1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Profesional (4 o más años)” del campo P15 a nivel rural del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 3.4 aquí).

1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region 16 y con la zona = 2:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 16) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[9] <- "Nivel del curso más alto aprobado"
# Ahora filtramos por Nivel del curso más alto aprobado = 11.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Nivel del curso más alto aprobado` == 12)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Nivel del curso más alto aprobado`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 16101042032 12 16101 4 2017
2 16101052010 12 16101 19 2017
3 16101052026 12 16101 21 2017
4 16101052027 12 16101 26 2017
5 16101052028 12 16101 86 2017
6 16101062003 12 16101 65 2017
7 16101062014 12 16101 50 2017
8 16101062024 12 16101 38 2017
9 16101062027 12 16101 49 2017
10 16101062901 12 16101 21 2017
11 16101072001 12 16101 97 2017
12 16101072901 12 16101 59 2017
13 16101082007 12 16101 12 2017
14 16101082008 12 16101 11 2017
15 16101082011 12 16101 13 2017
16 16101082012 12 16101 7 2017
17 16101082015 12 16101 30 2017
18 16101082031 12 16101 4 2017
19 16101082037 12 16101 13 2017
20 16101092901 12 16101 5 2017
21 16101102004 12 16101 258 2017
22 16101112030 12 16101 1 2017
23 16101122002 12 16101 22 2017
24 16101122017 12 16101 98 2017
25 16101122020 12 16101 16 2017
26 16101122034 12 16101 29 2017
27 16101122035 12 16101 68 2017
28 16101142009 12 16101 171 2017
29 16101142018 12 16101 157 2017
30 16101142036 12 16101 67 2017
31 16101152016 12 16101 52 2017
32 16101152025 12 16101 356 2017
33 16101152033 12 16101 23 2017
789 16102012006 12 16102 9 2017
790 16102012029 12 16102 1 2017
791 16102012044 12 16102 4 2017
792 16102012901 12 16102 3 2017
793 16102022005 12 16102 7 2017
794 16102022015 12 16102 7 2017
795 16102022019 12 16102 4 2017
796 16102022020 12 16102 17 2017
797 16102022034 12 16102 3 2017
798 16102022035 12 16102 1 2017
799 16102022050 12 16102 32 2017
800 16102032014 12 16102 20 2017
801 16102032017 12 16102 3 2017
802 16102032019 12 16102 16 2017
803 16102032026 12 16102 2 2017
804 16102032037 12 16102 4 2017
805 16102032038 12 16102 22 2017
806 16102032901 12 16102 1 2017
807 16102042016 12 16102 1 2017
808 16102042023 12 16102 1 2017
809 16102042031 12 16102 16 2017
810 16102042049 12 16102 3 2017
811 16102052010 12 16102 1 2017
812 16102052011 12 16102 8 2017
813 16102052021 12 16102 4 2017
814 16102052043 12 16102 2 2017
815 16102052047 12 16102 13 2017
816 16102052049 12 16102 15 2017
817 16102052901 12 16102 2 2017
818 16102062008 12 16102 7 2017
819 16102062013 12 16102 1 2017
820 16102062030 12 16102 2 2017
821 16102062033 12 16102 1 2017
822 16102062040 12 16102 7 2017
823 16102062048 12 16102 1 2017
824 16102062051 12 16102 8 2017
825 16102072003 12 16102 3 2017
826 16102072008 12 16102 3 2017
827 16102072018 12 16102 2 2017
828 16102072025 12 16102 1 2017
829 16102072028 12 16102 7 2017
830 16102072039 12 16102 5 2017
831 16102072041 12 16102 12 2017
832 16102072045 12 16102 5 2017
833 16102072046 12 16102 3 2017
834 16102072051 12 16102 8 2017
835 16102082009 12 16102 14 2017
836 16102082027 12 16102 3 2017
837 16102082042 12 16102 3 2017
838 16102082045 12 16102 6 2017
1594 16103012003 12 16103 10 2017
1595 16103012012 12 16103 26 2017
1596 16103022001 12 16103 1 2017
1597 16103022005 12 16103 1 2017
1598 16103022010 12 16103 4 2017
1599 16103022013 12 16103 1 2017
1600 16103022014 12 16103 3 2017
1601 16103022015 12 16103 9 2017
1602 16103022016 12 16103 1 2017
1603 16103022028 12 16103 34 2017
1604 16103022030 12 16103 2 2017
1605 16103022031 12 16103 2 2017
1606 16103022901 12 16103 2 2017
1607 16103032007 12 16103 3 2017
1608 16103032011 12 16103 1 2017
1609 16103032020 12 16103 12 2017
1610 16103032032 12 16103 8 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 16101042032 4 2017 16101
2 16101052010 19 2017 16101
3 16101052026 21 2017 16101
4 16101052027 26 2017 16101
5 16101052028 86 2017 16101
6 16101062003 65 2017 16101
7 16101062014 50 2017 16101
8 16101062024 38 2017 16101
9 16101062027 49 2017 16101
10 16101062901 21 2017 16101
11 16101072001 97 2017 16101
12 16101072901 59 2017 16101
13 16101082007 12 2017 16101
14 16101082008 11 2017 16101
15 16101082011 13 2017 16101
16 16101082012 7 2017 16101
17 16101082015 30 2017 16101
18 16101082031 4 2017 16101
19 16101082037 13 2017 16101
20 16101092901 5 2017 16101
21 16101102004 258 2017 16101
22 16101112030 1 2017 16101
23 16101122002 22 2017 16101
24 16101122017 98 2017 16101
25 16101122020 16 2017 16101
26 16101122034 29 2017 16101
27 16101122035 68 2017 16101
28 16101142009 171 2017 16101
29 16101142018 157 2017 16101
30 16101142036 67 2017 16101
31 16101152016 52 2017 16101
32 16101152025 356 2017 16101
33 16101152033 23 2017 16101
789 16102012006 9 2017 16102
790 16102012029 1 2017 16102
791 16102012044 4 2017 16102
792 16102012901 3 2017 16102
793 16102022005 7 2017 16102
794 16102022015 7 2017 16102
795 16102022019 4 2017 16102
796 16102022020 17 2017 16102
797 16102022034 3 2017 16102
798 16102022035 1 2017 16102
799 16102022050 32 2017 16102
800 16102032014 20 2017 16102
801 16102032017 3 2017 16102
802 16102032019 16 2017 16102
803 16102032026 2 2017 16102
804 16102032037 4 2017 16102
805 16102032038 22 2017 16102
806 16102032901 1 2017 16102
807 16102042016 1 2017 16102
808 16102042023 1 2017 16102
809 16102042031 16 2017 16102
810 16102042049 3 2017 16102
811 16102052010 1 2017 16102
812 16102052011 8 2017 16102
813 16102052021 4 2017 16102
814 16102052043 2 2017 16102
815 16102052047 13 2017 16102
816 16102052049 15 2017 16102
817 16102052901 2 2017 16102
818 16102062008 7 2017 16102
819 16102062013 1 2017 16102
820 16102062030 2 2017 16102
821 16102062033 1 2017 16102
822 16102062040 7 2017 16102
823 16102062048 1 2017 16102
824 16102062051 8 2017 16102
825 16102072003 3 2017 16102
826 16102072008 3 2017 16102
827 16102072018 2 2017 16102
828 16102072025 1 2017 16102
829 16102072028 7 2017 16102
830 16102072039 5 2017 16102
831 16102072041 12 2017 16102
832 16102072045 5 2017 16102
833 16102072046 3 2017 16102
834 16102072051 8 2017 16102
835 16102082009 14 2017 16102
836 16102082027 3 2017 16102
837 16102082042 3 2017 16102
838 16102082045 6 2017 16102
1594 16103012003 10 2017 16103
1595 16103012012 26 2017 16103
1596 16103022001 1 2017 16103
1597 16103022005 1 2017 16103
1598 16103022010 4 2017 16103
1599 16103022013 1 2017 16103
1600 16103022014 3 2017 16103
1601 16103022015 9 2017 16103
1602 16103022016 1 2017 16103
1603 16103022028 34 2017 16103
1604 16103022030 2 2017 16103
1605 16103022031 2 2017 16103
1606 16103022901 2 2017 16103
1607 16103032007 3 2017 16103
1608 16103032011 1 2017 16103
1609 16103032020 12 2017 16103
1610 16103032032 8 2017 16103


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../corre_ing_exp-censo_casen/Ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año personas Ingresos_expandidos
01101 Iquique 272529.7 2017 191468 52180713221
01401 Pozo Almonte 243272.4 2017 15711 3822052676
01402 Camiña 226831.0 2017 1250 283538750
01404 Huara 236599.7 2017 2730 645917134
01405 Pica 269198.0 2017 9296 2502464414
02103 Sierra Gorda 322997.9 2017 10186 3290056742
02104 Taltal 288653.8 2017 13317 3844002134
02201 Calama 238080.9 2017 165731 39457387800
02203 San Pedro de Atacama 271472.6 2017 10996 2985112297
02301 Tocopilla 166115.9 2017 25186 4183793832
03101 Copiapó 251396.0 2017 153937 38699138722
03103 Tierra Amarilla 287819.4 2017 14019 4034940816
03202 Diego de Almagro 326439.0 2017 13925 4545663075
03301 Vallenar 217644.6 2017 51917 11299454698
03302 Alto del Carmen 196109.9 2017 5299 1039186477
03303 Freirina 202463.8 2017 7041 1425547554
03304 Huasco 205839.6 2017 10149 2089066548
04101 La Serena 200287.4 2017 221054 44274327972
04102 Coquimbo 206027.8 2017 227730 46918711304
04103 Andacollo 217096.4 2017 11044 2397612293
04104 La Higuera 231674.2 2017 4241 982530309
04105 Paiguano 174868.5 2017 4497 786383423
04106 Vicuña 169077.1 2017 27771 4695441470
04201 Illapel 165639.6 2017 30848 5109649759
04202 Canela 171370.3 2017 9093 1558270441
04203 Los Vilos 173238.5 2017 21382 3704185607
04204 Salamanca 193602.0 2017 29347 5681637894
04301 Ovalle 230819.8 2017 111272 25683781418
04302 Combarbalá 172709.2 2017 13322 2300832587
04303 Monte Patria 189761.6 2017 30751 5835357638
04304 Punitaqui 165862.0 2017 10956 1817183694
04305 Río Hurtado 182027.2 2017 4278 778712384
05101 Valparaíso 251998.5 2017 296655 74756602991
05102 Casablanca 252317.7 2017 26867 6779018483
05105 Puchuncaví 231606.0 2017 18546 4295363979
05107 Quintero 285125.8 2017 31923 9102071069
05301 Los Andes 280548.0 2017 66708 18714795984
05302 Calle Larga 234044.6 2017 14832 3471349123
05303 Rinconada 246136.9 2017 10207 2512319225
05304 San Esteban 211907.3 2017 18855 3995512770
05401 La Ligua 172675.9 2017 35390 6111000517
05402 Cabildo 212985.0 2017 19388 4129354103
05404 Petorca 270139.8 2017 9826 2654393853
05405 Zapallar 235661.4 2017 7339 1729518700
05501 Quillota 212067.6 2017 90517 19195726144
05502 Calera 226906.2 2017 50554 11471016698
05503 Hijuelas 215402.0 2017 17988 3874650405
05504 La Cruz 243333.4 2017 22098 5377180726
05506 Nogales 219800.7 2017 22120 4861992055
05601 San Antonio 230261.5 2017 91350 21034388728

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)

comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]

r3_100 <- comunas_con_ing_exp
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
16101 16101042032 4 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101052010 19 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101052026 21 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101052027 26 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101052028 86 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062003 65 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062014 50 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062024 38 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062027 49 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062901 21 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101072001 97 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101072901 59 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082007 12 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082008 11 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082011 13 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082012 7 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082015 30 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082031 4 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082037 13 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101092901 5 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101102004 258 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101112030 1 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122002 22 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122017 98 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122020 16 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122034 29 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122035 68 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101142009 171 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101142018 157 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101142036 67 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101152016 52 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101152025 356 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101152033 23 2017 Chillán 232041.6 2017 184739 42867130063
16102 16102012006 9 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102012029 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102012044 4 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102012901 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022005 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022015 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022019 4 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022020 17 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022034 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022035 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022050 32 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032014 20 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032017 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032019 16 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032026 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032037 4 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032038 22 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032901 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102042016 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102042023 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102042031 16 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102042049 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052010 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052011 8 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052021 4 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052043 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052047 13 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052049 15 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052901 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062008 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062013 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062030 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062033 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062040 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062048 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062051 8 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072003 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072008 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072018 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072025 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072028 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072039 5 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072041 12 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072045 5 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072046 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072051 8 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102082009 14 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102082027 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102082042 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102082045 6 2017 Bulnes 167693.2 2017 21493 3604229178
16103 16103012003 10 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103012012 26 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022001 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022005 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022010 4 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022013 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022014 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022015 9 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022016 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022028 34 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022030 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022031 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022901 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032007 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032011 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032020 12 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032032 8 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032901 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103042003 4 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103042027 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103052006 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103052021 31 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103052022 5 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103052034 4 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103052901 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16104 16104012005 3 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104012007 27 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104012017 2 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104012018 2 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104022019 13 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104032004 10 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104032014 10 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104032015 31 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104042004 1 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104042005 1 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104042006 5 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104042010 4 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104042012 10 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104042021 6 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104042022 3 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104052001 8 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104052003 2 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104052010 2 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104052018 8 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104052025 2 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104052026 21 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104052901 13 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104062002 6 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104062008 1 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104062011 5 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104062013 2 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104062017 14 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104072009 1 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104072024 7 2017 El Carmen 151144.7 2017 12044 1820386198
16104 16104072027 1 2017 El Carmen 151144.7 2017 12044 1820386198
16105 16105012019 2 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105022024 1 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105022028 3 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105032004 5 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105032016 2 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105042008 2 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105042021 2 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105052001 2 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105052010 4 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105052013 3 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105052031 1 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105052901 2 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105062007 1 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105062013 1 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105062015 1 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105062901 2 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105072006 1 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105072026 7 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105072030 3 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105082009 4 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105082011 13 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105082025 40 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105092006 1 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105092009 2 2017 Pemuco 151889.4 2017 8448 1283161238
16105 16105092030 6 2017 Pemuco 151889.4 2017 8448 1283161238
16106 16106012004 2 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106012008 80 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106012012 2 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106012013 8 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106012017 3 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106012018 3 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106022019 1 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106022020 3 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106022021 5 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106022022 5 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106022026 31 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106032004 2 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106032015 2 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106032027 2 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106032028 2 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106032029 5 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106042004 3 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106042005 4 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106042006 17 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106042007 11 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106042012 9 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106042014 11 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106042016 1 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106052003 5 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106052005 14 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106052009 20 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106052010 17 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106052011 84 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106052024 13 2017 Pinto 153289.2 2017 10827 1659661870
16106 16106062001 3 2017 Pinto 153289.2 2017 10827 1659661870
16107 16107012003 1 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107012008 39 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107012013 7 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107012014 7 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107012030 5 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107012036 41 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107012901 6 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022004 13 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022005 25 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022011 5 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022012 42 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022016 6 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022017 23 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022018 4 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022020 13 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022021 7 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107022028 3 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107032006 3 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107032007 4 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107032901 1 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107042033 1 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107042035 1 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107042901 7 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107052002 9 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107052010 9 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107052014 6 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107052901 3 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107062010 49 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107062024 10 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107062027 3 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107062031 24 2017 Quillón 133479.9 2017 17485 2333895558
16107 16107062032 15 2017 Quillón 133479.9 2017 17485 2333895558
16108 16108012003 12 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108012011 13 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108012025 3 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108012026 6 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108012031 31 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108022012 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108022014 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108022025 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108032013 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108032015 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108032020 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108032024 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108032025 2 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108032027 2 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108032032 32 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108032033 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108042003 4 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108042006 5 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108042024 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108042026 5 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108042034 6 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108042037 2 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108042038 2 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108042901 2 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052001 19 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052011 8 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052016 2 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052017 23 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052022 22 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052026 3 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052029 14 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052030 7 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108052037 3 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062002 7 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062003 17 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062005 8 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062009 2 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062010 3 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062019 10 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062021 16 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062028 1 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062029 9 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062035 11 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062036 10 2017 San Ignacio 174538.8 2017 16079 2806409365
16108 16108062901 3 2017 San Ignacio 174538.8 2017 16079 2806409365
16109 16109012012 4 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109012026 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109012045 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109012901 2 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109022004 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109022007 18 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109022029 4 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109022036 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109022040 2 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109022901 1 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109032012 1 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109032028 2 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109032042 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109032901 1 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109042013 6 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109042024 1 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109042028 2 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109042042 4 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109042043 2 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109052010 1 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109062050 8 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109062901 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109072001 1 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109072015 1 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109072033 4 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109072901 2 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109082008 12 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109082011 2 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109082014 7 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109082046 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109082901 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109092002 4 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109092005 66 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109092038 9 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109092047 16 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109102002 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109102005 9 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109102016 11 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109102019 2 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109102021 3 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109102051 1 2017 Yungay 194006.8 2017 17787 3450799686
16109 16109102901 9 2017 Yungay 194006.8 2017 17787 3450799686
16201 16201012014 2 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201012018 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201012901 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022002 5 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022020 6 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022026 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022032 2 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022036 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022045 3 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022059 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022067 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022070 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022080 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022083 2 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201022901 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201032004 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201032006 2 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201032033 3 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201032053 2 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201032083 6 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201042021 2 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201042048 5 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201042077 3 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201042084 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201042901 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201052001 2 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201052003 4 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201052012 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201052013 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201052019 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201052025 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201052030 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201062015 2 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201062027 1 2017 Quirihue 155446.9 2017 11594 1802251665
16201 16201062901 4 2017 Quirihue 155446.9 2017 11594 1802251665
16202 16202012002 48 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202012044 13 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202012055 6 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022002 19 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022003 6 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022010 6 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022022 4 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022032 1 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022034 5 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022038 5 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022041 7 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022045 1 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022052 1 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202022901 1 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202032031 1 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202032038 1 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202032053 2 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202042011 6 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202042021 7 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202042039 5 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202042049 1 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202042053 2 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202042054 4 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202052008 1 2017 Cobquecura 122513.3 2017 5012 614036495
16202 16202052048 1 2017 Cobquecura 122513.3 2017 5012 614036495
16203 16203012003 13 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203012004 8 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203012005 9 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203012019 9 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203012024 3 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203012039 6 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203012040 1 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203012901 17 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022002 2 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022019 67 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022020 4 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022021 3 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022022 6 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022030 4 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022031 1 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022033 12 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203022037 16 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203032001 5 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203032011 1 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203032014 2 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203032016 3 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203032032 1 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203032034 3 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203032036 2 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203042010 2 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203042025 2 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203042028 9 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203042042 8 2017 Coelemu 174050.2 2017 15995 2783932983
16203 16203042901 2 2017 Coelemu 174050.2 2017 15995 2783932983
16204 16204012002 1 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204012007 5 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204012008 11 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204012015 7 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204012017 14 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204012019 2 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204012021 1 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204012023 8 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204012024 8 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022001 4 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022002 1 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022004 1 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022007 15 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022016 1 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022018 4 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022021 13 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022024 2 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204022901 3 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204032006 4 2017 Ninhue 161577.8 2017 5213 842304828
16204 16204032020 3 2017 Ninhue 161577.8 2017 5213 842304828
16205 16205012001 1 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012002 16 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012003 1 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012007 2 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012008 2 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012013 2 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012016 6 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012018 4 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012021 7 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012023 2 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205012901 1 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205022005 3 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205022006 7 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205022011 2 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205022020 2 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205022901 1 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205032004 9 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205032012 13 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205032013 2 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205032014 8 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205032015 2 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205032017 3 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205032018 4 2017 Portezuelo 168595.2 2017 4862 819710106
16205 16205032901 3 2017 Portezuelo 168595.2 2017 4862 819710106
16206 16206012005 1 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012006 6 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012009 5 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012013 17 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012018 6 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012022 5 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012023 2 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012024 18 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012026 20 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012029 4 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012031 6 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012032 7 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012033 2 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012036 3 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012037 8 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206012038 10 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206022004 5 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206022014 3 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206022016 1 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206022034 14 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206022036 1 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206032001 3 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206032003 1 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206032007 4 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206032008 2 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206032012 7 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206032017 5 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206032021 3 2017 Ránquil 221951.3 2017 5755 1277329463
16206 16206032036 11 2017 Ránquil 221951.3 2017 5755 1277329463
16207 16207012002 5 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207012012 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207012026 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207012029 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207012033 4 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022001 2 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022010 2 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022013 3 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022014 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022015 60 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022021 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022025 20 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022030 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022031 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022034 5 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022038 2 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207022039 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207032005 3 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207032022 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207032027 6 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207032032 1 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207032040 3 2017 Treguaco 178763.9 2017 5401 965503625
16207 16207032901 5 2017 Treguaco 178763.9 2017 5401 965503625
16301 16301012004 6 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012019 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012026 14 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012029 8 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012032 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012034 22 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012036 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012053 10 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012054 3 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012074 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301012075 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301032025 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301032046 19 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301032063 14 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301032901 35 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301042017 5 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301042030 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301042036 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301042048 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301042060 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301042063 3 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301042901 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301052011 15 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301052021 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301052041 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301052065 14 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301052067 18 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301052069 25 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062011 33 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062013 8 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062041 32 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062043 8 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062046 33 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062052 11 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062057 12 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062066 6 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301062067 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301072024 8 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301072033 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301072039 3 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301072043 12 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301072044 14 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301072901 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301082003 51 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301082018 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301082047 6 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301082051 6 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301082055 26 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301082073 8 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092022 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092023 6 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092025 9 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092031 25 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092038 16 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092044 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092045 12 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092049 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092056 28 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092062 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092073 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301092901 9 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102001 22 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102002 7 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102005 51 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102020 6 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102023 11 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102026 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102038 44 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102045 24 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102049 14 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102059 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301102060 3 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301112002 27 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301112042 4 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301112064 7 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301112075 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301112901 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301122007 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301122042 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301122075 6 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301122901 5 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301132035 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301132037 2 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301132070 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301132071 1 2017 San Carlos 175203.6 2017 53024 9289995173
16301 16301142027 1 2017 San Carlos 175203.6 2017 53024 9289995173
16302 16302012018 16 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302012025 8 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302012029 14 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302012037 18 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302012039 13 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302012041 13 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022015 9 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022017 9 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022020 17 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022021 28 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022027 5 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022035 6 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022038 77 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022042 4 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022044 30 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302022049 78 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032005 11 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032010 8 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032015 12 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032017 11 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032021 22 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032022 12 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032032 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032038 87 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302032049 31 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042012 6 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042013 3 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042015 8 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042022 25 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042027 4 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042034 44 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042045 13 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042049 5 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042050 39 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302042901 4 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302052013 8 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302052031 12 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302052043 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302062006 8 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302062028 3 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302062051 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302072009 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302082019 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302082030 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302082053 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302092026 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302092033 10 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302092037 4 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302092901 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302102002 1 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302102003 37 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302112001 20 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302112002 2 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302112014 18 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302112016 24 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302112036 7 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302112048 9 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302112052 7 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302122008 5 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302122036 7 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302122046 18 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302122048 5 2017 Coihueco 174853.6 2017 26881 4700239750
16302 16302122052 18 2017 Coihueco 174853.6 2017 26881 4700239750
16303 16303012003 12 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303012006 4 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303012007 6 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303012014 4 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303012015 10 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303012022 9 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303012029 8 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303022006 8 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303022007 2 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303022018 8 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303022032 7 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303022037 13 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303022038 20 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303022042 25 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032004 10 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032006 18 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032010 9 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032011 3 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032012 1 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032017 21 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032021 6 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032022 5 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032023 2 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032034 6 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032035 3 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032037 4 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032039 2 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032040 11 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303032041 34 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303042016 4 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303042023 1 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303042026 9 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303042027 5 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303042029 16 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303042036 1 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303062001 2 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303062002 4 2017 Ñiquén 188830.1 2017 11152 2105832760
16303 16303062028 2 2017 Ñiquén 188830.1 2017 11152 2105832760
16304 16304012005 2 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304012015 15 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304022019 6 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304032003 28 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304032004 8 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304032009 5 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304032010 19 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304032011 3 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304032016 27 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304032018 3 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304042001 3 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304042013 10 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304042014 4 2017 San Fabián 158019.3 2017 4308 680747063
16304 16304052017 1 2017 San Fabián 158019.3 2017 4308 680747063
16305 16305012002 3 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305012006 3 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305012026 8 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305012028 5 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305012030 1 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305012032 4 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305012046 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022010 3 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022025 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022030 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022032 10 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022046 4 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022047 8 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022056 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022062 8 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305022901 4 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305032008 1 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305032013 1 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305032019 1 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305032043 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305042014 1 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305042035 3 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305042039 5 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305042045 5 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305042049 1 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305042901 1 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052015 13 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052016 4 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052020 5 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052023 4 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052027 1 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052031 18 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052033 25 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052036 18 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052044 13 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052050 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305052053 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062001 10 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062004 6 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062009 8 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062012 40 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062015 9 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062023 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062029 12 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062037 19 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062044 7 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062054 4 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305062057 3 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072006 3 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072007 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072011 7 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072017 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072018 3 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072034 2 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072040 3 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072041 5 2017 San Nicolás 180675.3 2017 11603 2096375354
16305 16305072901 2 2017 San Nicolás 180675.3 2017 11603 2096375354


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
16101 16101042032 4 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101052010 19 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101052026 21 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101052027 26 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101052028 86 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062003 65 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062014 50 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062024 38 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062027 49 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101062901 21 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101072001 97 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101072901 59 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082007 12 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082008 11 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082011 13 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082012 7 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082015 30 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082031 4 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101082037 13 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101092901 5 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101102004 258 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101112030 1 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122002 22 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122017 98 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122020 16 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122034 29 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101122035 68 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101142009 171 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101142018 157 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101142036 67 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101152016 52 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101152025 356 2017 Chillán 232041.6 2017 184739 42867130063
16101 16101152033 23 2017 Chillán 232041.6 2017 184739 42867130063
16102 16102012006 9 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102012029 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102012044 4 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102012901 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022005 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022015 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022019 4 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022020 17 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022034 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022035 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102022050 32 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032014 20 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032017 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032019 16 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032026 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032037 4 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032038 22 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102032901 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102042016 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102042023 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102042031 16 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102042049 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052010 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052011 8 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052021 4 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052043 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052047 13 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052049 15 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102052901 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062008 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062013 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062030 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062033 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062040 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062048 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102062051 8 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072003 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072008 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072018 2 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072025 1 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072028 7 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072039 5 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072041 12 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072045 5 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072046 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102072051 8 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102082009 14 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102082027 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102082042 3 2017 Bulnes 167693.2 2017 21493 3604229178
16102 16102082045 6 2017 Bulnes 167693.2 2017 21493 3604229178
16103 16103012003 10 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103012012 26 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022001 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022005 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022010 4 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022013 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022014 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022015 9 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022016 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022028 34 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022030 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022031 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103022901 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032007 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032011 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032020 12 2017 Chillán Viejo 179855.8 2017 30907 5558803478
16103 16103032032 8 2017 Chillán Viejo 179855.8 2017 30907 5558803478


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y
16101042032 16101 4 2017 Chillán 232041.6 2017 184739 42867130063 30 0.0001624 16101
16101052010 16101 19 2017 Chillán 232041.6 2017 184739 42867130063 112 0.0006063 16101
16101052026 16101 21 2017 Chillán 232041.6 2017 184739 42867130063 355 0.0019216 16101
16101052027 16101 26 2017 Chillán 232041.6 2017 184739 42867130063 362 0.0019595 16101
16101052028 16101 86 2017 Chillán 232041.6 2017 184739 42867130063 345 0.0018675 16101
16101062003 16101 65 2017 Chillán 232041.6 2017 184739 42867130063 638 0.0034535 16101
16101062014 16101 50 2017 Chillán 232041.6 2017 184739 42867130063 348 0.0018837 16101
16101062024 16101 38 2017 Chillán 232041.6 2017 184739 42867130063 451 0.0024413 16101
16101062027 16101 49 2017 Chillán 232041.6 2017 184739 42867130063 620 0.0033561 16101
16101062901 16101 21 2017 Chillán 232041.6 2017 184739 42867130063 373 0.0020191 16101
16101072001 16101 97 2017 Chillán 232041.6 2017 184739 42867130063 593 0.0032099 16101
16101072901 16101 59 2017 Chillán 232041.6 2017 184739 42867130063 491 0.0026578 16101
16101082007 16101 12 2017 Chillán 232041.6 2017 184739 42867130063 184 0.0009960 16101
16101082008 16101 11 2017 Chillán 232041.6 2017 184739 42867130063 147 0.0007957 16101
16101082011 16101 13 2017 Chillán 232041.6 2017 184739 42867130063 408 0.0022085 16101
16101082012 16101 7 2017 Chillán 232041.6 2017 184739 42867130063 139 0.0007524 16101
16101082015 16101 30 2017 Chillán 232041.6 2017 184739 42867130063 313 0.0016943 16101
16101082031 16101 4 2017 Chillán 232041.6 2017 184739 42867130063 104 0.0005630 16101
16101082037 16101 13 2017 Chillán 232041.6 2017 184739 42867130063 451 0.0024413 16101
16101092901 16101 5 2017 Chillán 232041.6 2017 184739 42867130063 87 0.0004709 16101
16101102004 16101 258 2017 Chillán 232041.6 2017 184739 42867130063 3591 0.0194382 16101
16101112030 16101 1 2017 Chillán 232041.6 2017 184739 42867130063 37 0.0002003 16101
16101122002 16101 22 2017 Chillán 232041.6 2017 184739 42867130063 280 0.0015157 16101
16101122017 16101 98 2017 Chillán 232041.6 2017 184739 42867130063 682 0.0036917 16101
16101122020 16101 16 2017 Chillán 232041.6 2017 184739 42867130063 102 0.0005521 16101
16101122034 16101 29 2017 Chillán 232041.6 2017 184739 42867130063 171 0.0009256 16101
16101122035 16101 68 2017 Chillán 232041.6 2017 184739 42867130063 534 0.0028906 16101
16101142009 16101 171 2017 Chillán 232041.6 2017 184739 42867130063 607 0.0032857 16101
16101142018 16101 157 2017 Chillán 232041.6 2017 184739 42867130063 625 0.0033832 16101
16101142036 16101 67 2017 Chillán 232041.6 2017 184739 42867130063 443 0.0023980 16101
16101152016 16101 52 2017 Chillán 232041.6 2017 184739 42867130063 521 0.0028202 16101
16101152025 16101 356 2017 Chillán 232041.6 2017 184739 42867130063 1780 0.0096352 16101
16101152033 16101 23 2017 Chillán 232041.6 2017 184739 42867130063 122 0.0006604 16101
16102012006 16102 9 2017 Bulnes 167693.2 2017 21493 3604229178 183 0.0085144 16102
16102012029 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 18 0.0008375 16102
16102012044 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 32 0.0014889 16102
16102012901 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 58 0.0026986 16102
16102022005 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102
16102022015 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 160 0.0074443 16102
16102022019 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 59 0.0027451 16102
16102022020 16102 17 2017 Bulnes 167693.2 2017 21493 3604229178 359 0.0167031 16102
16102022034 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 101 0.0046992 16102
16102022035 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 46 0.0021402 16102
16102022050 16102 32 2017 Bulnes 167693.2 2017 21493 3604229178 422 0.0196343 16102
16102032014 16102 20 2017 Bulnes 167693.2 2017 21493 3604229178 372 0.0173080 16102
16102032017 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 31 0.0014423 16102
16102032019 16102 16 2017 Bulnes 167693.2 2017 21493 3604229178 197 0.0091658 16102
16102032026 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 36 0.0016750 16102
16102032037 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 93 0.0043270 16102
16102032038 16102 22 2017 Bulnes 167693.2 2017 21493 3604229178 358 0.0166566 16102
16102032901 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 24 0.0011166 16102
16102042016 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 219 0.0101894 16102
16102042023 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 68 0.0031638 16102
16102042031 16102 16 2017 Bulnes 167693.2 2017 21493 3604229178 152 0.0070721 16102
16102042049 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 41 0.0019076 16102
16102052010 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 215 0.0100033 16102
16102052011 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 141 0.0065603 16102
16102052021 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 92 0.0042805 16102
16102052043 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 63 0.0029312 16102
16102052047 16102 13 2017 Bulnes 167693.2 2017 21493 3604229178 428 0.0199135 16102
16102052049 16102 15 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102
16102052901 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 105 0.0048853 16102
16102062008 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 81 0.0037687 16102
16102062013 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 76 0.0035360 16102
16102062030 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 133 0.0061881 16102
16102062033 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 97 0.0045131 16102
16102062040 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 274 0.0127483 16102
16102062048 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 70 0.0032569 16102
16102062051 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 481 0.0223794 16102
16102072003 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 66 0.0030708 16102
16102072008 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 200 0.0093054 16102
16102072018 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 116 0.0053971 16102
16102072025 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 20 0.0009305 16102
16102072028 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 109 0.0050714 16102
16102072039 16102 5 2017 Bulnes 167693.2 2017 21493 3604229178 101 0.0046992 16102
16102072041 16102 12 2017 Bulnes 167693.2 2017 21493 3604229178 84 0.0039082 16102
16102072045 16102 5 2017 Bulnes 167693.2 2017 21493 3604229178 50 0.0023263 16102
16102072046 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 152 0.0070721 16102
16102072051 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 502 0.0233564 16102
16102082009 16102 14 2017 Bulnes 167693.2 2017 21493 3604229178 456 0.0212162 16102
16102082027 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 72 0.0033499 16102
16102082042 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102
16102082045 16102 6 2017 Bulnes 167693.2 2017 21493 3604229178 84 0.0039082 16102
16103012003 16103 10 2017 Chillán Viejo 179855.8 2017 30907 5558803478 78 0.0025237 16103
16103012012 16103 26 2017 Chillán Viejo 179855.8 2017 30907 5558803478 542 0.0175365 16103
16103022001 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 27 0.0008736 16103
16103022005 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 11 0.0003559 16103
16103022010 16103 4 2017 Chillán Viejo 179855.8 2017 30907 5558803478 35 0.0011324 16103
16103022013 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 10 0.0003236 16103
16103022014 16103 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478 90 0.0029120 16103
16103022015 16103 9 2017 Chillán Viejo 179855.8 2017 30907 5558803478 171 0.0055327 16103
16103022016 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 43 0.0013913 16103
16103022028 16103 34 2017 Chillán Viejo 179855.8 2017 30907 5558803478 838 0.0271136 16103
16103022030 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 23 0.0007442 16103
16103022031 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 48 0.0015530 16103
16103022901 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 31 0.0010030 16103
16103032007 16103 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478 27 0.0008736 16103
16103032011 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 125 0.0040444 16103
16103032020 16103 12 2017 Chillán Viejo 179855.8 2017 30907 5558803478 386 0.0124891 16103
16103032032 16103 8 2017 Chillán Viejo 179855.8 2017 30907 5558803478 151 0.0048856 16103


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
16101042032 16101 4 2017 Chillán 232041.6 2017 184739 42867130063 30 0.0001624 16101 6961248
16101052010 16101 19 2017 Chillán 232041.6 2017 184739 42867130063 112 0.0006063 16101 25988657
16101052026 16101 21 2017 Chillán 232041.6 2017 184739 42867130063 355 0.0019216 16101 82374762
16101052027 16101 26 2017 Chillán 232041.6 2017 184739 42867130063 362 0.0019595 16101 83999053
16101052028 16101 86 2017 Chillán 232041.6 2017 184739 42867130063 345 0.0018675 16101 80054346
16101062003 16101 65 2017 Chillán 232041.6 2017 184739 42867130063 638 0.0034535 16101 148042530
16101062014 16101 50 2017 Chillán 232041.6 2017 184739 42867130063 348 0.0018837 16101 80750471
16101062024 16101 38 2017 Chillán 232041.6 2017 184739 42867130063 451 0.0024413 16101 104650754
16101062027 16101 49 2017 Chillán 232041.6 2017 184739 42867130063 620 0.0033561 16101 143865782
16101062901 16101 21 2017 Chillán 232041.6 2017 184739 42867130063 373 0.0020191 16101 86551511
16101072001 16101 97 2017 Chillán 232041.6 2017 184739 42867130063 593 0.0032099 16101 137600659
16101072901 16101 59 2017 Chillán 232041.6 2017 184739 42867130063 491 0.0026578 16101 113932417
16101082007 16101 12 2017 Chillán 232041.6 2017 184739 42867130063 184 0.0009960 16101 42695651
16101082008 16101 11 2017 Chillán 232041.6 2017 184739 42867130063 147 0.0007957 16101 34110113
16101082011 16101 13 2017 Chillán 232041.6 2017 184739 42867130063 408 0.0022085 16101 94672966
16101082012 16101 7 2017 Chillán 232041.6 2017 184739 42867130063 139 0.0007524 16101 32253780
16101082015 16101 30 2017 Chillán 232041.6 2017 184739 42867130063 313 0.0016943 16101 72629016
16101082031 16101 4 2017 Chillán 232041.6 2017 184739 42867130063 104 0.0005630 16101 24132325
16101082037 16101 13 2017 Chillán 232041.6 2017 184739 42867130063 451 0.0024413 16101 104650754
16101092901 16101 5 2017 Chillán 232041.6 2017 184739 42867130063 87 0.0004709 16101 20187618
16101102004 16101 258 2017 Chillán 232041.6 2017 184739 42867130063 3591 0.0194382 16101 833261326
16101112030 16101 1 2017 Chillán 232041.6 2017 184739 42867130063 37 0.0002003 16101 8585539
16101122002 16101 22 2017 Chillán 232041.6 2017 184739 42867130063 280 0.0015157 16101 64971643
16101122017 16101 98 2017 Chillán 232041.6 2017 184739 42867130063 682 0.0036917 16101 158252360
16101122020 16101 16 2017 Chillán 232041.6 2017 184739 42867130063 102 0.0005521 16101 23668242
16101122034 16101 29 2017 Chillán 232041.6 2017 184739 42867130063 171 0.0009256 16101 39679111
16101122035 16101 68 2017 Chillán 232041.6 2017 184739 42867130063 534 0.0028906 16101 123910206
16101142009 16101 171 2017 Chillán 232041.6 2017 184739 42867130063 607 0.0032857 16101 140849241
16101142018 16101 157 2017 Chillán 232041.6 2017 184739 42867130063 625 0.0033832 16101 145025990
16101142036 16101 67 2017 Chillán 232041.6 2017 184739 42867130063 443 0.0023980 16101 102794421
16101152016 16101 52 2017 Chillán 232041.6 2017 184739 42867130063 521 0.0028202 16101 120893665
16101152025 16101 356 2017 Chillán 232041.6 2017 184739 42867130063 1780 0.0096352 16101 413034018
16101152033 16101 23 2017 Chillán 232041.6 2017 184739 42867130063 122 0.0006604 16101 28309073
16102012006 16102 9 2017 Bulnes 167693.2 2017 21493 3604229178 183 0.0085144 16102 30687849
16102012029 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 18 0.0008375 16102 3018477
16102012044 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 32 0.0014889 16102 5366181
16102012901 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 58 0.0026986 16102 9726204
16102022005 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703
16102022015 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 160 0.0074443 16102 26830906
16102022019 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 59 0.0027451 16102 9893897
16102022020 16102 17 2017 Bulnes 167693.2 2017 21493 3604229178 359 0.0167031 16102 60201846
16102022034 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 101 0.0046992 16102 16937010
16102022035 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 46 0.0021402 16102 7713886
16102022050 16102 32 2017 Bulnes 167693.2 2017 21493 3604229178 422 0.0196343 16102 70766515
16102032014 16102 20 2017 Bulnes 167693.2 2017 21493 3604229178 372 0.0173080 16102 62381857
16102032017 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 31 0.0014423 16102 5198488
16102032019 16102 16 2017 Bulnes 167693.2 2017 21493 3604229178 197 0.0091658 16102 33035553
16102032026 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 36 0.0016750 16102 6036954
16102032037 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 93 0.0043270 16102 15595464
16102032038 16102 22 2017 Bulnes 167693.2 2017 21493 3604229178 358 0.0166566 16102 60034153
16102032901 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 24 0.0011166 16102 4024636
16102042016 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 219 0.0101894 16102 36724803
16102042023 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 68 0.0031638 16102 11403135
16102042031 16102 16 2017 Bulnes 167693.2 2017 21493 3604229178 152 0.0070721 16102 25489361
16102042049 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 41 0.0019076 16102 6875420
16102052010 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 215 0.0100033 16102 36054030
16102052011 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 141 0.0065603 16102 23644736
16102052021 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 92 0.0042805 16102 15427771
16102052043 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 63 0.0029312 16102 10564669
16102052047 16102 13 2017 Bulnes 167693.2 2017 21493 3604229178 428 0.0199135 16102 71772674
16102052049 16102 15 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703
16102052901 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 105 0.0048853 16102 17607782
16102062008 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 81 0.0037687 16102 13583146
16102062013 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 76 0.0035360 16102 12744680
16102062030 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 133 0.0061881 16102 22303191
16102062033 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 97 0.0045131 16102 16266237
16102062040 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 274 0.0127483 16102 45947927
16102062048 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 70 0.0032569 16102 11738521
16102062051 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 481 0.0223794 16102 80660412
16102072003 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 66 0.0030708 16102 11067749
16102072008 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 200 0.0093054 16102 33538633
16102072018 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 116 0.0053971 16102 19452407
16102072025 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 20 0.0009305 16102 3353863
16102072028 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 109 0.0050714 16102 18278555
16102072039 16102 5 2017 Bulnes 167693.2 2017 21493 3604229178 101 0.0046992 16102 16937010
16102072041 16102 12 2017 Bulnes 167693.2 2017 21493 3604229178 84 0.0039082 16102 14086226
16102072045 16102 5 2017 Bulnes 167693.2 2017 21493 3604229178 50 0.0023263 16102 8384658
16102072046 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 152 0.0070721 16102 25489361
16102072051 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 502 0.0233564 16102 84181968
16102082009 16102 14 2017 Bulnes 167693.2 2017 21493 3604229178 456 0.0212162 16102 76468083
16102082027 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 72 0.0033499 16102 12073908
16102082042 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703
16102082045 16102 6 2017 Bulnes 167693.2 2017 21493 3604229178 84 0.0039082 16102 14086226
16103012003 16103 10 2017 Chillán Viejo 179855.8 2017 30907 5558803478 78 0.0025237 16103 14028753
16103012012 16103 26 2017 Chillán Viejo 179855.8 2017 30907 5558803478 542 0.0175365 16103 97481848
16103022001 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 27 0.0008736 16103 4856107
16103022005 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 11 0.0003559 16103 1978414
16103022010 16103 4 2017 Chillán Viejo 179855.8 2017 30907 5558803478 35 0.0011324 16103 6294953
16103022013 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 10 0.0003236 16103 1798558
16103022014 16103 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478 90 0.0029120 16103 16187023
16103022015 16103 9 2017 Chillán Viejo 179855.8 2017 30907 5558803478 171 0.0055327 16103 30755343
16103022016 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 43 0.0013913 16103 7733800
16103022028 16103 34 2017 Chillán Viejo 179855.8 2017 30907 5558803478 838 0.0271136 16103 150719168
16103022030 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 23 0.0007442 16103 4136684
16103022031 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 48 0.0015530 16103 8633079
16103022901 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 31 0.0010030 16103 5575530
16103032007 16103 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478 27 0.0008736 16103 4856107
16103032011 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 125 0.0040444 16103 22481976
16103032020 16103 12 2017 Chillán Viejo 179855.8 2017 30907 5558803478 386 0.0124891 16103 69424342
16103032032 16103 8 2017 Chillán Viejo 179855.8 2017 30907 5558803478 151 0.0048856 16103 27158227

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión loess

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -204704116  -13392802   -5676271    6833794  381251409 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15705016    1222014   12.85   <2e-16 ***
## Freq.x       1691104      50700   33.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30430000 on 753 degrees of freedom
## Multiple R-squared:  0.5964, Adjusted R-squared:  0.5958 
## F-statistic:  1113 on 1 and 753 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -204704116  -13392802   -5676271    6833794  381251409 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15705016    1222014   12.85   <2e-16 ***
## Freq.x       1691104      50700   33.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30430000 on 753 degrees of freedom
## Multiple R-squared:  0.5964, Adjusted R-squared:  0.5958 
## F-statistic:  1113 on 1 and 753 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -204704116  -13392802   -5676271    6833794  381251409 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15705016    1222014   12.85   <2e-16 ***
## Freq.x       1691104      50700   33.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30430000 on 753 degrees of freedom
## Multiple R-squared:  0.5964, Adjusted R-squared:  0.5958 
## F-statistic:  1113 on 1 and 753 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -66319781 -17078994  -3915716  12220118 695600623 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -7521661    2259283  -3.329 0.000913 ***
## log(Freq.x) 26145043    1169997  22.346  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 37140000 on 753 degrees of freedom
## Multiple R-squared:  0.3987, Adjusted R-squared:  0.3979 
## F-statistic: 499.4 on 1 and 753 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -112211517  -11432811    -215376    8324271  535939625 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -18103713    1949704  -9.285   <2e-16 ***
## sqrt(Freq.x)  19637529     610873  32.147   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 31100000 on 753 degrees of freedom
## Multiple R-squared:  0.5785, Adjusted R-squared:  0.5779 
## F-statistic:  1033 on 1 and 753 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5932.9 -1172.6  -146.2   956.0  7945.5 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1812.16     109.54   16.54   <2e-16 ***
## sqrt(Freq.x)  1218.55      34.32   35.51   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1747 on 753 degrees of freedom
## Multiple R-squared:  0.6261, Adjusted R-squared:  0.6256 
## F-statistic:  1261 on 1 and 753 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.5631 -0.5076  0.1385  0.5757  1.9725 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  15.66025    0.05054  309.86   <2e-16 ***
## sqrt(Freq.x)  0.41032    0.01584   25.91   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.8061 on 753 degrees of freedom
## Multiple R-squared:  0.4714, Adjusted R-squared:  0.4707 
## F-statistic: 671.4 on 1 and 753 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4498.8 -1190.1   -84.2   947.9 16318.8 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2055.55     111.92   18.37   <2e-16 ***
## log(Freq.x)  1889.43      57.96   32.60   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1840 on 753 degrees of freedom
## Multiple R-squared:  0.5853, Adjusted R-squared:  0.5847 
## F-statistic:  1063 on 1 and 753 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.97565 -0.47043  0.07868  0.49989  1.79829 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.62067    0.04493  347.67   <2e-16 ***
## log(Freq.x)  0.71478    0.02327   30.72   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7386 on 753 degrees of freedom
## Multiple R-squared:  0.5562, Adjusted R-squared:  0.5556 
## F-statistic: 943.8 on 1 and 753 DF,  p-value: < 2.2e-16

9 Modelo elegido: raíz-raíz (sqrt-sqrt)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.6256).

9.1 Diagrama de dispersión sobre sqrt-sqrt

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo sqrt-sqrt

Observemos nuevamente el resultado sobre sqrt-sqrt.

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5932.9 -1172.6  -146.2   956.0  7945.5 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1812.16     109.54   16.54   <2e-16 ***
## sqrt(Freq.x)  1218.55      34.32   35.51   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1747 on 753 degrees of freedom
## Multiple R-squared:  0.6261, Adjusted R-squared:  0.6256 
## F-statistic:  1261 on 1 and 753 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {1812.16}^2 + 2 \cdot 1812.16 \cdot 1218.55 \cdot \sqrt{X}+ 1218.55 ^2 \cdot X \]

10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- 
(1812.16)^2 + 2 * 1812.16 * 1218.55 * sqrt(h_y_m_comuna_corr_01$Freq.x)+  1218.55 ^2 * (h_y_m_comuna_corr_01$Freq.x) 

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
16101042032 16101 4 2017 Chillán 232041.6 2017 184739 42867130063 30 0.0001624 16101 6961248 18056211
16101052010 16101 19 2017 Chillán 232041.6 2017 184739 42867130063 112 0.0006063 16101 25988657 50747049
16101052026 16101 21 2017 Chillán 232041.6 2017 184739 42867130063 355 0.0019216 16101 82374762 54704627
16101052027 16101 26 2017 Chillán 232041.6 2017 184739 42867130063 362 0.0019595 16101 83999053 64409777
16101052028 16101 86 2017 Chillán 232041.6 2017 184739 42867130063 345 0.0018675 16101 80054346 171938386
16101062003 16101 65 2017 Chillán 232041.6 2017 184739 42867130063 638 0.0034535 16101 148042530 135406368
16101062014 16101 50 2017 Chillán 232041.6 2017 184739 42867130063 348 0.0018837 16101 80750471 108755900
16101062024 16101 38 2017 Chillán 232041.6 2017 184739 42867130063 451 0.0024413 16101 104650754 86933371
16101062027 16101 49 2017 Chillán 232041.6 2017 184739 42867130063 620 0.0033561 16101 143865782 106957171
16101062901 16101 21 2017 Chillán 232041.6 2017 184739 42867130063 373 0.0020191 16101 86551511 54704627
16101072001 16101 97 2017 Chillán 232041.6 2017 184739 42867130063 593 0.0032099 16101 137600659 190812386
16101072901 16101 59 2017 Chillán 232041.6 2017 184739 42867130063 491 0.0026578 16101 113932417 124814034
16101082007 16101 12 2017 Chillán 232041.6 2017 184739 42867130063 184 0.0009960 16101 42695651 36401204
16101082008 16101 11 2017 Chillán 232041.6 2017 184739 42867130063 147 0.0007957 16101 34110113 34265021
16101082011 16101 13 2017 Chillán 232041.6 2017 184739 42867130063 408 0.0022085 16101 94672966 38510768
16101082012 16101 7 2017 Chillán 232041.6 2017 184739 42867130063 139 0.0007524 16101 32253780 25362709
16101082015 16101 30 2017 Chillán 232041.6 2017 184739 42867130063 313 0.0016943 16101 72629016 72019549
16101082031 16101 4 2017 Chillán 232041.6 2017 184739 42867130063 104 0.0005630 16101 24132325 18056211
16101082037 16101 13 2017 Chillán 232041.6 2017 184739 42867130063 451 0.0024413 16101 104650754 38510768
16101092901 16101 5 2017 Chillán 232041.6 2017 184739 42867130063 87 0.0004709 16101 20187618 20583649
16101102004 16101 258 2017 Chillán 232041.6 2017 184739 42867130063 3591 0.0194382 16101 833261326 457316993
16101112030 16101 1 2017 Chillán 232041.6 2017 184739 42867130063 37 0.0002003 16101 8585539 9185203
16101122002 16101 22 2017 Chillán 232041.6 2017 184739 42867130063 280 0.0015157 16101 64971643 56665757
16101122017 16101 98 2017 Chillán 232041.6 2017 184739 42867130063 682 0.0036917 16101 158252360 192520885
16101122020 16101 16 2017 Chillán 232041.6 2017 184739 42867130063 102 0.0005521 16101 23668242 44707410
16101122034 16101 29 2017 Chillán 232041.6 2017 184739 42867130063 171 0.0009256 16101 39679111 70128106
16101122035 16101 68 2017 Chillán 232041.6 2017 184739 42867130063 534 0.0028906 16101 123910206 140673375
16101142009 16101 171 2017 Chillán 232041.6 2017 184739 42867130063 607 0.0032857 16101 140849241 314947807
16101142018 16101 157 2017 Chillán 232041.6 2017 184739 42867130063 625 0.0033832 16101 145025990 291745111
16101142036 16101 67 2017 Chillán 232041.6 2017 184739 42867130063 443 0.0023980 16101 102794421 138919735
16101152016 16101 52 2017 Chillán 232041.6 2017 184739 42867130063 521 0.0028202 16101 120893665 112344080
16101152025 16101 356 2017 Chillán 232041.6 2017 184739 42867130063 1780 0.0096352 16101 413034018 615224298
16101152033 16101 23 2017 Chillán 232041.6 2017 184739 42867130063 122 0.0006604 16101 28309073 58616181
16102012006 16102 9 2017 Bulnes 167693.2 2017 21493 3604229178 183 0.0085144 16102 30687849 29896946
16102012029 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 18 0.0008375 16102 3018477 9185203
16102012044 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 32 0.0014889 16102 5366181 18056211
16102012901 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 58 0.0026986 16102 9726204 15387972
16102022005 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703 25362709
16102022015 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 160 0.0074443 16102 26830906 25362709
16102022019 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 59 0.0027451 16102 9893897 18056211
16102022020 16102 17 2017 Bulnes 167693.2 2017 21493 3604229178 359 0.0167031 16102 60201846 46735960
16102022034 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 101 0.0046992 16102 16937010 15387972
16102022035 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 46 0.0021402 16102 7713886 9185203
16102022050 16102 32 2017 Bulnes 167693.2 2017 21493 3604229178 422 0.0196343 16102 70766515 75782592
16102032014 16102 20 2017 Bulnes 167693.2 2017 21493 3604229178 372 0.0173080 16102 62381857 52732015
16102032017 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 31 0.0014423 16102 5198488 15387972
16102032019 16102 16 2017 Bulnes 167693.2 2017 21493 3604229178 197 0.0091658 16102 33035553 44707410
16102032026 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 36 0.0016750 16102 6036954 12499406
16102032037 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 93 0.0043270 16102 15595464 18056211
16102032038 16102 22 2017 Bulnes 167693.2 2017 21493 3604229178 358 0.0166566 16102 60034153 56665757
16102032901 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 24 0.0011166 16102 4024636 9185203
16102042016 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 219 0.0101894 16102 36724803 9185203
16102042023 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 68 0.0031638 16102 11403135 9185203
16102042031 16102 16 2017 Bulnes 167693.2 2017 21493 3604229178 152 0.0070721 16102 25489361 44707410
16102042049 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 41 0.0019076 16102 6875420 15387972
16102052010 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 215 0.0100033 16102 36054030 9185203
16102052011 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 141 0.0065603 16102 23644736 27654345
16102052021 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 92 0.0042805 16102 15427771 18056211
16102052043 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 63 0.0029312 16102 10564669 12499406
16102052047 16102 13 2017 Bulnes 167693.2 2017 21493 3604229178 428 0.0199135 16102 71772674 38510768
16102052049 16102 15 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703 42661588
16102052901 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 105 0.0048853 16102 17607782 12499406
16102062008 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 81 0.0037687 16102 13583146 25362709
16102062013 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 76 0.0035360 16102 12744680 9185203
16102062030 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 133 0.0061881 16102 22303191 12499406
16102062033 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 97 0.0045131 16102 16266237 9185203
16102062040 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 274 0.0127483 16102 45947927 25362709
16102062048 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 70 0.0032569 16102 11738521 9185203
16102062051 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 481 0.0223794 16102 80660412 27654345
16102072003 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 66 0.0030708 16102 11067749 15387972
16102072008 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 200 0.0093054 16102 33538633 15387972
16102072018 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 116 0.0053971 16102 19452407 12499406
16102072025 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 20 0.0009305 16102 3353863 9185203
16102072028 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 109 0.0050714 16102 18278555 25362709
16102072039 16102 5 2017 Bulnes 167693.2 2017 21493 3604229178 101 0.0046992 16102 16937010 20583649
16102072041 16102 12 2017 Bulnes 167693.2 2017 21493 3604229178 84 0.0039082 16102 14086226 36401204
16102072045 16102 5 2017 Bulnes 167693.2 2017 21493 3604229178 50 0.0023263 16102 8384658 20583649
16102072046 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 152 0.0070721 16102 25489361 15387972
16102072051 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 502 0.0233564 16102 84181968 27654345
16102082009 16102 14 2017 Bulnes 167693.2 2017 21493 3604229178 456 0.0212162 16102 76468083 40596734
16102082027 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 72 0.0033499 16102 12073908 15387972
16102082042 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703 15387972
16102082045 16102 6 2017 Bulnes 167693.2 2017 21493 3604229178 84 0.0039082 16102 14086226 23011072
16103012003 16103 10 2017 Chillán Viejo 179855.8 2017 30907 5558803478 78 0.0025237 16103 14028753 32098496
16103012012 16103 26 2017 Chillán Viejo 179855.8 2017 30907 5558803478 542 0.0175365 16103 97481848 64409777
16103022001 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 27 0.0008736 16103 4856107 9185203
16103022005 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 11 0.0003559 16103 1978414 9185203
16103022010 16103 4 2017 Chillán Viejo 179855.8 2017 30907 5558803478 35 0.0011324 16103 6294953 18056211
16103022013 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 10 0.0003236 16103 1798558 9185203
16103022014 16103 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478 90 0.0029120 16103 16187023 15387972
16103022015 16103 9 2017 Chillán Viejo 179855.8 2017 30907 5558803478 171 0.0055327 16103 30755343 29896946
16103022016 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 43 0.0013913 16103 7733800 9185203
16103022028 16103 34 2017 Chillán Viejo 179855.8 2017 30907 5558803478 838 0.0271136 16103 150719168 79521208
16103022030 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 23 0.0007442 16103 4136684 12499406
16103022031 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 48 0.0015530 16103 8633079 12499406
16103022901 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 31 0.0010030 16103 5575530 12499406
16103032007 16103 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478 27 0.0008736 16103 4856107 15387972
16103032011 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 125 0.0040444 16103 22481976 9185203
16103032020 16103 12 2017 Chillán Viejo 179855.8 2017 30907 5558803478 386 0.0124891 16103 69424342 36401204
16103032032 16103 8 2017 Chillán Viejo 179855.8 2017 30907 5558803478 151 0.0048856 16103 27158227 27654345


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
16101042032 16101 4 2017 Chillán 232041.6 2017 184739 42867130063 30 0.0001624 16101 6961248 18056211 601873.68
16101052010 16101 19 2017 Chillán 232041.6 2017 184739 42867130063 112 0.0006063 16101 25988657 50747049 453098.65
16101052026 16101 21 2017 Chillán 232041.6 2017 184739 42867130063 355 0.0019216 16101 82374762 54704627 154097.54
16101052027 16101 26 2017 Chillán 232041.6 2017 184739 42867130063 362 0.0019595 16101 83999053 64409777 177927.56
16101052028 16101 86 2017 Chillán 232041.6 2017 184739 42867130063 345 0.0018675 16101 80054346 171938386 498372.13
16101062003 16101 65 2017 Chillán 232041.6 2017 184739 42867130063 638 0.0034535 16101 148042530 135406368 212235.69
16101062014 16101 50 2017 Chillán 232041.6 2017 184739 42867130063 348 0.0018837 16101 80750471 108755900 312516.95
16101062024 16101 38 2017 Chillán 232041.6 2017 184739 42867130063 451 0.0024413 16101 104650754 86933371 192756.92
16101062027 16101 49 2017 Chillán 232041.6 2017 184739 42867130063 620 0.0033561 16101 143865782 106957171 172511.57
16101062901 16101 21 2017 Chillán 232041.6 2017 184739 42867130063 373 0.0020191 16101 86551511 54704627 146661.20
16101072001 16101 97 2017 Chillán 232041.6 2017 184739 42867130063 593 0.0032099 16101 137600659 190812386 321774.68
16101072901 16101 59 2017 Chillán 232041.6 2017 184739 42867130063 491 0.0026578 16101 113932417 124814034 254203.74
16101082007 16101 12 2017 Chillán 232041.6 2017 184739 42867130063 184 0.0009960 16101 42695651 36401204 197832.63
16101082008 16101 11 2017 Chillán 232041.6 2017 184739 42867130063 147 0.0007957 16101 34110113 34265021 233095.38
16101082011 16101 13 2017 Chillán 232041.6 2017 184739 42867130063 408 0.0022085 16101 94672966 38510768 94389.14
16101082012 16101 7 2017 Chillán 232041.6 2017 184739 42867130063 139 0.0007524 16101 32253780 25362709 182465.53
16101082015 16101 30 2017 Chillán 232041.6 2017 184739 42867130063 313 0.0016943 16101 72629016 72019549 230094.41
16101082031 16101 4 2017 Chillán 232041.6 2017 184739 42867130063 104 0.0005630 16101 24132325 18056211 173617.41
16101082037 16101 13 2017 Chillán 232041.6 2017 184739 42867130063 451 0.0024413 16101 104650754 38510768 85389.73
16101092901 16101 5 2017 Chillán 232041.6 2017 184739 42867130063 87 0.0004709 16101 20187618 20583649 236593.66
16101102004 16101 258 2017 Chillán 232041.6 2017 184739 42867130063 3591 0.0194382 16101 833261326 457316993 127350.88
16101112030 16101 1 2017 Chillán 232041.6 2017 184739 42867130063 37 0.0002003 16101 8585539 9185203 248248.73
16101122002 16101 22 2017 Chillán 232041.6 2017 184739 42867130063 280 0.0015157 16101 64971643 56665757 202377.70
16101122017 16101 98 2017 Chillán 232041.6 2017 184739 42867130063 682 0.0036917 16101 158252360 192520885 282288.69
16101122020 16101 16 2017 Chillán 232041.6 2017 184739 42867130063 102 0.0005521 16101 23668242 44707410 438307.94
16101122034 16101 29 2017 Chillán 232041.6 2017 184739 42867130063 171 0.0009256 16101 39679111 70128106 410105.88
16101122035 16101 68 2017 Chillán 232041.6 2017 184739 42867130063 534 0.0028906 16101 123910206 140673375 263433.29
16101142009 16101 171 2017 Chillán 232041.6 2017 184739 42867130063 607 0.0032857 16101 140849241 314947807 518859.65
16101142018 16101 157 2017 Chillán 232041.6 2017 184739 42867130063 625 0.0033832 16101 145025990 291745111 466792.18
16101142036 16101 67 2017 Chillán 232041.6 2017 184739 42867130063 443 0.0023980 16101 102794421 138919735 313588.57
16101152016 16101 52 2017 Chillán 232041.6 2017 184739 42867130063 521 0.0028202 16101 120893665 112344080 215631.63
16101152025 16101 356 2017 Chillán 232041.6 2017 184739 42867130063 1780 0.0096352 16101 413034018 615224298 345631.63
16101152033 16101 23 2017 Chillán 232041.6 2017 184739 42867130063 122 0.0006604 16101 28309073 58616181 480460.50
16102012006 16102 9 2017 Bulnes 167693.2 2017 21493 3604229178 183 0.0085144 16102 30687849 29896946 163371.29
16102012029 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 18 0.0008375 16102 3018477 9185203 510289.06
16102012044 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 32 0.0014889 16102 5366181 18056211 564256.58
16102012901 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 58 0.0026986 16102 9726204 15387972 265309.85
16102022005 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703 25362709 248654.01
16102022015 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 160 0.0074443 16102 26830906 25362709 158516.93
16102022019 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 59 0.0027451 16102 9893897 18056211 306037.47
16102022020 16102 17 2017 Bulnes 167693.2 2017 21493 3604229178 359 0.0167031 16102 60201846 46735960 130183.73
16102022034 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 101 0.0046992 16102 16937010 15387972 152356.15
16102022035 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 46 0.0021402 16102 7713886 9185203 199678.33
16102022050 16102 32 2017 Bulnes 167693.2 2017 21493 3604229178 422 0.0196343 16102 70766515 75782592 179579.60
16102032014 16102 20 2017 Bulnes 167693.2 2017 21493 3604229178 372 0.0173080 16102 62381857 52732015 141752.73
16102032017 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 31 0.0014423 16102 5198488 15387972 496386.18
16102032019 16102 16 2017 Bulnes 167693.2 2017 21493 3604229178 197 0.0091658 16102 33035553 44707410 226941.17
16102032026 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 36 0.0016750 16102 6036954 12499406 347205.73
16102032037 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 93 0.0043270 16102 15595464 18056211 194152.80
16102032038 16102 22 2017 Bulnes 167693.2 2017 21493 3604229178 358 0.0166566 16102 60034153 56665757 158284.24
16102032901 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 24 0.0011166 16102 4024636 9185203 382716.80
16102042016 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 219 0.0101894 16102 36724803 9185203 41941.57
16102042023 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 68 0.0031638 16102 11403135 9185203 135076.52
16102042031 16102 16 2017 Bulnes 167693.2 2017 21493 3604229178 152 0.0070721 16102 25489361 44707410 294127.70
16102042049 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 41 0.0019076 16102 6875420 15387972 375316.38
16102052010 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 215 0.0100033 16102 36054030 9185203 42721.87
16102052011 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 141 0.0065603 16102 23644736 27654345 196130.11
16102052021 16102 4 2017 Bulnes 167693.2 2017 21493 3604229178 92 0.0042805 16102 15427771 18056211 196263.16
16102052043 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 63 0.0029312 16102 10564669 12499406 198403.27
16102052047 16102 13 2017 Bulnes 167693.2 2017 21493 3604229178 428 0.0199135 16102 71772674 38510768 89978.43
16102052049 16102 15 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703 42661588 418250.86
16102052901 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 105 0.0048853 16102 17607782 12499406 119041.96
16102062008 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 81 0.0037687 16102 13583146 25362709 313119.86
16102062013 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 76 0.0035360 16102 12744680 9185203 120857.94
16102062030 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 133 0.0061881 16102 22303191 12499406 93980.50
16102062033 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 97 0.0045131 16102 16266237 9185203 94692.82
16102062040 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 274 0.0127483 16102 45947927 25362709 92564.63
16102062048 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 70 0.0032569 16102 11738521 9185203 131217.19
16102062051 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 481 0.0223794 16102 80660412 27654345 57493.44
16102072003 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 66 0.0030708 16102 11067749 15387972 233151.08
16102072008 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 200 0.0093054 16102 33538633 15387972 76939.86
16102072018 16102 2 2017 Bulnes 167693.2 2017 21493 3604229178 116 0.0053971 16102 19452407 12499406 107753.50
16102072025 16102 1 2017 Bulnes 167693.2 2017 21493 3604229178 20 0.0009305 16102 3353863 9185203 459260.16
16102072028 16102 7 2017 Bulnes 167693.2 2017 21493 3604229178 109 0.0050714 16102 18278555 25362709 232685.40
16102072039 16102 5 2017 Bulnes 167693.2 2017 21493 3604229178 101 0.0046992 16102 16937010 20583649 203798.50
16102072041 16102 12 2017 Bulnes 167693.2 2017 21493 3604229178 84 0.0039082 16102 14086226 36401204 433347.67
16102072045 16102 5 2017 Bulnes 167693.2 2017 21493 3604229178 50 0.0023263 16102 8384658 20583649 411672.98
16102072046 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 152 0.0070721 16102 25489361 15387972 101236.66
16102072051 16102 8 2017 Bulnes 167693.2 2017 21493 3604229178 502 0.0233564 16102 84181968 27654345 55088.34
16102082009 16102 14 2017 Bulnes 167693.2 2017 21493 3604229178 456 0.0212162 16102 76468083 40596734 89027.92
16102082027 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 72 0.0033499 16102 12073908 15387972 213721.83
16102082042 16102 3 2017 Bulnes 167693.2 2017 21493 3604229178 102 0.0047457 16102 17104703 15387972 150862.47
16102082045 16102 6 2017 Bulnes 167693.2 2017 21493 3604229178 84 0.0039082 16102 14086226 23011072 273941.33
16103012003 16103 10 2017 Chillán Viejo 179855.8 2017 30907 5558803478 78 0.0025237 16103 14028753 32098496 411519.18
16103012012 16103 26 2017 Chillán Viejo 179855.8 2017 30907 5558803478 542 0.0175365 16103 97481848 64409777 118837.23
16103022001 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 27 0.0008736 16103 4856107 9185203 340192.71
16103022005 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 11 0.0003559 16103 1978414 9185203 835018.46
16103022010 16103 4 2017 Chillán Viejo 179855.8 2017 30907 5558803478 35 0.0011324 16103 6294953 18056211 515891.73
16103022013 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 10 0.0003236 16103 1798558 9185203 918520.31
16103022014 16103 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478 90 0.0029120 16103 16187023 15387972 170977.46
16103022015 16103 9 2017 Chillán Viejo 179855.8 2017 30907 5558803478 171 0.0055327 16103 30755343 29896946 174835.94
16103022016 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 43 0.0013913 16103 7733800 9185203 213609.37
16103022028 16103 34 2017 Chillán Viejo 179855.8 2017 30907 5558803478 838 0.0271136 16103 150719168 79521208 94894.04
16103022030 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 23 0.0007442 16103 4136684 12499406 543452.45
16103022031 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 48 0.0015530 16103 8633079 12499406 260404.30
16103022901 16103 2 2017 Chillán Viejo 179855.8 2017 30907 5558803478 31 0.0010030 16103 5575530 12499406 403206.65
16103032007 16103 3 2017 Chillán Viejo 179855.8 2017 30907 5558803478 27 0.0008736 16103 4856107 15387972 569924.87
16103032011 16103 1 2017 Chillán Viejo 179855.8 2017 30907 5558803478 125 0.0040444 16103 22481976 9185203 73481.62
16103032020 16103 12 2017 Chillán Viejo 179855.8 2017 30907 5558803478 386 0.0124891 16103 69424342 36401204 94303.64
16103032032 16103 8 2017 Chillán Viejo 179855.8 2017 30907 5558803478 151 0.0048856 16103 27158227 27654345 183141.36


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "P15/region_16_P15_r.rds")