year)
## BGCoverInt: log(BGCover + 1) ~ Management * TSF + (1 | Pasture/Year)
##            npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## BGCoverT      7 661.81 687.52 -323.90   647.81                     
## BGCoverTG     8 663.68 693.07 -323.84   647.68 0.1266  1     0.7220
## BGCoverInt   11 667.71 708.12 -322.86   645.71 1.9677  3     0.5791
## Data: VegIntT
## Models:
## BGCoverNull: log(BGCover + 1) ~ 1 + (1 | Pasture/Year)
## BGCoverT: log(BGCover + 1) ~ TSF + (1 | Pasture/Year)
##             npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)    
## BGCoverNull    4 751.25 765.94 -371.62   743.25                        
## BGCoverT       7 661.81 687.52 -323.90   647.81 95.44  3  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## BGCoverNull: log(BGCover + 1) ~ 1 + (1 | Pasture/Year)
## BGCoverG: log(BGCover + 1) ~ Management + (1 | Pasture/Year)
##             npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## BGCoverNull    4 751.25 765.94 -371.62   743.25                     
## BGCoverG       5 753.12 771.49 -371.56   743.12 0.1251  1     0.7236
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        -0.4992     0.1589  -3.142  0.00832
## 3 Years Since Fire - Recently Burned == 0  -1.5541     0.2794  -5.561  < 0.001
## Not Yet Burned - Recently Burned == 0      -0.9579     0.1562  -6.131  < 0.001
## 3 Years Since Fire - Intermediate == 0     -1.0549     0.2669  -3.952  < 0.001
## Not Yet Burned - Intermediate == 0         -0.4587     0.1646  -2.788  0.02502
## Not Yet Burned - 3 Years Since Fire == 0    0.5962     0.2914   2.046  0.16201
##                                              
## Intermediate - Recently Burned == 0       ** 
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    ***
## Not Yet Burned - Intermediate == 0        *  
## Not Yet Burned - 3 Years Since Fire == 0     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = log(BGCover + 1) ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        -0.8050     0.1574  -5.115   <0.001
## 3 Years Since Fire - Recently Burned == 0  -1.5195     0.2697  -5.635   <0.001
## Not Yet Burned - Recently Burned == 0      -1.0167     0.1527  -6.658   <0.001
## 3 Years Since Fire - Intermediate == 0     -0.7145     0.2607  -2.741   0.0292
## Not Yet Burned - Intermediate == 0         -0.2117     0.1544  -1.371   0.5049
## Not Yet Burned - 3 Years Since Fire == 0    0.5028     0.2728   1.843   0.2424
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    *  
## Not Yet Burned - Intermediate == 0           
## Not Yet Burned - 3 Years Since Fire == 0     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Ground Litter

## 
## Model selection based on AICc:
## 
##             K    AICc Delta_AICc AICcWt Cum.Wt       LL
## GCoverTG    8 2150.11       0.00   0.52   0.52 -1066.80
## GCoverT     7 2151.23       1.12   0.30   0.82 -1068.42
## GCoverInt  11 2152.26       2.15   0.18   1.00 -1064.66
## GCoverG     5 2192.79      42.67   0.00   1.00 -1091.29
## GCoverNull  4 2194.11      44.00   0.00   1.00 -1092.99
## Data: VegIntT
## Models:
## GCoverT: GCover ~ TSF + (1 | Pasture/Year)
## GCoverTG: GCover ~ Management + TSF + (1 | Pasture/Year)
## GCoverInt: GCover ~ Management * TSF + (1 | Pasture/Year)
##           npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)  
## GCoverT      7 2150.8 2176.6 -1068.4   2136.8                       
## GCoverTG     8 2149.6 2179.0 -1066.8   2133.6 3.2324  1    0.07219 .
## GCoverInt   11 2151.3 2191.7 -1064.7   2129.3 4.2888  3    0.23192  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## GCoverNull: GCover ~ 1 + (1 | Pasture/Year)
## GCoverT: GCover ~ TSF + (1 | Pasture/Year)
##            npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## GCoverNull    4 2194.0 2208.7 -1093.0   2186.0                         
## GCoverT       7 2150.8 2176.6 -1068.4   2136.8 49.138  3  1.219e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## GCoverNull: GCover ~ 1 + (1 | Pasture/Year)
## GCoverG: GCover ~ Management + (1 | Pasture/Year)
##            npar    AIC    BIC  logLik deviance Chisq Df Pr(>Chisq)  
## GCoverNull    4 2194.0 2208.7 -1093.0   2186.0                      
## GCoverG       5 2192.6 2210.9 -1091.3   2182.6 3.398  1    0.06528 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0       -10.0407     2.1574  -4.654   <0.001
## 3 Years Since Fire - Recently Burned == 0 -10.7909     3.6452  -2.960   0.0153
## Not Yet Burned - Recently Burned == 0      -9.8166     2.0905  -4.696   <0.001
## 3 Years Since Fire - Intermediate == 0     -0.7502     3.5543  -0.211   0.9965
## Not Yet Burned - Intermediate == 0          0.2241     1.9617   0.114   0.9994
## Not Yet Burned - 3 Years Since Fire == 0    0.9743     3.5427   0.275   0.9924
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 *  
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0       
## Not Yet Burned - Intermediate == 0           
## Not Yet Burned - 3 Years Since Fire == 0     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = GCover ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0         -6.111      1.993  -3.066  0.01098
## 3 Years Since Fire - Recently Burned == 0  -16.612      3.383  -4.911  < 0.001
## Not Yet Burned - Recently Burned == 0       -7.763      1.928  -4.027  < 0.001
## 3 Years Since Fire - Intermediate == 0     -10.501      3.288  -3.194  0.00688
## Not Yet Burned - Intermediate == 0          -1.653      1.900  -0.870  0.81357
## Not Yet Burned - 3 Years Since Fire == 0     8.848      3.368   2.627  0.04013
##                                              
## Intermediate - Recently Burned == 0       *  
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    ** 
## Not Yet Burned - Intermediate == 0           
## Not Yet Burned - 3 Years Since Fire == 0  *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Vertical Litter

## 
## Model selection based on AICc:
## 
##               K    AICc Delta_AICc AICcWt Cum.Wt       LL
## LitCoverT     7 2068.47       0.00   0.62   0.62 -1027.04
## LitCoverTG    8 2070.06       1.59   0.28   0.90 -1026.78
## LitCoverInt  11 2072.23       3.76   0.10   1.00 -1024.64
## LitCoverNull  4 2187.29     118.81   0.00   1.00 -1089.57
## LitCoverG     5 2188.93     120.46   0.00   1.00 -1089.36
## Data: VegIntT
## Models:
## LitCoverT: LitCover ~ TSF + (1 | Pasture/Year)
## LitCoverTG: LitCover ~ Management + TSF + (1 | Pasture/Year)
## LitCoverInt: LitCover ~ Management * TSF + (1 | Pasture/Year)
##             npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## LitCoverT      7 2068.1 2093.8 -1027.0   2054.1                     
## LitCoverTG     8 2069.6 2098.9 -1026.8   2053.6 0.5241  1     0.4691
## LitCoverInt   11 2071.3 2111.7 -1024.6   2049.3 4.2640  3     0.2343
## Data: VegIntT
## Models:
## LitCoverNull: LitCover ~ 1 + (1 | Pasture/Year)
## LitCoverT: LitCover ~ TSF + (1 | Pasture/Year)
##              npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
## LitCoverNull    4 2187.2 2201.8 -1089.6   2179.2                         
## LitCoverT       7 2068.1 2093.8 -1027.0   2054.1 125.07  3  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Data: VegIntT
## Models:
## LitCoverNull: LitCover ~ 1 + (1 | Pasture/Year)
## LitCoverG: LitCover ~ Management + (1 | Pasture/Year)
##              npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)
## LitCoverNull    4 2187.2 2201.8 -1089.6   2179.2                     
## LitCoverG       5 2188.7 2207.1 -1089.4   2178.7 0.4279  1      0.513
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Cattle"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0          9.311      1.917   4.857   <0.001
## 3 Years Since Fire - Recently Burned == 0   17.668      3.340   5.290   <0.001
## Not Yet Burned - Recently Burned == 0       10.960      1.878   5.837   <0.001
## 3 Years Since Fire - Intermediate == 0       8.357      3.210   2.603   0.0422
## Not Yet Burned - Intermediate == 0           1.648      1.926   0.856   0.8202
## Not Yet Burned - 3 Years Since Fire == 0    -6.708      3.425  -1.959   0.1938
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    *  
## Not Yet Burned - Intermediate == 0           
## Not Yet Burned - 3 Years Since Fire == 0     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = LitCover ~ TSF + (1 | Pasture/Year), data = subset(VegIntT, 
##     Management == "Sheep"), REML = FALSE)
## 
## Linear Hypotheses:
##                                           Estimate Std. Error z value Pr(>|z|)
## Intermediate - Recently Burned == 0        11.2456     1.6167   6.956   <1e-05
## 3 Years Since Fire - Recently Burned == 0  26.5125     2.8168   9.412   <1e-05
## Not Yet Burned - Recently Burned == 0      12.1714     1.5787   7.710   <1e-05
## 3 Years Since Fire - Intermediate == 0     15.2669     2.6944   5.666   <1e-05
## Not Yet Burned - Intermediate == 0          0.9257     1.6670   0.555    0.942
## Not Yet Burned - 3 Years Since Fire == 0  -14.3412     2.9291  -4.896   <1e-05
##                                              
## Intermediate - Recently Burned == 0       ***
## 3 Years Since Fire - Recently Burned == 0 ***
## Not Yet Burned - Recently Burned == 0     ***
## 3 Years Since Fire - Intermediate == 0    ***
## Not Yet Burned - Intermediate == 0           
## Not Yet Burned - 3 Years Since Fire == 0  ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Structure Ordination 1

Setup

## 
## Call:
## metaMDS(comm = StrSpeHREC, distance = "euclidean", k = 3, trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(StrSpeHREC) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.04695251 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(StrSpeHREC)'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       2.07            0.72            0.50
## Proportion Explained             0.58            0.20            0.14
## Cumulative Proportion            0.58            0.78            0.92
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.17            0.07            0.04
## Proportion Explained             0.05            0.02            0.01
## Cumulative Proportion            0.97            0.99            1.00

Env Fit

## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## TSFRB            -0.1822 -0.0164 -0.0123
## TSF1yr2yr         0.0173 -0.0309  0.0142
## TSF2yr3yr         0.0803 -0.0040  0.0075
## TSF3yr4yr         0.1735  0.0727  0.0533
## TSFUnburned       0.0571  0.0157 -0.0102
## ManagementCattle  0.0040 -0.0147  0.0042
## ManagementSheep  -0.0040  0.0147 -0.0042
## 
## Goodness of fit:
##                r2 Pr(>r)   
## TSF        0.3879  0.002 **
## Management 0.0073  1.000   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## ManagementCattle  0.0040 -0.0147  0.0042
## ManagementSheep  -0.0040  0.0147 -0.0042
## 
## Goodness of fit:
##                r2 Pr(>r)
## Management 0.0073      1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##               NMDS1   NMDS2   NMDS3
## TSFRB       -0.1822 -0.0164 -0.0123
## TSF1yr2yr    0.0173 -0.0309  0.0142
## TSF2yr3yr    0.0803 -0.0040  0.0075
## TSF3yr4yr    0.1735  0.0727  0.0533
## TSFUnburned  0.0571  0.0157 -0.0102
## 
## Goodness of fit:
##         r2 Pr(>r)   
## TSF 0.3879  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  StSp.MDSe by EnvPatchHREC2$TSF
## 999 permutations 
## 
##          RB     1yr2yr 2yr3yr 3yr4yr
## 1yr2yr   0.0025 -      -      -     
## 2yr3yr   0.0025 0.2278 -      -     
## 3yr4yr   0.0025 0.0080 0.1313 -     
## Unburned 0.0025 0.0443 0.5470 0.0083
## 
## P value adjustment method: fdr
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  StSp.MDSe by EnvPatchHREC2$Management
## 999 permutations 
## 
##       Cattle
## Sheep 0.45  
## 
## P value adjustment method: fdr

Structure Ordination 2

Setup2

## 
## Call:
## metaMDS(comm = StrSpeHRECInt, distance = "euclidean", k = 3,      trymax = 50) 
## 
## global Multidimensional Scaling using monoMDS
## 
## Data:     wisconsin(StrSpeHRECInt) 
## Distance: euclidean 
## 
## Dimensions: 3 
## Stress:     0.04695246 
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation 
## Species: expanded scores based on 'wisconsin(StrSpeHRECInt)'
##                       importance.MDS1 importance.MDS2 importance.MDS3
## Eigenvalue                       2.07            0.72            0.50
## Proportion Explained             0.58            0.20            0.14
## Cumulative Proportion            0.58            0.78            0.92
##                       importance.MDS4 importance.MDS5 importance.MDS6
## Eigenvalue                       0.17            0.07            0.04
## Proportion Explained             0.05            0.02            0.01
## Cumulative Proportion            0.97            0.99            1.00

Env Fit2

## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned    -0.1822 -0.0164 -0.0123
## TSFIntermediate        0.0425 -0.0202  0.0115
## TSF3 Years Since Fire  0.1735  0.0727  0.0533
## TSFNot Yet Burned      0.0571  0.0157 -0.0102
## ManagementCattle       0.0040 -0.0147  0.0042
## ManagementSheep       -0.0040  0.0147 -0.0042
## 
## Goodness of fit:
##                r2 Pr(>r)   
## TSF        0.3775  0.002 **
## Management 0.0073  1.000   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                    NMDS1   NMDS2   NMDS3
## ManagementCattle  0.0040 -0.0147  0.0042
## ManagementSheep  -0.0040  0.0147 -0.0042
## 
## Goodness of fit:
##                r2 Pr(>r)
## Management 0.0073      1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
## ***FACTORS:
## 
## Centroids:
##                         NMDS1   NMDS2   NMDS3
## TSFRecently Burned    -0.1822 -0.0164 -0.0123
## TSFIntermediate        0.0425 -0.0202  0.0115
## TSF3 Years Since Fire  0.1735  0.0727  0.0533
## TSFNot Yet Burned      0.0571  0.0157 -0.0102
## 
## Goodness of fit:
##         r2 Pr(>r)   
## TSF 0.3775  0.002 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks:  strata 
## Permutation: free
## Number of permutations: 499
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  StSp.MDSeInt by EnvPatchHREC2$TSF
## 999 permutations 
## 
##          RB     1yr2yr 2yr3yr 3yr4yr
## 1yr2yr   0.0025 -      -      -     
## 2yr3yr   0.0025 0.1878 -      -     
## 3yr4yr   0.0025 0.0067 0.0657 -     
## Unburned 0.0025 0.0800 0.3380 0.0067
## 
## P value adjustment method: fdr
## 
##  Pairwise comparisons using factor fitting to an ordination 
## 
## data:  StSp.MDSeInt by EnvPatchHREC2$Management
## 999 permutations 
## 
##       Cattle
## Sheep 0.44  
## 
## P value adjustment method: fdr

Heterogeneity Over Time

## `summarise()` has grouped output by 'Year', 'Variable'. You can override using the `.groups` argument.

VOR

##             Df  Sum Sq Mean Sq F value Pr(>F)  
## Year         1 0.03568 0.03568   10.56 0.0314 *
## Residuals    4 0.01351 0.00338                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "VOR"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)  
## 2020 - 2017 == 0  0.15424    0.04746    3.25   0.0314 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 7.017e-11 7.017e-11   1.326  0.314
## Residuals    4 2.117e-10 5.293e-11
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "VOR"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0 6.84e-06   5.94e-06   1.151    0.314
## (Adjusted p values reported -- single-step method)

Max Live

##             Df Sum Sq Mean Sq F value Pr(>F)  
## Year         1 1.4380  1.4380   19.63 0.0114 *
## Residuals    4 0.2931  0.0733                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "ML"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)  
## 2020 - 2017 == 0   0.9791     0.2210    4.43   0.0114 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##             Df  Sum Sq Mean Sq F value Pr(>F)
## Year         1 0.02013 0.02013       1  0.374
## Residuals    4 0.08051 0.02013
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "ML"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0  -0.1158     0.1158      -1    0.374
## (Adjusted p values reported -- single-step method)

Max Dead

##             Df  Sum Sq Mean Sq F value  Pr(>F)    
## Year         1 0.07551 0.07551   174.5 0.00019 ***
## Residuals    4 0.00173 0.00043                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "MD"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)    
## 2020 - 2017 == 0  0.22436    0.01698   13.21  0.00019 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 1.098e-11 1.098e-11   3.488  0.135
## Residuals    4 1.259e-11 3.148e-12
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "MD"))
## 
## Linear Hypotheses:
##                    Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0 -2.706e-06  1.449e-06  -1.868    0.135
## (Adjusted p values reported -- single-step method)

Litter Depth

##             Df  Sum Sq Mean Sq F value  Pr(>F)   
## Year         1 0.19293 0.19293    58.8 0.00155 **
## Residuals    4 0.01312 0.00328                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "LM"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)   
## 2020 - 2017 == 0  0.35864    0.04677   7.668  0.00155 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##             Df   Sum Sq   Mean Sq F value Pr(>F)
## Year         1 0.000539 0.0005392   0.197   0.68
## Residuals    4 0.010922 0.0027306
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "LM"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0  0.01896    0.04267   0.444     0.68
## (Adjusted p values reported -- single-step method)

Bare Ground Cover

##             Df Sum Sq Mean Sq F value Pr(>F)  
## Year         1 0.3431  0.3431   16.89 0.0147 *
## Residuals    4 0.0812  0.0203                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "BG"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)  
## 2020 - 2017 == 0   0.4782     0.1164    4.11   0.0147 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 1.373e-09 1.373e-09   2.692  0.176
## Residuals    4 2.040e-09 5.101e-10
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "BG"))
## 
## Linear Hypotheses:
##                   Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0 3.026e-05  1.844e-05   1.641    0.176
## (Adjusted p values reported -- single-step method)

Ground Litter

##             Df Sum Sq Mean Sq F value Pr(>F)  
## Year         1 25.899  25.899   19.17 0.0119 *
## Residuals    4  5.405   1.351                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "GC"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)  
## 2020 - 2017 == 0   4.1552     0.9491   4.378   0.0119 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 4.980e-08 4.976e-08   0.497   0.52
## Residuals    4 4.004e-07 1.001e-07
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "GC"))
## 
## Linear Hypotheses:
##                   Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0 0.0001821  0.0002583   0.705     0.52
## (Adjusted p values reported -- single-step method)

Standing Litter

##             Df Sum Sq Mean Sq F value  Pr(>F)   
## Year         1 30.343  30.343   38.81 0.00338 **
## Residuals    4  3.128   0.782                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "LC"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)   
## 2020 - 2017 == 0    4.498      0.722   6.229  0.00338 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 1.399e-14 1.399e-14       1  0.374
## Residuals    4 5.596e-14 1.399e-14
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "LC"))
## 
## Linear Hypotheses:
##                   Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0 9.658e-08  9.658e-08       1    0.374
## (Adjusted p values reported -- single-step method)

Forb

##             Df  Sum Sq Mean Sq F value Pr(>F)
## Year         1 0.08002 0.08002   1.168  0.341
## Residuals    4 0.27409 0.06852
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "FB"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0  -0.2310     0.2137  -1.081    0.341
## (Adjusted p values reported -- single-step method)
##             Df  Sum Sq Mean Sq F value Pr(>F)
## Year         1 0.04715 0.04715   1.413    0.3
## Residuals    4 0.13348 0.03337
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "FB"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0   0.1773     0.1492   1.189      0.3
## (Adjusted p values reported -- single-step method)

Legume

##             Df Sum Sq Mean Sq F value Pr(>F)
## Year         1 0.0188 0.01885   0.097  0.771
## Residuals    4 0.7755 0.19388
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "LG"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0   0.1121     0.3595   0.312    0.771
## (Adjusted p values reported -- single-step method)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Year         1 0.3206  0.3206   11.22 0.0286 *
## Residuals    4 0.1143  0.0286                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "LG"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)  
## 2020 - 2017 == 0   0.4623     0.1380    3.35   0.0286 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Grass

##             Df Sum Sq Mean Sq F value Pr(>F)
## Year         1   0.18    0.18   0.005  0.946
## Residuals    4 143.61   35.90
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonP, 
##     Variable == "GR"))
## 
## Linear Hypotheses:
##                  Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0  -0.3506     4.8924  -0.072    0.946
## (Adjusted p values reported -- single-step method)
##             Df    Sum Sq   Mean Sq F value Pr(>F)
## Year         1 1.654e-05 1.654e-05       1  0.374
## Residuals    4 6.617e-05 1.654e-05
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = sdcor ~ Year, data = subset(VPYearComparisonM, 
##     Variable == "GR"))
## 
## Linear Hypotheses:
##                   Estimate Std. Error t value Pr(>|t|)
## 2020 - 2017 == 0 -0.003321   0.003321      -1    0.374
## (Adjusted p values reported -- single-step method)

Use Comparison

## `summarise()` has grouped output by 'Year', 'Variable', 'Use'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'Variable', 'Use'. You can override using the `.groups` argument.

## 
## Model selection based on AICc:
## 
##              K   AICc Delta_AICc AICcWt Cum.Wt    LL
## VOR_use_     4 -68.42       0.00      1      1 38.70
## VOR_use_null 3 -54.77      13.65      0      1 30.67
## Data: VPUseP
## Models:
## VOR_use_null: sdcor ~ 1 + (1 | Year)
## VOR_use_: sdcor ~ Use + (1 | Year)
##              npar     AIC     BIC logLik deviance  Chisq Df Pr(>Chisq)    
## VOR_use_null    3 -55.339 -49.853 30.669  -61.339                         
## VOR_use_        4 -69.392 -62.078 38.696  -77.392 16.053  1  6.158e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = sdcor ~ Use + (1 | Year), data = VPUseP, REML = FALSE)
## 
## Linear Hypotheses:
##                                  Estimate Std. Error z value Pr(>|z|)    
## Homogeneous - Heterogeneous == 0 -0.13815    0.03152  -4.383 1.17e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)