1 Variable CENSO

Necesitamos calcular las frecuencias a nivel censal de las respuestas correspondientes a la categoría: “Profesional (4 o más años)” del campo P15 a nivel rural del Censo de personas. Recordemos que ésta fué la más alta correlación en relación a los ingresos expandidos (ver punto 3.4 aquí).

1.1 Lectura y filtrado de la tabla censal de personas

Leemos la tabla Censo 2017 de personas que ya tiene integrada la clave zonal:

tabla_con_clave <- readRDS("../censo_personas_con_clave_17")
r3_100 <- tabla_con_clave[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
REGION PROVINCIA COMUNA DC AREA ZC_LOC ID_ZONA_LOC NVIV NHOGAR PERSONAN P07 P08 P09 P10 P10COMUNA P10PAIS P11 P11COMUNA P11PAIS P12 P12COMUNA P12PAIS P12A_LLEGADA P12A_TRAMO P13 P14 P15 P15A P16 P16A P16A_OTRO P17 P18 P19 P20 P21M P21A P10PAIS_GRUPO P11PAIS_GRUPO P12PAIS_GRUPO ESCOLARIDAD P16A_GRUPO REGION_15R PROVINCIA_15R COMUNA_15R P10COMUNA_15R P11COMUNA_15R P12COMUNA_15R clave
15 152 15202 1 2 6 13225 1 1 1 1 1 73 1 98 998 3 15101 998 1 98 998 9998 98 2 4 6 2 1 2 98 7 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 3 1 1 1 1 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 2 2 2 78 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 1 1 3 1965 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 3 5 2 52 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 7 98 2 1 4 1995 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 3 1 4 11 1 44 1 98 998 2 98 998 1 98 998 9998 98 1 3 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 1 1 1 39 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 8 98 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 2 2 2 35 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 1 Z 2 2 11 2004 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 3 5 1 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 9 1 4 5 1 12 1 98 998 2 98 998 1 98 998 9998 98 1 6 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 10 1 1 1 2 65 1 98 998 2 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 3 3 9 1992 998 998 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 1 1 1 50 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 2 4 2 43 1 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 2 2 3 2002 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 13 1 3 5 1 15 3 15201 998 2 98 998 1 98 998 9998 98 1 1 7 2 1 2 98 8 98 98 98 98 9998 998 998 998 9 2 15 152 15202 15201 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 1 1 1 75 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 2 16 2 58 4 98 68 6 98 998 5 98 998 9999 1 3 98 98 98 1 2 98 7 98 4 4 99 9999 68 68 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 16 1 3 2 2 70 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 5 4 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 1 1 2 43 2 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 I 3 3 9 2008 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 2 4 1 55 2 98 998 2 98 998 1 98 998 9998 98 2 6 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 3 5 2 13 2 98 998 2 98 998 2 15101 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 4 5 1 8 2 98 998 2 98 998 2 15101 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 17 1 5 15 2 29 2 98 998 4 98 998 3 98 998 2015 1 2 6 5 2 1 2 98 6 98 5 5 11 2014 998 604 604 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 6 15 1 4 2 98 998 1 98 998 5 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 68 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 7 15 2 2 2 98 998 1 98 998 3 98 998 2015 1 1 0 1 2 1 2 98 98 98 98 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 17 1 8 15 1 16 2 98 998 6 98 998 1 98 998 9998 98 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 18 1 1 1 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 2 2 12 1976 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 19 1 1 1 1 68 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 20 1 1 1 1 74 1 98 998 3 15101 998 1 98 998 9998 98 2 2 5 2 1 2 98 1 Z 98 98 98 9998 998 998 998 2 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 20 1 2 2 2 65 1 98 998 3 997 998 3 98 998 9999 2 2 2 5 2 1 2 98 6 98 2 2 9 1982 998 998 604 2 2 15 152 15202 98 997 98 15202012006
15 152 15202 1 2 6 13225 25 1 1 1 2 76 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 8 6 3 1981 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 25 1 2 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 4 8 1 1 2 98 1 A 0 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 1 1 2 31 1 98 998 2 98 998 5 98 998 2007 2 2 5 5 2 1 2 98 1 A 2 2 4 2008 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 2 4 1 35 1 98 998 2 98 998 5 98 998 2007 2 2 6 5 2 1 2 98 1 F 98 98 98 9998 998 998 68 6 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 3 5 1 11 1 98 998 2 98 998 5 98 998 2007 2 1 5 5 2 1 2 98 98 98 98 98 98 9998 998 998 68 5 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 4 5 1 8 1 98 998 2 98 998 1 98 998 9998 98 1 2 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 28 1 5 15 2 74 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 6 6 99 9999 998 998 998 3 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 2 2 2 47 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 2 1 4 1996 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 3 14 1 88 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 33 1 4 14 1 65 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 1 1 2 59 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 8 8 2 1998 998 998 998 2 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 2 2 1 56 1 98 998 99 99 999 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 98 98 98 9998 998 999 998 2 2 15 152 15202 98 99 98 15202012006
15 152 15202 1 2 6 13225 36 1 3 5 2 36 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 7 2010 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 4 12 2 13 1 98 998 2 98 998 1 98 998 9998 98 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 7 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 5 12 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 36 1 6 5 1 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 7 11 2 24 1 98 998 3 15101 998 1 98 998 9998 98 2 4 7 1 1 2 98 1 N 2 2 11 2015 998 998 998 12 2 15 152 15202 98 15101 98 15202012006
15 152 15202 1 2 6 13225 36 1 8 12 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 36 1 9 12 2 1 1 98 998 1 98 998 2 15101 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012006
15 152 15202 1 2 6 13225 38 1 1 1 1 19 1 98 998 3 15101 998 2 15101 998 9998 98 1 1 8 2 1 2 98 1 A 98 98 98 9998 998 998 998 9 2 15 152 15202 98 15101 15101 15202012006
15 152 15202 1 2 6 13225 39 1 1 1 1 21 1 98 998 2 98 998 1 98 998 9998 98 2 1 7 2 1 2 98 1 F 98 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 39 1 2 4 2 22 1 98 998 2 98 998 1 98 998 9998 98 2 1 8 2 1 2 98 6 98 0 98 98 9998 998 998 998 9 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 1 1 2 26 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 6 98 2 2 10 2013 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 2 2 1 24 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 Z 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 3 13 2 71 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 6 98 3 3 12 1974 998 998 998 1 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 4 5 2 6 1 98 998 2 98 998 1 98 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 6 13225 43 1 5 5 2 3 1 98 998 1 98 998 1 98 998 9998 98 1 0 1 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012006
15 152 15202 1 2 8 13910 5 1 1 1 1 44 1 98 998 2 98 998 3 98 998 2005 2 2 4 7 1 1 2 98 6 98 98 98 98 9998 998 998 604 12 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 2 2 2 42 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 1 P 3 3 12 2006 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 5 1 3 5 2 10 1 98 998 2 98 998 1 98 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 998 998 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 1 1 2 70 1 98 998 2 98 998 1 98 998 9998 98 2 2 5 2 1 2 98 6 98 7 7 6 1994 998 998 998 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 7 1 2 5 1 44 1 98 998 2 98 998 1 98 998 9998 98 2 5 5 2 1 2 98 7 98 98 98 98 9998 998 998 998 5 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 1 1 1 58 1 98 998 2 98 998 3 98 998 2004 2 2 4 5 2 1 2 98 6 98 98 98 98 9998 998 998 604 4 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 8 1 2 2 2 59 1 98 998 2 98 998 3 98 998 2004 2 2 2 5 2 1 2 98 6 98 3 3 7 1999 998 998 604 2 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 19 1 1 1 1 58 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012008
15 152 15202 1 2 8 13910 21 1 1 1 1 53 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 H 98 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 21 1 2 2 2 46 1 98 998 2 98 998 1 98 998 9998 98 2 3 5 2 1 2 98 6 98 3 3 2 1990 998 998 998 3 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 22 1 1 1 2 73 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 6 98 6 5 3 1979 998 998 998 0 2 15 152 15202 98 98 98 15202012008
15 152 15202 1 2 8 13910 30 1 1 1 1 57 1 98 998 2 98 998 2 997 998 9998 98 2 3 5 2 1 2 98 6 98 98 98 98 9998 998 998 998 3 2 15 152 15202 98 98 997 15202012008
15 152 15202 1 2 12 8394 3 1 1 2 2 64 1 98 998 2 98 998 3 98 998 1974 4 3 98 98 98 1 2 98 1 A 12 10 99 9999 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 2 1 1 74 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 99 99 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 3 5 2 38 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 2 A 0 98 98 9998 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 3 1 4 14 1 38 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 8 98 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 9 1 1 1 2 79 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 2 2 99 9999 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 19 1 1 1 1 46 99 99 999 99 99 999 99 99 999 9999 99 99 99 99 99 99 99 99 99 99 98 98 98 9998 999 999 999 99 99 15 152 15202 99 99 99 15202012012
15 152 15202 1 2 12 8394 20 1 1 1 2 58 1 98 998 2 98 998 1 98 998 9998 98 2 8 5 1 1 2 98 1 A 3 3 7 1982 998 998 998 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 21 1 1 1 2 45 1 98 998 6 98 998 2 997 998 9998 98 2 4 5 2 1 2 98 1 A 6 6 2 2007 998 68 998 4 2 15 152 15202 98 98 997 15202012012
15 152 15202 1 2 12 8394 21 1 2 5 2 10 1 98 998 6 98 998 2 3201 998 9998 98 1 4 5 2 1 2 98 98 98 98 98 98 9998 998 68 998 4 2 15 152 15202 98 98 3201 15202012012
15 152 15202 1 2 12 8394 24 1 1 1 1 67 1 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 8 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 24 1 2 2 2 53 1 98 998 2 98 998 3 98 998 9999 99 3 98 98 98 1 2 98 8 98 0 98 98 9998 998 998 604 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 27 1 1 1 1 48 1 98 998 2 98 998 1 98 998 9998 98 2 4 7 1 1 2 98 8 98 98 98 98 9998 998 998 998 12 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 31 1 1 1 1 49 1 98 998 4 98 998 3 98 998 2001 2 2 8 5 1 1 2 98 1 A 98 98 98 9998 998 604 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 1 1 1 46 1 98 998 2 98 998 3 98 998 1992 3 2 8 5 1 1 2 98 2 A 98 98 98 9998 998 998 604 8 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 2 2 2 24 1 98 998 6 98 998 5 98 998 2013 1 2 7 5 2 1 2 98 6 98 2 2 6 2016 998 68 68 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 3 6 2 2 1 98 998 1 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 4 5 1 0 1 98 998 1 98 998 2 15101 998 9998 98 99 99 99 99 1 2 98 98 98 98 98 98 9998 998 998 998 99 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 12 8394 42 1 5 5 2 13 1 98 998 2 98 998 3 98 998 9999 99 1 7 5 2 1 2 98 98 98 98 98 98 9998 998 998 604 7 2 15 152 15202 98 98 98 15202012012
15 152 15202 1 2 12 8394 42 1 6 5 1 6 1 98 998 2 98 998 2 15101 998 9998 98 1 0 3 1 1 2 98 98 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 15101 15202012012
15 152 15202 1 2 15 4094 2 1 1 1 1 41 1 98 998 2 98 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 16 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 1 17 1 70 2 98 998 2 98 998 1 98 998 9998 98 3 98 98 98 1 2 98 7 98 98 98 98 9998 998 998 998 0 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 2 17 1 47 2 98 998 3 15101 998 2 8101 998 9998 98 2 4 8 1 1 2 98 1 Z 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 8101 15202012015
15 152 15202 1 2 15 4094 8 1 3 17 1 19 2 98 998 3 15101 998 2 15101 998 9998 98 1 99 7 99 1 2 98 1 I 98 98 98 9998 998 998 998 99 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 8 1 4 17 1 43 2 98 998 3 4302 998 2 8101 998 9998 98 99 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 4302 8101 15202012015
15 152 15202 1 2 15 4094 8 1 5 17 2 35 2 98 998 6 98 998 5 98 998 2016 1 2 8 5 1 1 2 98 1 I 2 2 3 2007 998 68 68 8 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 8 1 6 17 1 36 3 13123 998 3 13123 998 2 12101 998 9998 98 2 5 12 1 2 98 98 1 J 98 98 98 9998 998 998 998 17 98 15 152 15202 13123 13123 12101 15202012015
15 152 15202 1 2 15 4094 8 1 7 17 2 25 2 98 998 3 15101 998 2 15101 998 9998 98 2 5 12 1 1 2 98 1 Q 1 1 12 2011 998 998 998 17 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 9 1 1 1 1 72 1 98 998 2 98 998 1 98 998 9998 98 2 1 5 2 1 2 98 1 G 98 98 98 9998 998 998 998 1 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 12 1 1 1 1 21 1 98 998 3 15101 998 2 15101 998 9998 98 2 4 8 1 1 2 98 1 N 98 98 98 9998 998 998 998 12 2 15 152 15202 98 15101 15101 15202012015
15 152 15202 1 2 15 4094 15 1 1 1 1 61 1 98 998 2 98 998 1 98 998 9998 98 2 3 7 2 1 2 98 4 98 98 98 98 9998 998 998 998 11 2 15 152 15202 98 98 98 15202012015
15 152 15202 1 2 15 4094 15 1 2 5 2 31 1 98 998 3 15101 998 1 98 998 9998 98 2 4 12 1 1 2 98 1 P 1 1 10 2007 998 998 998 16 2 15 152 15202 98 15101 98 15202012015
15 152 15202 1 2 15 4094 16 1 1 1 1 34 1 98 998 3 15101 998 1 98 998 9998 98 2 5 12 1 1 2 98 1 O 98 98 98 9998 998 998 998 17 2 15 152 15202 98 15101 98 15202012015

Despleguemos los códigos de regiones de nuestra tabla:

regiones <- unique(tabla_con_clave$REGION)
regiones
##  [1] 15 14 13 12 11 10  9 16  8  7  6  5  4  3  2  1

Hagamos un subset con la region 14 y con la zona = 2:

tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$REGION == 14) 
tabla_con_clave <- filter(tabla_con_clave, tabla_con_clave$AREA== 2) 

1.2 Cálculo de frecuencias

tabla_con_clave_f <- tabla_con_clave[,-c(1,2,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20),drop=FALSE]
names(tabla_con_clave_f)[9] <- "Nivel del curso más alto aprobado"
# Ahora filtramos por Nivel del curso más alto aprobado = 11.
tabla_con_clave_ff <- filter(tabla_con_clave_f, tabla_con_clave_f$`Nivel del curso más alto aprobado` == 12)
# Determinamos las frecuencias por zona:
b <- tabla_con_clave_ff$clave
c <- tabla_con_clave_ff$`Nivel del curso más alto aprobado`
d <- tabla_con_clave_ff$COMUNA
cross_tab =  xtabs( ~ unlist(b) + unlist(c)+ unlist(d))
tabla <- as.data.frame(cross_tab)
d <-tabla[!(tabla$Freq == 0),]
names(d)[1] <- "zona" 
d$anio <- "2017"

Veamos los primeros 100 registros:

r3_100 <- d[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona unlist.c. unlist.d. Freq anio
1 14101042005 12 14101 8 2017
2 14101042058 12 14101 8 2017
3 14101062011 12 14101 7 2017
4 14101062013 12 14101 13 2017
5 14101062021 12 14101 14 2017
6 14101062033 12 14101 33 2017
7 14101062047 12 14101 1 2017
8 14101072002 12 14101 84 2017
9 14101072033 12 14101 9 2017
10 14101072045 12 14101 60 2017
11 14101082002 12 14101 129 2017
12 14101082032 12 14101 4 2017
13 14101112005 12 14101 109 2017
14 14101112010 12 14101 48 2017
15 14101112017 12 14101 162 2017
16 14101112037 12 14101 43 2017
17 14101112046 12 14101 17 2017
18 14101112058 12 14101 16 2017
19 14101112901 12 14101 4 2017
20 14101122007 12 14101 86 2017
21 14101122009 12 14101 28 2017
22 14101122042 12 14101 48 2017
23 14101122058 12 14101 125 2017
24 14101132003 12 14101 27 2017
25 14101132050 12 14101 7 2017
26 14101132901 12 14101 6 2017
27 14101142014 12 14101 37 2017
28 14101142039 12 14101 1 2017
29 14101142043 12 14101 3 2017
30 14101142047 12 14101 1 2017
31 14101142059 12 14101 15 2017
32 14101152059 12 14101 2 2017
33 14101162018 12 14101 25 2017
34 14101162019 12 14101 27 2017
35 14101162034 12 14101 4 2017
36 14101162053 12 14101 32 2017
37 14101162061 12 14101 28 2017
38 14101162901 12 14101 3 2017
39 14101172001 12 14101 214 2017
40 14101172016 12 14101 54 2017
41 14101172027 12 14101 5 2017
42 14101172036 12 14101 8 2017
43 14101172055 12 14101 6 2017
44 14101172901 12 14101 9 2017
45 14101182004 12 14101 7 2017
46 14101182006 12 14101 6 2017
47 14101182015 12 14101 49 2017
48 14101182031 12 14101 1 2017
49 14101182040 12 14101 16 2017
50 14101182049 12 14101 2 2017
51 14101192031 12 14101 1 2017
52 14101192901 12 14101 2 2017
592 14102012011 12 14102 2 2017
593 14102012017 12 14102 7 2017
594 14102012018 12 14102 4 2017
595 14102022008 12 14102 22 2017
596 14102022010 12 14102 3 2017
597 14102032001 12 14102 2 2017
598 14102032005 12 14102 2 2017
599 14102032019 12 14102 1 2017
600 14102032901 12 14102 1 2017
601 14102042002 12 14102 19 2017
602 14102042006 12 14102 5 2017
603 14102042007 12 14102 1 2017
604 14102042011 12 14102 1 2017
605 14102042014 12 14102 1 2017
1145 14103012004 12 14103 25 2017
1146 14103012010 12 14103 3 2017
1147 14103012020 12 14103 2 2017
1148 14103012022 12 14103 9 2017
1149 14103012027 12 14103 3 2017
1150 14103012029 12 14103 1 2017
1151 14103012040 12 14103 4 2017
1152 14103022023 12 14103 13 2017
1153 14103022025 12 14103 6 2017
1154 14103022030 12 14103 9 2017
1155 14103022039 12 14103 9 2017
1156 14103022042 12 14103 5 2017
1157 14103022043 12 14103 3 2017
1158 14103022044 12 14103 7 2017
1159 14103022901 12 14103 1 2017
1160 14103032001 12 14103 1 2017
1161 14103032002 12 14103 4 2017
1162 14103032008 12 14103 2 2017
1163 14103032009 12 14103 6 2017
1164 14103032015 12 14103 2 2017
1165 14103032019 12 14103 2 2017
1166 14103032034 12 14103 1 2017
1167 14103032036 12 14103 1 2017
1168 14103032041 12 14103 2 2017
1169 14103032042 12 14103 20 2017
1170 14103032901 12 14103 12 2017
1171 14103042012 12 14103 5 2017
1172 14103042038 12 14103 2 2017
1173 14103052003 12 14103 10 2017
1174 14103052035 12 14103 1 2017
1175 14103052040 12 14103 12 2017
1176 14103062013 12 14103 2 2017
1177 14103062016 12 14103 5 2017
1178 14103062021 12 14103 27 2017

Agregamos un cero a los códigos comunales de cuatro dígitos:

codigos <- d$unlist.d.
rango <- seq(1:nrow(d))
cadena <- paste("0",codigos[rango], sep = "")
cadena <- substr(cadena,(nchar(cadena)[rango])-(4),6)
codigos <- as.data.frame(codigos)
cadena <- as.data.frame(cadena)
comuna_corr <- cbind(d,cadena)
comuna_corr <- comuna_corr[,-c(2,3),drop=FALSE]
names(comuna_corr)[4] <- "código" 
r3_100 <- comuna_corr[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq anio código
1 14101042005 8 2017 14101
2 14101042058 8 2017 14101
3 14101062011 7 2017 14101
4 14101062013 13 2017 14101
5 14101062021 14 2017 14101
6 14101062033 33 2017 14101
7 14101062047 1 2017 14101
8 14101072002 84 2017 14101
9 14101072033 9 2017 14101
10 14101072045 60 2017 14101
11 14101082002 129 2017 14101
12 14101082032 4 2017 14101
13 14101112005 109 2017 14101
14 14101112010 48 2017 14101
15 14101112017 162 2017 14101
16 14101112037 43 2017 14101
17 14101112046 17 2017 14101
18 14101112058 16 2017 14101
19 14101112901 4 2017 14101
20 14101122007 86 2017 14101
21 14101122009 28 2017 14101
22 14101122042 48 2017 14101
23 14101122058 125 2017 14101
24 14101132003 27 2017 14101
25 14101132050 7 2017 14101
26 14101132901 6 2017 14101
27 14101142014 37 2017 14101
28 14101142039 1 2017 14101
29 14101142043 3 2017 14101
30 14101142047 1 2017 14101
31 14101142059 15 2017 14101
32 14101152059 2 2017 14101
33 14101162018 25 2017 14101
34 14101162019 27 2017 14101
35 14101162034 4 2017 14101
36 14101162053 32 2017 14101
37 14101162061 28 2017 14101
38 14101162901 3 2017 14101
39 14101172001 214 2017 14101
40 14101172016 54 2017 14101
41 14101172027 5 2017 14101
42 14101172036 8 2017 14101
43 14101172055 6 2017 14101
44 14101172901 9 2017 14101
45 14101182004 7 2017 14101
46 14101182006 6 2017 14101
47 14101182015 49 2017 14101
48 14101182031 1 2017 14101
49 14101182040 16 2017 14101
50 14101182049 2 2017 14101
51 14101192031 1 2017 14101
52 14101192901 2 2017 14101
592 14102012011 2 2017 14102
593 14102012017 7 2017 14102
594 14102012018 4 2017 14102
595 14102022008 22 2017 14102
596 14102022010 3 2017 14102
597 14102032001 2 2017 14102
598 14102032005 2 2017 14102
599 14102032019 1 2017 14102
600 14102032901 1 2017 14102
601 14102042002 19 2017 14102
602 14102042006 5 2017 14102
603 14102042007 1 2017 14102
604 14102042011 1 2017 14102
605 14102042014 1 2017 14102
1145 14103012004 25 2017 14103
1146 14103012010 3 2017 14103
1147 14103012020 2 2017 14103
1148 14103012022 9 2017 14103
1149 14103012027 3 2017 14103
1150 14103012029 1 2017 14103
1151 14103012040 4 2017 14103
1152 14103022023 13 2017 14103
1153 14103022025 6 2017 14103
1154 14103022030 9 2017 14103
1155 14103022039 9 2017 14103
1156 14103022042 5 2017 14103
1157 14103022043 3 2017 14103
1158 14103022044 7 2017 14103
1159 14103022901 1 2017 14103
1160 14103032001 1 2017 14103
1161 14103032002 4 2017 14103
1162 14103032008 2 2017 14103
1163 14103032009 6 2017 14103
1164 14103032015 2 2017 14103
1165 14103032019 2 2017 14103
1166 14103032034 1 2017 14103
1167 14103032036 1 2017 14103
1168 14103032041 2 2017 14103
1169 14103032042 20 2017 14103
1170 14103032901 12 2017 14103
1171 14103042012 5 2017 14103
1172 14103042038 2 2017 14103
1173 14103052003 10 2017 14103
1174 14103052035 1 2017 14103
1175 14103052040 12 2017 14103
1176 14103062013 2 2017 14103
1177 14103062016 5 2017 14103
1178 14103062021 27 2017 14103


2 Variable CASEN

2.1 Tabla de ingresos expandidos

Hemos calculado ya éste valor como conclusión del punto 1.1 de aquí

h_y_m_2017_censo <- readRDS("../corre_ing_exp-censo_casen/Ingresos_expandidos_rural_17.rds")
tablamadre <- head(h_y_m_2017_censo,50)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código comuna.x promedio_i año personas Ingresos_expandidos
01101 Iquique 272529.7 2017 191468 52180713221
01401 Pozo Almonte 243272.4 2017 15711 3822052676
01402 Camiña 226831.0 2017 1250 283538750
01404 Huara 236599.7 2017 2730 645917134
01405 Pica 269198.0 2017 9296 2502464414
02103 Sierra Gorda 322997.9 2017 10186 3290056742
02104 Taltal 288653.8 2017 13317 3844002134
02201 Calama 238080.9 2017 165731 39457387800
02203 San Pedro de Atacama 271472.6 2017 10996 2985112297
02301 Tocopilla 166115.9 2017 25186 4183793832
03101 Copiapó 251396.0 2017 153937 38699138722
03103 Tierra Amarilla 287819.4 2017 14019 4034940816
03202 Diego de Almagro 326439.0 2017 13925 4545663075
03301 Vallenar 217644.6 2017 51917 11299454698
03302 Alto del Carmen 196109.9 2017 5299 1039186477
03303 Freirina 202463.8 2017 7041 1425547554
03304 Huasco 205839.6 2017 10149 2089066548
04101 La Serena 200287.4 2017 221054 44274327972
04102 Coquimbo 206027.8 2017 227730 46918711304
04103 Andacollo 217096.4 2017 11044 2397612293
04104 La Higuera 231674.2 2017 4241 982530309
04105 Paiguano 174868.5 2017 4497 786383423
04106 Vicuña 169077.1 2017 27771 4695441470
04201 Illapel 165639.6 2017 30848 5109649759
04202 Canela 171370.3 2017 9093 1558270441
04203 Los Vilos 173238.5 2017 21382 3704185607
04204 Salamanca 193602.0 2017 29347 5681637894
04301 Ovalle 230819.8 2017 111272 25683781418
04302 Combarbalá 172709.2 2017 13322 2300832587
04303 Monte Patria 189761.6 2017 30751 5835357638
04304 Punitaqui 165862.0 2017 10956 1817183694
04305 Río Hurtado 182027.2 2017 4278 778712384
05101 Valparaíso 251998.5 2017 296655 74756602991
05102 Casablanca 252317.7 2017 26867 6779018483
05105 Puchuncaví 231606.0 2017 18546 4295363979
05107 Quintero 285125.8 2017 31923 9102071069
05301 Los Andes 280548.0 2017 66708 18714795984
05302 Calle Larga 234044.6 2017 14832 3471349123
05303 Rinconada 246136.9 2017 10207 2512319225
05304 San Esteban 211907.3 2017 18855 3995512770
05401 La Ligua 172675.9 2017 35390 6111000517
05402 Cabildo 212985.0 2017 19388 4129354103
05404 Petorca 270139.8 2017 9826 2654393853
05405 Zapallar 235661.4 2017 7339 1729518700
05501 Quillota 212067.6 2017 90517 19195726144
05502 Calera 226906.2 2017 50554 11471016698
05503 Hijuelas 215402.0 2017 17988 3874650405
05504 La Cruz 243333.4 2017 22098 5377180726
05506 Nogales 219800.7 2017 22120 4861992055
05601 San Antonio 230261.5 2017 91350 21034388728

3 Unión Censo-Casen

Integramos a la tabla censal de frecuencias la tabla de ingresos expandidos de la Casen.

comunas_con_ing_exp = merge( x = comuna_corr, y = h_y_m_2017_censo, by = "código", all.x = TRUE)

comunas_con_ing_exp <-comunas_con_ing_exp[!(is.na(comunas_con_ing_exp$Ingresos_expandidos)),]

r3_100 <- comunas_con_ing_exp
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
14101 14101042005 8 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101042058 8 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062011 7 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062013 13 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062021 14 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062033 33 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062047 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101072002 84 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101072033 9 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101072045 60 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101082002 129 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101082032 4 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112005 109 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112010 48 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112017 162 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112037 43 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112046 17 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112058 16 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112901 4 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101122007 86 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101122009 28 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101122042 48 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101122058 125 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101132003 27 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101132050 7 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101132901 6 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142014 37 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142039 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142043 3 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142047 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142059 15 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101152059 2 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162018 25 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162019 27 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162034 4 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162053 32 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162061 28 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162901 3 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172001 214 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172016 54 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172027 5 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172036 8 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172055 6 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172901 9 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182004 7 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182006 6 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182015 49 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182031 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182040 16 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182049 2 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101192031 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101192901 2 2017 Valdivia 211732.5 2017 166080 35164529745
14102 14102012011 2 2017 Corral 157428.1 2017 5302 834683963
14102 14102012017 7 2017 Corral 157428.1 2017 5302 834683963
14102 14102012018 4 2017 Corral 157428.1 2017 5302 834683963
14102 14102022008 22 2017 Corral 157428.1 2017 5302 834683963
14102 14102022010 3 2017 Corral 157428.1 2017 5302 834683963
14102 14102032001 2 2017 Corral 157428.1 2017 5302 834683963
14102 14102032005 2 2017 Corral 157428.1 2017 5302 834683963
14102 14102032019 1 2017 Corral 157428.1 2017 5302 834683963
14102 14102032901 1 2017 Corral 157428.1 2017 5302 834683963
14102 14102042002 19 2017 Corral 157428.1 2017 5302 834683963
14102 14102042006 5 2017 Corral 157428.1 2017 5302 834683963
14102 14102042007 1 2017 Corral 157428.1 2017 5302 834683963
14102 14102042011 1 2017 Corral 157428.1 2017 5302 834683963
14102 14102042014 1 2017 Corral 157428.1 2017 5302 834683963
14103 14103012004 25 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012010 3 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012020 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012022 9 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012027 3 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012029 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012040 4 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022023 13 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022025 6 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022030 9 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022039 9 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022042 5 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022043 3 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022044 7 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022901 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032001 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032002 4 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032008 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032009 6 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032015 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032019 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032034 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032036 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032041 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032042 20 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032901 12 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103042012 5 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103042038 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103052003 10 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103052035 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103052040 12 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103062013 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103062016 5 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103062021 27 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103062037 6 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103072010 12 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103072020 13 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103072033 2 2017 Lanco 184730.2 2017 16752 3094599901
14104 14104012003 41 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104012010 6 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104012037 3 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104012042 3 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104012059 7 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104012901 8 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104022002 22 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104022005 6 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104022006 2 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104022018 18 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104022040 3 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104022050 18 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104022076 55 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104032012 5 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104032016 4 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104032047 4 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104032071 1 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104032901 2 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104042028 6 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104042039 1 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104042043 2 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104042052 10 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104042060 1 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104042068 11 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104042073 1 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052008 2 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052011 5 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052013 22 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052020 9 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052022 7 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052034 10 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052036 5 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052037 10 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052041 19 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052062 9 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104052064 7 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104062008 5 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104062022 10 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104062023 4 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104062037 4 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072030 1 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072031 1 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072032 7 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072051 2 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072054 10 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072063 3 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072070 3 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072074 1 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104072901 3 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122001 5 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122014 6 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122026 27 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122033 3 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122035 5 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122056 2 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122058 7 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122064 4 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122065 3 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122069 18 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122073 4 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122075 1 2017 Los Lagos 190489.7 2017 19634 3740075550
14104 14104122078 7 2017 Los Lagos 190489.7 2017 19634 3740075550
14105 14105012010 15 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105012013 12 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105012023 5 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105012901 11 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105022002 7 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105022019 11 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105022024 1 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105022031 5 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105022033 2 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105022035 3 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105022037 12 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105022901 2 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105032007 6 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105032010 16 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105032025 1 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105032029 5 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105032034 19 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105042009 1 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105042011 5 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105042012 1 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105042028 1 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105042901 1 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052003 2 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052013 3 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052014 2 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052016 9 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052017 1 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052022 6 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052026 17 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052036 3 2017 Máfil 180289.2 2017 7095 1279152079
14105 14105052901 3 2017 Máfil 180289.2 2017 7095 1279152079
14106 14106012005 2 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012010 6 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012017 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012018 6 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012019 3 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012024 3 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012049 15 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012052 11 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012053 31 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012054 5 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012057 3 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012060 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012069 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106012901 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106022901 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106032011 37 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106032020 7 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106032045 6 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106032049 3 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106032063 3 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106032069 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106042026 2 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106042038 2 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106042046 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106042059 5 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106052003 18 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106052023 27 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106052031 66 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106052039 73 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106052048 53 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106052059 8 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106052062 32 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106052064 19 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106062002 2 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106062009 2 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106062033 2 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106062035 2 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106062037 7 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106062061 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106062065 1 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106072037 49 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106072043 5 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106072044 8 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106072047 2 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106072070 3 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106072072 11 2017 Mariquina 187045.1 2017 21278 3979945072
14106 14106072901 2 2017 Mariquina 187045.1 2017 21278 3979945072
14107 14107012017 10 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107012021 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107012029 1 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022019 4 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022024 1 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022028 5 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022031 1 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022036 1 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022038 10 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022039 31 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022040 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022047 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107022901 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032001 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032004 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032011 15 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032013 15 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032014 5 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032032 21 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032033 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032034 3 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032035 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032037 1 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032039 18 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032041 13 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032043 4 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107032044 9 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042002 19 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042005 3 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042007 4 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042012 6 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042016 3 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042018 15 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042025 11 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042027 6 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042041 1 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042045 10 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042046 11 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107042048 7 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052003 3 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052006 3 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052008 13 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052009 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052010 3 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052017 23 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052020 4 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052023 4 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052030 8 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052042 5 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052044 2 2017 Paillaco 163833.6 2017 20188 3307473487
14107 14107052901 2 2017 Paillaco 163833.6 2017 20188 3307473487
14108 14108012006 24 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012039 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012040 18 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012043 16 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012046 58 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012049 46 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012054 60 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012061 3 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012069 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108012901 4 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108022007 3 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108022018 11 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108022025 19 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108022038 6 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108022047 24 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108022050 19 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108022060 24 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032001 4 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032002 17 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032014 8 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032017 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032024 49 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032026 10 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032031 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032057 11 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032072 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108032901 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108042016 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108042041 22 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108052011 36 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108052012 4 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108052015 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108052034 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108052055 45 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108052071 8 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108062003 7 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108062032 42 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108062036 7 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108062064 3 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108062065 9 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108062069 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108062070 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108062074 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108072005 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108072008 60 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108072045 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108072901 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108082004 7 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108082009 18 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108082044 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108082051 5 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108082057 2 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108082073 13 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108082901 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108092019 6 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108092069 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108102013 3 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108102038 3 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108102067 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108102901 1 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108112030 11 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108112033 10 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108112042 61 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108112056 11 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108112058 3 2017 Panguipulli 180390.3 2017 34539 6230498948
14108 14108122052 8 2017 Panguipulli 180390.3 2017 34539 6230498948
14201 14201012005 4 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201012024 23 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201012042 1 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201012045 30 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201022009 1 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201022010 16 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201022014 8 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201022020 3 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201022054 11 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201032003 2 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201032036 7 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201032041 1 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201032047 1 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201032048 2 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201032055 1 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201032901 4 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201042012 1 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201042018 1 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201042028 3 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201052004 3 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201052005 12 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201052010 2 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201052022 3 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201052032 2 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201052050 2 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201052052 2 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201062016 6 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201062017 5 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201062030 4 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201062038 2 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201062042 7 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201072002 13 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201072007 33 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201072031 7 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201072042 8 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201072044 14 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201072053 13 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201082011 7 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201082029 23 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201082031 4 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201082040 38 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201082049 3 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092006 15 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092008 3 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092013 1 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092021 43 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092023 3 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092026 7 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092034 9 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092037 92 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092042 3 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092044 7 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092046 36 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092051 16 2017 La Unión 201975.2 2017 38036 7682327556
14201 14201092901 1 2017 La Unión 201975.2 2017 38036 7682327556
14202 14202012006 20 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012010 3 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012012 21 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012019 11 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012020 3 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012024 3 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012032 4 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012039 6 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012040 10 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012042 1 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202012901 1 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202022009 4 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202022013 11 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202022017 1 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202022023 1 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202022038 2 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202022045 21 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202032001 4 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202032002 6 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202032005 6 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202032008 1 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202032027 92 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202032031 5 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202032046 5 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202042007 2 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202042009 2 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202042013 5 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202042028 8 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202042032 1 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202042037 2 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202042047 4 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202042901 4 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202052035 11 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202052042 13 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202062003 7 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202062004 1 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202062011 15 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202062016 1 2017 Futrono 193120.3 2017 14665 2832109866
14202 14202062034 9 2017 Futrono 193120.3 2017 14665 2832109866
14203 14203012008 2 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203012012 5 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203012028 8 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203012039 15 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203012040 14 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022002 8 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022003 1 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022005 2 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022006 9 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022010 1 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022014 8 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022015 34 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022024 2 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022026 8 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022029 4 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022036 11 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203022037 26 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032001 4 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032008 5 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032011 6 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032013 29 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032019 2 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032030 11 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032032 1 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032033 10 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203032034 8 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203042023 4 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203042031 13 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203042035 1 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203042901 2 2017 Lago Ranco 186595.7 2017 9896 1846550611
14203 14203052038 4 2017 Lago Ranco 186595.7 2017 9896 1846550611
14204 14204012016 4 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204012039 20 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204022004 38 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204022006 12 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204022012 1 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204022033 6 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204022038 14 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204022048 5 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204032013 4 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204032015 38 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204032023 5 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204032035 5 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204032048 13 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204032050 1 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204052028 7 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204062001 9 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204062009 7 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204062010 9 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204062032 45 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204062037 4 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204062042 11 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204062049 6 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204062901 3 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072008 6 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072011 12 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072014 16 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072017 13 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072024 4 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072026 6 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072029 13 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072036 5 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072040 7 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072046 15 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204072047 6 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204082006 27 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204082020 11 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204082048 5 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204082050 12 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204092050 21 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204102002 1 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204102003 5 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204102007 5 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204102019 3 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204102022 20 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204102025 6 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204102045 5 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204112005 18 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204112018 6 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204112021 12 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204112027 4 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204112030 13 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204112031 2 2017 Río Bueno 184360.5 2017 31372 5783758517
14204 14204112901 2 2017 Río Bueno 184360.5 2017 31372 5783758517


4 Proporción poblacional zonal respecto a la comunal

Del censo obtenemos la cantidad de población a nivel de zona y estimamos su proporción a nivel comunal. Ya hemos calculado ésta proporción aquí.

prop_pob <- readRDS("../tabla_de_prop_pob.rds")
names(prop_pob)[1] <- "zona"
names(prop_pob)[3] <- "p_poblacional" 

Veamos los 100 primeros registros:

r3_100 <- prop_pob[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona Freq p_poblacional código
1101011001 2491 0.0130100 01101
1101011002 1475 0.0077036 01101
1101021001 1003 0.0052385 01101
1101021002 54 0.0002820 01101
1101021003 2895 0.0151200 01101
1101021004 2398 0.0125243 01101
1101021005 4525 0.0236332 01101
1101031001 2725 0.0142321 01101
1101031002 3554 0.0185618 01101
1101031003 5246 0.0273988 01101
1101031004 3389 0.0177001 01101
1101041001 1800 0.0094010 01101
1101041002 2538 0.0132555 01101
1101041003 3855 0.0201339 01101
1101041004 5663 0.0295767 01101
1101041005 4162 0.0217373 01101
1101041006 2689 0.0140441 01101
1101051001 3296 0.0172144 01101
1101051002 4465 0.0233198 01101
1101051003 4656 0.0243174 01101
1101051004 2097 0.0109522 01101
1101051005 3569 0.0186402 01101
1101051006 2741 0.0143157 01101
1101061001 1625 0.0084871 01101
1101061002 4767 0.0248971 01101
1101061003 4826 0.0252053 01101
1101061004 4077 0.0212934 01101
1101061005 2166 0.0113126 01101
1101071001 2324 0.0121378 01101
1101071002 2801 0.0146291 01101
1101071003 3829 0.0199981 01101
1101071004 1987 0.0103777 01101
1101081001 5133 0.0268087 01101
1101081002 3233 0.0168853 01101
1101081003 2122 0.0110828 01101
1101081004 2392 0.0124929 01101
1101092001 57 0.0002977 01101
1101092004 247 0.0012900 01101
1101092005 76 0.0003969 01101
1101092006 603 0.0031494 01101
1101092007 84 0.0004387 01101
1101092010 398 0.0020787 01101
1101092012 58 0.0003029 01101
1101092014 23 0.0001201 01101
1101092016 20 0.0001045 01101
1101092017 8 0.0000418 01101
1101092018 74 0.0003865 01101
1101092019 25 0.0001306 01101
1101092021 177 0.0009244 01101
1101092022 23 0.0001201 01101
1101092023 288 0.0015042 01101
1101092024 14 0.0000731 01101
1101092901 30 0.0001567 01101
1101101001 2672 0.0139553 01101
1101101002 4398 0.0229699 01101
1101101003 4524 0.0236280 01101
1101101004 3544 0.0185096 01101
1101101005 4911 0.0256492 01101
1101101006 3688 0.0192617 01101
1101111001 3886 0.0202958 01101
1101111002 2312 0.0120751 01101
1101111003 4874 0.0254560 01101
1101111004 4543 0.0237272 01101
1101111005 4331 0.0226200 01101
1101111006 3253 0.0169898 01101
1101111007 4639 0.0242286 01101
1101111008 4881 0.0254925 01101
1101111009 5006 0.0261454 01101
1101111010 366 0.0019115 01101
1101111011 4351 0.0227244 01101
1101111012 2926 0.0152819 01101
1101111013 3390 0.0177053 01101
1101111014 2940 0.0153550 01101
1101112003 33 0.0001724 01101
1101112013 104 0.0005432 01101
1101112019 34 0.0001776 01101
1101112025 21 0.0001097 01101
1101112901 6 0.0000313 01101
1101991999 1062 0.0055466 01101
1107011001 4104 0.0378685 01107
1107011002 4360 0.0402307 01107
1107011003 8549 0.0788835 01107
1107012003 3 0.0000277 01107
1107012901 17 0.0001569 01107
1107021001 6701 0.0618316 01107
1107021002 3971 0.0366413 01107
1107021003 6349 0.0585836 01107
1107021004 5125 0.0472895 01107
1107021005 4451 0.0410704 01107
1107021006 3864 0.0356540 01107
1107021007 5235 0.0483045 01107
1107021008 4566 0.0421315 01107
1107031001 4195 0.0387082 01107
1107031002 7099 0.0655040 01107
1107031003 4720 0.0435525 01107
1107032005 38 0.0003506 01107
1107032006 2399 0.0221361 01107
1107032008 4 0.0000369 01107
1107041001 3630 0.0334948 01107
1107041002 5358 0.0494394 01107


5 Ingreso medio

Deseamos el valor del ingreso promedio a nivel comunal, pero expandido a nivel zonal. Ésta información está contenida en el campo promedio_i de la tabla obtenida en el punto 3.

r3_100 <- comunas_con_ing_exp[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
código zona Freq anio comuna.x promedio_i año personas Ingresos_expandidos
14101 14101042005 8 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101042058 8 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062011 7 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062013 13 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062021 14 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062033 33 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101062047 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101072002 84 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101072033 9 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101072045 60 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101082002 129 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101082032 4 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112005 109 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112010 48 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112017 162 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112037 43 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112046 17 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112058 16 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101112901 4 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101122007 86 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101122009 28 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101122042 48 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101122058 125 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101132003 27 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101132050 7 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101132901 6 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142014 37 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142039 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142043 3 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142047 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101142059 15 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101152059 2 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162018 25 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162019 27 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162034 4 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162053 32 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162061 28 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101162901 3 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172001 214 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172016 54 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172027 5 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172036 8 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172055 6 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101172901 9 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182004 7 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182006 6 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182015 49 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182031 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182040 16 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101182049 2 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101192031 1 2017 Valdivia 211732.5 2017 166080 35164529745
14101 14101192901 2 2017 Valdivia 211732.5 2017 166080 35164529745
14102 14102012011 2 2017 Corral 157428.1 2017 5302 834683963
14102 14102012017 7 2017 Corral 157428.1 2017 5302 834683963
14102 14102012018 4 2017 Corral 157428.1 2017 5302 834683963
14102 14102022008 22 2017 Corral 157428.1 2017 5302 834683963
14102 14102022010 3 2017 Corral 157428.1 2017 5302 834683963
14102 14102032001 2 2017 Corral 157428.1 2017 5302 834683963
14102 14102032005 2 2017 Corral 157428.1 2017 5302 834683963
14102 14102032019 1 2017 Corral 157428.1 2017 5302 834683963
14102 14102032901 1 2017 Corral 157428.1 2017 5302 834683963
14102 14102042002 19 2017 Corral 157428.1 2017 5302 834683963
14102 14102042006 5 2017 Corral 157428.1 2017 5302 834683963
14102 14102042007 1 2017 Corral 157428.1 2017 5302 834683963
14102 14102042011 1 2017 Corral 157428.1 2017 5302 834683963
14102 14102042014 1 2017 Corral 157428.1 2017 5302 834683963
14103 14103012004 25 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012010 3 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012020 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012022 9 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012027 3 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012029 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103012040 4 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022023 13 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022025 6 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022030 9 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022039 9 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022042 5 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022043 3 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022044 7 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103022901 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032001 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032002 4 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032008 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032009 6 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032015 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032019 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032034 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032036 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032041 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032042 20 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103032901 12 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103042012 5 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103042038 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103052003 10 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103052035 1 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103052040 12 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103062013 2 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103062016 5 2017 Lanco 184730.2 2017 16752 3094599901
14103 14103062021 27 2017 Lanco 184730.2 2017 16752 3094599901


6 Ingreso promedio expandido por zona (multi_pob)

En éste momento vamos a construir nuestra variable dependiente de regresión aplicando la siguiente fórmula:

\[ multi\_pob = promedio\_i \cdot personas \cdot p\_poblacional \]

Para ello integramos a la tabla de ingresos expandidos a nivel zonal (punto 3) la tabla de proporciones poblacionales zonales respecto al total comunal (punto 4) :

h_y_m_comuna_corr_01 = merge( x = comunas_con_ing_exp, y = prop_pob, by = "zona", all.x = TRUE)
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y
14101042005 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 60 0.0003613 14101
14101042058 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 40 0.0002408 14101
14101062011 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 101 0.0006081 14101
14101062013 14101 13 2017 Valdivia 211732.5 2017 166080 35164529745 88 0.0005299 14101
14101062021 14101 14 2017 Valdivia 211732.5 2017 166080 35164529745 296 0.0017823 14101
14101062033 14101 33 2017 Valdivia 211732.5 2017 166080 35164529745 1052 0.0063343 14101
14101062047 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 16 0.0000963 14101
14101072002 14101 84 2017 Valdivia 211732.5 2017 166080 35164529745 294 0.0017702 14101
14101072033 14101 9 2017 Valdivia 211732.5 2017 166080 35164529745 49 0.0002950 14101
14101072045 14101 60 2017 Valdivia 211732.5 2017 166080 35164529745 287 0.0017281 14101
14101082002 14101 129 2017 Valdivia 211732.5 2017 166080 35164529745 429 0.0025831 14101
14101082032 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 22 0.0001325 14101
14101112005 14101 109 2017 Valdivia 211732.5 2017 166080 35164529745 380 0.0022881 14101
14101112010 14101 48 2017 Valdivia 211732.5 2017 166080 35164529745 176 0.0010597 14101
14101112017 14101 162 2017 Valdivia 211732.5 2017 166080 35164529745 1083 0.0065210 14101
14101112037 14101 43 2017 Valdivia 211732.5 2017 166080 35164529745 535 0.0032213 14101
14101112046 14101 17 2017 Valdivia 211732.5 2017 166080 35164529745 103 0.0006202 14101
14101112058 14101 16 2017 Valdivia 211732.5 2017 166080 35164529745 59 0.0003553 14101
14101112901 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 17 0.0001024 14101
14101122007 14101 86 2017 Valdivia 211732.5 2017 166080 35164529745 297 0.0017883 14101
14101122009 14101 28 2017 Valdivia 211732.5 2017 166080 35164529745 266 0.0016016 14101
14101122042 14101 48 2017 Valdivia 211732.5 2017 166080 35164529745 233 0.0014029 14101
14101122058 14101 125 2017 Valdivia 211732.5 2017 166080 35164529745 509 0.0030648 14101
14101132003 14101 27 2017 Valdivia 211732.5 2017 166080 35164529745 290 0.0017461 14101
14101132050 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 66 0.0003974 14101
14101132901 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 250 0.0015053 14101
14101142014 14101 37 2017 Valdivia 211732.5 2017 166080 35164529745 325 0.0019569 14101
14101142039 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 58 0.0003492 14101
14101142043 14101 3 2017 Valdivia 211732.5 2017 166080 35164529745 44 0.0002649 14101
14101142047 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 77 0.0004636 14101
14101142059 14101 15 2017 Valdivia 211732.5 2017 166080 35164529745 96 0.0005780 14101
14101152059 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 82 0.0004937 14101
14101162018 14101 25 2017 Valdivia 211732.5 2017 166080 35164529745 97 0.0005841 14101
14101162019 14101 27 2017 Valdivia 211732.5 2017 166080 35164529745 64 0.0003854 14101
14101162034 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 42 0.0002529 14101
14101162053 14101 32 2017 Valdivia 211732.5 2017 166080 35164529745 217 0.0013066 14101
14101162061 14101 28 2017 Valdivia 211732.5 2017 166080 35164529745 94 0.0005660 14101
14101162901 14101 3 2017 Valdivia 211732.5 2017 166080 35164529745 23 0.0001385 14101
14101172001 14101 214 2017 Valdivia 211732.5 2017 166080 35164529745 1348 0.0081166 14101
14101172016 14101 54 2017 Valdivia 211732.5 2017 166080 35164529745 148 0.0008911 14101
14101172027 14101 5 2017 Valdivia 211732.5 2017 166080 35164529745 103 0.0006202 14101
14101172036 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 110 0.0006623 14101
14101172055 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 88 0.0005299 14101
14101172901 14101 9 2017 Valdivia 211732.5 2017 166080 35164529745 39 0.0002348 14101
14101182004 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 188 0.0011320 14101
14101182006 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 67 0.0004034 14101
14101182015 14101 49 2017 Valdivia 211732.5 2017 166080 35164529745 455 0.0027396 14101
14101182031 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 38 0.0002288 14101
14101182040 14101 16 2017 Valdivia 211732.5 2017 166080 35164529745 323 0.0019448 14101
14101182049 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 32 0.0001927 14101
14101192031 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 22 0.0001325 14101
14101192901 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 28 0.0001686 14101
14102012011 14102 2 2017 Corral 157428.1 2017 5302 834683963 22 0.0041494 14102
14102012017 14102 7 2017 Corral 157428.1 2017 5302 834683963 61 0.0115051 14102
14102012018 14102 4 2017 Corral 157428.1 2017 5302 834683963 80 0.0150886 14102
14102022008 14102 22 2017 Corral 157428.1 2017 5302 834683963 507 0.0956243 14102
14102022010 14102 3 2017 Corral 157428.1 2017 5302 834683963 41 0.0077329 14102
14102032001 14102 2 2017 Corral 157428.1 2017 5302 834683963 68 0.0128253 14102
14102032005 14102 2 2017 Corral 157428.1 2017 5302 834683963 64 0.0120709 14102
14102032019 14102 1 2017 Corral 157428.1 2017 5302 834683963 62 0.0116937 14102
14102032901 14102 1 2017 Corral 157428.1 2017 5302 834683963 31 0.0058469 14102
14102042002 14102 19 2017 Corral 157428.1 2017 5302 834683963 325 0.0612976 14102
14102042006 14102 5 2017 Corral 157428.1 2017 5302 834683963 257 0.0484723 14102
14102042007 14102 1 2017 Corral 157428.1 2017 5302 834683963 115 0.0216899 14102
14102042011 14102 1 2017 Corral 157428.1 2017 5302 834683963 34 0.0064127 14102
14102042014 14102 1 2017 Corral 157428.1 2017 5302 834683963 48 0.0090532 14102
14103012004 14103 25 2017 Lanco 184730.2 2017 16752 3094599901 197 0.0117598 14103
14103012010 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103
14103012020 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103
14103012022 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 93 0.0055516 14103
14103012027 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 105 0.0062679 14103
14103012029 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 16 0.0009551 14103
14103012040 14103 4 2017 Lanco 184730.2 2017 16752 3094599901 106 0.0063276 14103
14103022023 14103 13 2017 Lanco 184730.2 2017 16752 3094599901 224 0.0133715 14103
14103022025 14103 6 2017 Lanco 184730.2 2017 16752 3094599901 69 0.0041189 14103
14103022030 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 199 0.0118792 14103
14103022039 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 379 0.0226242 14103
14103022042 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103
14103022043 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103
14103022044 14103 7 2017 Lanco 184730.2 2017 16752 3094599901 96 0.0057307 14103
14103022901 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103
14103032001 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 100 0.0059694 14103
14103032002 14103 4 2017 Lanco 184730.2 2017 16752 3094599901 273 0.0162966 14103
14103032008 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 119 0.0071036 14103
14103032009 14103 6 2017 Lanco 184730.2 2017 16752 3094599901 93 0.0055516 14103
14103032015 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 96 0.0057307 14103
14103032019 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 55 0.0032832 14103
14103032034 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 59 0.0035220 14103
14103032036 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103
14103032041 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 159 0.0094914 14103
14103032042 14103 20 2017 Lanco 184730.2 2017 16752 3094599901 304 0.0181471 14103
14103032901 14103 12 2017 Lanco 184730.2 2017 16752 3094599901 179 0.0106853 14103
14103042012 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 75 0.0044771 14103
14103042038 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 45 0.0026862 14103
14103052003 14103 10 2017 Lanco 184730.2 2017 16752 3094599901 250 0.0149236 14103
14103052035 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 173 0.0103271 14103
14103052040 14103 12 2017 Lanco 184730.2 2017 16752 3094599901 268 0.0159981 14103
14103062013 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 65 0.0038801 14103
14103062016 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 155 0.0092526 14103
14103062021 14103 27 2017 Lanco 184730.2 2017 16752 3094599901 226 0.0134909 14103


Hacemos la multiplicación que queda almacenada en la variable multi_pob:

h_y_m_comuna_corr_01$multi_pob <- h_y_m_comuna_corr_01$promedio_i * h_y_m_comuna_corr_01$personas * h_y_m_comuna_corr_01$p_poblacional
tablamadre <- head(h_y_m_comuna_corr_01,100)
kbl(tablamadre) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob
14101042005 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 60 0.0003613 14101 12703949
14101042058 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 40 0.0002408 14101 8469299
14101062011 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 101 0.0006081 14101 21384980
14101062013 14101 13 2017 Valdivia 211732.5 2017 166080 35164529745 88 0.0005299 14101 18632458
14101062021 14101 14 2017 Valdivia 211732.5 2017 166080 35164529745 296 0.0017823 14101 62672813
14101062033 14101 33 2017 Valdivia 211732.5 2017 166080 35164529745 1052 0.0063343 14101 222742566
14101062047 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 16 0.0000963 14101 3387720
14101072002 14101 84 2017 Valdivia 211732.5 2017 166080 35164529745 294 0.0017702 14101 62249348
14101072033 14101 9 2017 Valdivia 211732.5 2017 166080 35164529745 49 0.0002950 14101 10374891
14101072045 14101 60 2017 Valdivia 211732.5 2017 166080 35164529745 287 0.0017281 14101 60767221
14101082002 14101 129 2017 Valdivia 211732.5 2017 166080 35164529745 429 0.0025831 14101 90833233
14101082032 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 22 0.0001325 14101 4658114
14101112005 14101 109 2017 Valdivia 211732.5 2017 166080 35164529745 380 0.0022881 14101 80458341
14101112010 14101 48 2017 Valdivia 211732.5 2017 166080 35164529745 176 0.0010597 14101 37264916
14101112017 14101 162 2017 Valdivia 211732.5 2017 166080 35164529745 1083 0.0065210 14101 229306272
14101112037 14101 43 2017 Valdivia 211732.5 2017 166080 35164529745 535 0.0032213 14101 113276875
14101112046 14101 17 2017 Valdivia 211732.5 2017 166080 35164529745 103 0.0006202 14101 21808445
14101112058 14101 16 2017 Valdivia 211732.5 2017 166080 35164529745 59 0.0003553 14101 12492216
14101112901 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 17 0.0001024 14101 3599452
14101122007 14101 86 2017 Valdivia 211732.5 2017 166080 35164529745 297 0.0017883 14101 62884546
14101122009 14101 28 2017 Valdivia 211732.5 2017 166080 35164529745 266 0.0016016 14101 56320839
14101122042 14101 48 2017 Valdivia 211732.5 2017 166080 35164529745 233 0.0014029 14101 49333667
14101122058 14101 125 2017 Valdivia 211732.5 2017 166080 35164529745 509 0.0030648 14101 107771831
14101132003 14101 27 2017 Valdivia 211732.5 2017 166080 35164529745 290 0.0017461 14101 61402418
14101132050 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 66 0.0003974 14101 13974343
14101132901 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 250 0.0015053 14101 52933119
14101142014 14101 37 2017 Valdivia 211732.5 2017 166080 35164529745 325 0.0019569 14101 68813055
14101142039 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 58 0.0003492 14101 12280484
14101142043 14101 3 2017 Valdivia 211732.5 2017 166080 35164529745 44 0.0002649 14101 9316229
14101142047 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 77 0.0004636 14101 16303401
14101142059 14101 15 2017 Valdivia 211732.5 2017 166080 35164529745 96 0.0005780 14101 20326318
14101152059 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 82 0.0004937 14101 17362063
14101162018 14101 25 2017 Valdivia 211732.5 2017 166080 35164529745 97 0.0005841 14101 20538050
14101162019 14101 27 2017 Valdivia 211732.5 2017 166080 35164529745 64 0.0003854 14101 13550879
14101162034 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 42 0.0002529 14101 8892764
14101162053 14101 32 2017 Valdivia 211732.5 2017 166080 35164529745 217 0.0013066 14101 45945947
14101162061 14101 28 2017 Valdivia 211732.5 2017 166080 35164529745 94 0.0005660 14101 19902853
14101162901 14101 3 2017 Valdivia 211732.5 2017 166080 35164529745 23 0.0001385 14101 4869847
14101172001 14101 214 2017 Valdivia 211732.5 2017 166080 35164529745 1348 0.0081166 14101 285415379
14101172016 14101 54 2017 Valdivia 211732.5 2017 166080 35164529745 148 0.0008911 14101 31336407
14101172027 14101 5 2017 Valdivia 211732.5 2017 166080 35164529745 103 0.0006202 14101 21808445
14101172036 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 110 0.0006623 14101 23290572
14101172055 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 88 0.0005299 14101 18632458
14101172901 14101 9 2017 Valdivia 211732.5 2017 166080 35164529745 39 0.0002348 14101 8257567
14101182004 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 188 0.0011320 14101 39805706
14101182006 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 67 0.0004034 14101 14186076
14101182015 14101 49 2017 Valdivia 211732.5 2017 166080 35164529745 455 0.0027396 14101 96338277
14101182031 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 38 0.0002288 14101 8045834
14101182040 14101 16 2017 Valdivia 211732.5 2017 166080 35164529745 323 0.0019448 14101 68389590
14101182049 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 32 0.0001927 14101 6775439
14101192031 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 22 0.0001325 14101 4658114
14101192901 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 28 0.0001686 14101 5928509
14102012011 14102 2 2017 Corral 157428.1 2017 5302 834683963 22 0.0041494 14102 3463419
14102012017 14102 7 2017 Corral 157428.1 2017 5302 834683963 61 0.0115051 14102 9603116
14102012018 14102 4 2017 Corral 157428.1 2017 5302 834683963 80 0.0150886 14102 12594251
14102022008 14102 22 2017 Corral 157428.1 2017 5302 834683963 507 0.0956243 14102 79816064
14102022010 14102 3 2017 Corral 157428.1 2017 5302 834683963 41 0.0077329 14102 6454553
14102032001 14102 2 2017 Corral 157428.1 2017 5302 834683963 68 0.0128253 14102 10705113
14102032005 14102 2 2017 Corral 157428.1 2017 5302 834683963 64 0.0120709 14102 10075401
14102032019 14102 1 2017 Corral 157428.1 2017 5302 834683963 62 0.0116937 14102 9760544
14102032901 14102 1 2017 Corral 157428.1 2017 5302 834683963 31 0.0058469 14102 4880272
14102042002 14102 19 2017 Corral 157428.1 2017 5302 834683963 325 0.0612976 14102 51164143
14102042006 14102 5 2017 Corral 157428.1 2017 5302 834683963 257 0.0484723 14102 40459030
14102042007 14102 1 2017 Corral 157428.1 2017 5302 834683963 115 0.0216899 14102 18104235
14102042011 14102 1 2017 Corral 157428.1 2017 5302 834683963 34 0.0064127 14102 5352557
14102042014 14102 1 2017 Corral 157428.1 2017 5302 834683963 48 0.0090532 14102 7556550
14103012004 14103 25 2017 Lanco 184730.2 2017 16752 3094599901 197 0.0117598 14103 36391845
14103012010 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477
14103012020 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477
14103012022 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 93 0.0055516 14103 17179906
14103012027 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 105 0.0062679 14103 19396668
14103012029 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 16 0.0009551 14103 2955683
14103012040 14103 4 2017 Lanco 184730.2 2017 16752 3094599901 106 0.0063276 14103 19581399
14103022023 14103 13 2017 Lanco 184730.2 2017 16752 3094599901 224 0.0133715 14103 41379559
14103022025 14103 6 2017 Lanco 184730.2 2017 16752 3094599901 69 0.0041189 14103 12746382
14103022030 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 199 0.0118792 14103 36761305
14103022039 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 379 0.0226242 14103 70012737
14103022042 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477
14103022043 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334
14103022044 14103 7 2017 Lanco 184730.2 2017 16752 3094599901 96 0.0057307 14103 17734097
14103022901 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334
14103032001 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 100 0.0059694 14103 18473018
14103032002 14103 4 2017 Lanco 184730.2 2017 16752 3094599901 273 0.0162966 14103 50431338
14103032008 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 119 0.0071036 14103 21982891
14103032009 14103 6 2017 Lanco 184730.2 2017 16752 3094599901 93 0.0055516 14103 17179906
14103032015 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 96 0.0057307 14103 17734097
14103032019 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 55 0.0032832 14103 10160160
14103032034 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 59 0.0035220 14103 10899080
14103032036 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334
14103032041 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 159 0.0094914 14103 29372098
14103032042 14103 20 2017 Lanco 184730.2 2017 16752 3094599901 304 0.0181471 14103 56157973
14103032901 14103 12 2017 Lanco 184730.2 2017 16752 3094599901 179 0.0106853 14103 33066701
14103042012 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 75 0.0044771 14103 13854763
14103042038 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 45 0.0026862 14103 8312858
14103052003 14103 10 2017 Lanco 184730.2 2017 16752 3094599901 250 0.0149236 14103 46182544
14103052035 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 173 0.0103271 14103 31958320
14103052040 14103 12 2017 Lanco 184730.2 2017 16752 3094599901 268 0.0159981 14103 49507687
14103062013 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 65 0.0038801 14103 12007461
14103062016 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 155 0.0092526 14103 28633177
14103062021 14103 27 2017 Lanco 184730.2 2017 16752 3094599901 226 0.0134909 14103 41749020

7 Análisis de regresión

Aplicaremos un análisis de regresión donde:

\[ Y(dependiente) = ingreso \ expandido \ por \ zona \ (multi\_pob)\]

\[ X(independiente) = frecuencia \ de \ población \ que \ posee \ la \ variable \ Censal \ respecto \ a \ la \ zona \ (Freq.x) \]

7.1 Diagrama de dispersión loess

scatter.smooth(x=h_y_m_comuna_corr_01$Freq.x, y=h_y_m_comuna_corr_01$multi_pob, main="multi_pob ~ Freq.x",
     xlab = "Freq.x",
     ylab = "multi_pob",
           col = 2) 

7.2 Outliers

Hemos demostrado en el punto 5.7.2 de aquí que la exclusión de ouliers no genera ninguna mejora en el modelo de regresión.

7.3 Modelo lineal

Aplicaremos un análisis de regresión lineal del ingreso expandido por zona sobre las frecuencias de respuestas zonales.

linearMod <- lm( multi_pob~(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -116522337  -16321431   -8484117    7790775  161025317 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 20166036    1536562   13.12   <2e-16 ***
## Freq.x       1451082      68706   21.12   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30730000 on 537 degrees of freedom
## Multiple R-squared:  0.4537, Adjusted R-squared:  0.4527 
## F-statistic: 446.1 on 1 and 537 DF,  p-value: < 2.2e-16

7.4 Gráfica de la recta de regresión lineal

ggplot(h_y_m_comuna_corr_01, aes(x = Freq.x , y = multi_pob)) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

Si bien obtenemos nuestro modelo lineal da cuenta del 0.8214 de la variabilidad de los datos de respuesta en torno a su media, modelos alternativos pueden ofrecernos una explicación de la variable dependiente aún mayor.

8 Modelos alternativos

8.1 Modelo cuadrático

\[ \hat Y = \beta_0 + \beta_1 X^2 \]

linearMod <- lm( multi_pob~(Freq.x^2) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^2), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -116522337  -16321431   -8484117    7790775  161025317 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 20166036    1536562   13.12   <2e-16 ***
## Freq.x       1451082      68706   21.12   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30730000 on 537 degrees of freedom
## Multiple R-squared:  0.4537, Adjusted R-squared:  0.4527 
## F-statistic: 446.1 on 1 and 537 DF,  p-value: < 2.2e-16

8.2 Modelo cúbico

\[ \hat Y = \beta_0 + \beta_1 X^3 \]

linearMod <- lm( multi_pob~(Freq.x^3) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ (Freq.x^3), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -116522337  -16321431   -8484117    7790775  161025317 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 20166036    1536562   13.12   <2e-16 ***
## Freq.x       1451082      68706   21.12   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30730000 on 537 degrees of freedom
## Multiple R-squared:  0.4537, Adjusted R-squared:  0.4527 
## F-statistic: 446.1 on 1 and 537 DF,  p-value: < 2.2e-16

8.3 Modelo logarítmico

\[ \hat Y = \beta_0 + \beta_1 ln X \]

linearMod <- lm( multi_pob~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -70411679 -19469669  -4576325  12366614 160379534 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -4384730    2339723  -1.874   0.0615 .  
## log(Freq.x) 24118739    1135369  21.243   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 30650000 on 537 degrees of freedom
## Multiple R-squared:  0.4566, Adjusted R-squared:  0.4556 
## F-statistic: 451.3 on 1 and 537 DF,  p-value: < 2.2e-16

8.4 Modelo exponencial

\[ \hat Y = \beta_0 + \beta_1 e^X \]

No es aplicable sin una transformación pues los valores elevados a \(e\) de Freq.x tienden a infinito.

8.5 Modelo con raíz cuadrada

\[ \hat Y = \beta_0 + \beta_1 \sqrt {X} \]

linearMod <- lm( multi_pob~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = multi_pob ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -93038246 -13801080  -4409347   8676024 146850668 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -8415276    2195691  -3.833 0.000142 ***
## sqrt(Freq.x) 16107834     651400  24.728  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 28430000 on 537 degrees of freedom
## Multiple R-squared:  0.5324, Adjusted R-squared:  0.5316 
## F-statistic: 611.5 on 1 and 537 DF,  p-value: < 2.2e-16

8.6 Modelo raíz-raíz

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \sqrt{X}+ \beta_1^2 X \]

linearMod <- lm( sqrt(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -5988  -1298   -297   1113   6647 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2233.02     148.86   15.00   <2e-16 ***
## sqrt(Freq.x)  1112.56      44.16   25.19   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1927 on 537 degrees of freedom
## Multiple R-squared:  0.5417, Adjusted R-squared:  0.5408 
## F-statistic: 634.6 on 1 and 537 DF,  p-value: < 2.2e-16

8.7 Modelo log-raíz

\[ \hat Y = e^{\beta_0 + \beta_1 \sqrt{X}} \]

linearMod <- lm( log(multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.27433 -0.47825  0.04621  0.57614  1.91617 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  15.83567    0.06021  263.03   <2e-16 ***
## sqrt(Freq.x)  0.37944    0.01786   21.24   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7795 on 537 degrees of freedom
## Multiple R-squared:  0.4566, Adjusted R-squared:  0.4556 
## F-statistic: 451.3 on 1 and 537 DF,  p-value: < 2.2e-16

8.8 Modelo raíz-log

\[ \hat Y = {\beta_0}^2 + 2 \beta_0 \beta_1 \ln{X}+ \beta_1^2 ln^2X \]

linearMod <- lm( sqrt(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -4741  -1326   -286   1083   6571 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2288.04     147.31   15.53   <2e-16 ***
## log(Freq.x)  1797.15      71.48   25.14   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1929 on 537 degrees of freedom
## Multiple R-squared:  0.5407, Adjusted R-squared:  0.5398 
## F-statistic: 632.1 on 1 and 537 DF,  p-value: < 2.2e-16

8.9 Modelo log-log

\[ \hat Y = e^{\beta_0+\beta_1 ln{X}} \]

linearMod <- lm( log(multi_pob)~log(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = log(multi_pob) ~ log(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.27932 -0.49409 -0.00345  0.50315  1.85153 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 15.76996    0.05519  285.72   <2e-16 ***
## log(Freq.x)  0.66256    0.02678   24.74   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7229 on 537 degrees of freedom
## Multiple R-squared:  0.5326, Adjusted R-squared:  0.5317 
## F-statistic:   612 on 1 and 537 DF,  p-value: < 2.2e-16

9 Modelo elegido: raíz-raíz (sqrt-sqrt)

Es éste el modelo que nos entrega el mayor coeficiente de determinación de todos (0.5408).

9.1 Diagrama de dispersión sobre sqrt-sqrt

Desplegamos una curva suavizada por loess en el diagrama de dispersión.

scatter.smooth(x=sqrt(h_y_m_comuna_corr_01$Freq.x), y=sqrt(h_y_m_comuna_corr_01$multi_pob), lpars = list(col = "red", lwd = 2, lty = 1), main="multi_pob ~ Freq.x")

9.2 Modelo sqrt-sqrt

Observemos nuevamente el resultado sobre sqrt-sqrt.

linearMod <- lm(sqrt( multi_pob)~sqrt(Freq.x) , data=h_y_m_comuna_corr_01)
summary(linearMod) 
## 
## Call:
## lm(formula = sqrt(multi_pob) ~ sqrt(Freq.x), data = h_y_m_comuna_corr_01)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -5988  -1298   -297   1113   6647 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2233.02     148.86   15.00   <2e-16 ***
## sqrt(Freq.x)  1112.56      44.16   25.19   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1927 on 537 degrees of freedom
## Multiple R-squared:  0.5417, Adjusted R-squared:  0.5408 
## F-statistic: 634.6 on 1 and 537 DF,  p-value: < 2.2e-16
ggplot(h_y_m_comuna_corr_01, aes(x = sqrt(Freq.x) , y = sqrt(multi_pob))) + 
  geom_point() +
  stat_smooth(method = "lm", col = "red")

9.3 Análisis de residuos

par(mfrow = c (2,2))
plot(linearMod)

9.4 Ecuación del modelo


\[ \hat Y = {2233.02}^2 + 2 \cdot 2233.02 \cdot 1112.56 \sqrt{X}+ 1112.56^2 \cdot X \]

10 Aplicación la regresión a los valores de la variable a nivel de zona

Esta nueva variable se llamará: est_ing

h_y_m_comuna_corr_01$est_ing <- 
(2233.02)^2 + 2 * 2233.02 * 1112.56 * sqrt(h_y_m_comuna_corr_01$Freq.x)+  1112.56^2 * (h_y_m_comuna_corr_01$Freq.x)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing
14101042005 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 60 0.0003613 14101 12703949 28942408
14101042058 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 40 0.0002408 14101 8469299 28942408
14101062011 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 101 0.0006081 14101 21384980 26796950
14101062013 14101 13 2017 Valdivia 211732.5 2017 166080 35164529745 88 0.0005299 14101 18632458 38992683
14101062021 14101 14 2017 Valdivia 211732.5 2017 166080 35164529745 296 0.0017823 14101 62672813 40906748
14101062033 14101 33 2017 Valdivia 211732.5 2017 166080 35164529745 1052 0.0063343 14101 222742566 74376664
14101062047 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 16 0.0000963 14101 3387720 11192906
14101072002 14101 84 2017 Valdivia 211732.5 2017 166080 35164529745 294 0.0017702 14101 62249348 154499949
14101072033 14101 9 2017 Valdivia 211732.5 2017 166080 35164529745 49 0.0002950 14101 10374891 31032698
14101072045 14101 60 2017 Valdivia 211732.5 2017 166080 35164529745 287 0.0017281 14101 60767221 117741438
14101082002 14101 129 2017 Valdivia 211732.5 2017 166080 35164529745 429 0.0025831 14101 90833233 221095266
14101082032 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 22 0.0001325 14101 4658114 19875012
14101112005 14101 109 2017 Valdivia 211732.5 2017 166080 35164529745 380 0.0022881 14101 80458341 191780604
14101112010 14101 48 2017 Valdivia 211732.5 2017 166080 35164529745 176 0.0010597 14101 37264916 98824709
14101112017 14101 162 2017 Valdivia 211732.5 2017 166080 35164529745 1083 0.0065210 14101 229306272 268750022
14101112037 14101 43 2017 Valdivia 211732.5 2017 166080 35164529745 535 0.0032213 14101 113276875 90793528
14101112046 14101 17 2017 Valdivia 211732.5 2017 166080 35164529745 103 0.0006202 14101 21808445 46515434
14101112058 14101 16 2017 Valdivia 211732.5 2017 166080 35164529745 59 0.0003553 14101 12492216 44665964
14101112901 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 17 0.0001024 14101 3599452 19875012
14101122007 14101 86 2017 Valdivia 211732.5 2017 166080 35164529745 297 0.0017883 14101 62884546 157514473
14101122009 14101 28 2017 Valdivia 211732.5 2017 166080 35164529745 266 0.0016016 14101 56320839 65936579
14101122042 14101 48 2017 Valdivia 211732.5 2017 166080 35164529745 233 0.0014029 14101 49333667 98824709
14101122058 14101 125 2017 Valdivia 211732.5 2017 166080 35164529745 509 0.0030648 14101 107771831 215262271
14101132003 14101 27 2017 Valdivia 211732.5 2017 166080 35164529745 290 0.0017461 14101 61402418 64225019
14101132050 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 66 0.0003974 14101 13974343 26796950
14101132901 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 250 0.0015053 14101 52933119 24583988
14101142014 14101 37 2017 Valdivia 211732.5 2017 166080 35164529745 325 0.0019569 14101 68813055 81008249
14101142039 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 58 0.0003492 14101 12280484 11192906
14101142043 14101 3 2017 Valdivia 211732.5 2017 166080 35164529745 44 0.0002649 14101 9316229 17305853
14101142047 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 77 0.0004636 14101 16303401 11192906
14101142059 14101 15 2017 Valdivia 211732.5 2017 166080 35164529745 96 0.0005780 14101 20326318 42797062
14101152059 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 82 0.0004937 14101 17362063 14488814
14101162018 14101 25 2017 Valdivia 211732.5 2017 166080 35164529745 97 0.0005841 14101 20538050 60774809
14101162019 14101 27 2017 Valdivia 211732.5 2017 166080 35164529745 64 0.0003854 14101 13550879 64225019
14101162034 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 42 0.0002529 14101 8892764 19875012
14101162053 14101 32 2017 Valdivia 211732.5 2017 166080 35164529745 217 0.0013066 14101 45945947 72703074
14101162061 14101 28 2017 Valdivia 211732.5 2017 166080 35164529745 94 0.0005660 14101 19902853 65936579
14101162901 14101 3 2017 Valdivia 211732.5 2017 166080 35164529745 23 0.0001385 14101 4869847 17305853
14101172001 14101 214 2017 Valdivia 211732.5 2017 166080 35164529745 1348 0.0081166 14101 285415379 342559748
14101172016 14101 54 2017 Valdivia 211732.5 2017 166080 35164529745 148 0.0008911 14101 31336407 108339639
14101172027 14101 5 2017 Valdivia 211732.5 2017 166080 35164529745 103 0.0006202 14101 21808445 22285762
14101172036 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 110 0.0006623 14101 23290572 28942408
14101172055 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 88 0.0005299 14101 18632458 24583988
14101172901 14101 9 2017 Valdivia 211732.5 2017 166080 35164529745 39 0.0002348 14101 8257567 31032698
14101182004 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 188 0.0011320 14101 39805706 26796950
14101182006 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 67 0.0004034 14101 14186076 24583988
14101182015 14101 49 2017 Valdivia 211732.5 2017 166080 35164529745 455 0.0027396 14101 96338277 100419238
14101182031 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 38 0.0002288 14101 8045834 11192906
14101182040 14101 16 2017 Valdivia 211732.5 2017 166080 35164529745 323 0.0019448 14101 68389590 44665964
14101182049 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 32 0.0001927 14101 6775439 14488814
14101192031 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 22 0.0001325 14101 4658114 11192906
14101192901 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 28 0.0001686 14101 5928509 14488814
14102012011 14102 2 2017 Corral 157428.1 2017 5302 834683963 22 0.0041494 14102 3463419 14488814
14102012017 14102 7 2017 Corral 157428.1 2017 5302 834683963 61 0.0115051 14102 9603116 26796950
14102012018 14102 4 2017 Corral 157428.1 2017 5302 834683963 80 0.0150886 14102 12594251 19875012
14102022008 14102 22 2017 Corral 157428.1 2017 5302 834683963 507 0.0956243 14102 79816064 55523197
14102022010 14102 3 2017 Corral 157428.1 2017 5302 834683963 41 0.0077329 14102 6454553 17305853
14102032001 14102 2 2017 Corral 157428.1 2017 5302 834683963 68 0.0128253 14102 10705113 14488814
14102032005 14102 2 2017 Corral 157428.1 2017 5302 834683963 64 0.0120709 14102 10075401 14488814
14102032019 14102 1 2017 Corral 157428.1 2017 5302 834683963 62 0.0116937 14102 9760544 11192906
14102032901 14102 1 2017 Corral 157428.1 2017 5302 834683963 31 0.0058469 14102 4880272 11192906
14102042002 14102 19 2017 Corral 157428.1 2017 5302 834683963 325 0.0612976 14102 51164143 50162608
14102042006 14102 5 2017 Corral 157428.1 2017 5302 834683963 257 0.0484723 14102 40459030 22285762
14102042007 14102 1 2017 Corral 157428.1 2017 5302 834683963 115 0.0216899 14102 18104235 11192906
14102042011 14102 1 2017 Corral 157428.1 2017 5302 834683963 34 0.0064127 14102 5352557 11192906
14102042014 14102 1 2017 Corral 157428.1 2017 5302 834683963 48 0.0090532 14102 7556550 11192906
14103012004 14103 25 2017 Lanco 184730.2 2017 16752 3094599901 197 0.0117598 14103 36391845 60774809
14103012010 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477 17305853
14103012020 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477 14488814
14103012022 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 93 0.0055516 14103 17179906 31032698
14103012027 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 105 0.0062679 14103 19396668 17305853
14103012029 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 16 0.0009551 14103 2955683 11192906
14103012040 14103 4 2017 Lanco 184730.2 2017 16752 3094599901 106 0.0063276 14103 19581399 19875012
14103022023 14103 13 2017 Lanco 184730.2 2017 16752 3094599901 224 0.0133715 14103 41379559 38992683
14103022025 14103 6 2017 Lanco 184730.2 2017 16752 3094599901 69 0.0041189 14103 12746382 24583988
14103022030 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 199 0.0118792 14103 36761305 31032698
14103022039 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 379 0.0226242 14103 70012737 31032698
14103022042 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477 22285762
14103022043 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334 17305853
14103022044 14103 7 2017 Lanco 184730.2 2017 16752 3094599901 96 0.0057307 14103 17734097 26796950
14103022901 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334 11192906
14103032001 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 100 0.0059694 14103 18473018 11192906
14103032002 14103 4 2017 Lanco 184730.2 2017 16752 3094599901 273 0.0162966 14103 50431338 19875012
14103032008 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 119 0.0071036 14103 21982891 14488814
14103032009 14103 6 2017 Lanco 184730.2 2017 16752 3094599901 93 0.0055516 14103 17179906 24583988
14103032015 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 96 0.0057307 14103 17734097 14488814
14103032019 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 55 0.0032832 14103 10160160 14488814
14103032034 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 59 0.0035220 14103 10899080 11192906
14103032036 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334 11192906
14103032041 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 159 0.0094914 14103 29372098 14488814
14103032042 14103 20 2017 Lanco 184730.2 2017 16752 3094599901 304 0.0181471 14103 56157973 51963043
14103032901 14103 12 2017 Lanco 184730.2 2017 16752 3094599901 179 0.0106853 14103 33066701 37052067
14103042012 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 75 0.0044771 14103 13854763 22285762
14103042038 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 45 0.0026862 14103 8312858 14488814
14103052003 14103 10 2017 Lanco 184730.2 2017 16752 3094599901 250 0.0149236 14103 46182544 33076803
14103052035 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 173 0.0103271 14103 31958320 11192906
14103052040 14103 12 2017 Lanco 184730.2 2017 16752 3094599901 268 0.0159981 14103 49507687 37052067
14103062013 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 65 0.0038801 14103 12007461 14488814
14103062016 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 155 0.0092526 14103 28633177 22285762
14103062021 14103 27 2017 Lanco 184730.2 2017 16752 3094599901 226 0.0134909 14103 41749020 64225019


11 División del valor estimado entre la población total de la zona para obtener el ingreso medio por zona


\[ Ingreso \_ Medio\_zona = est\_ing / (personas * p\_poblacional) \]


h_y_m_comuna_corr_01$ing_medio_zona <- h_y_m_comuna_corr_01$est_ing  /( h_y_m_comuna_corr_01$personas  * h_y_m_comuna_corr_01$p_poblacional)

r3_100 <- h_y_m_comuna_corr_01[c(1:100),]
kbl(r3_100) %>%
  kable_styling(bootstrap_options = c("striped", "hover")) %>%
  kable_paper() %>%
  scroll_box(width = "100%", height = "300px")
zona código.x Freq.x anio comuna.x promedio_i año personas Ingresos_expandidos Freq.y p_poblacional código.y multi_pob est_ing ing_medio_zona
14101042005 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 60 0.0003613 14101 12703949 28942408 482373.47
14101042058 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 40 0.0002408 14101 8469299 28942408 723560.20
14101062011 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 101 0.0006081 14101 21384980 26796950 265316.34
14101062013 14101 13 2017 Valdivia 211732.5 2017 166080 35164529745 88 0.0005299 14101 18632458 38992683 443098.67
14101062021 14101 14 2017 Valdivia 211732.5 2017 166080 35164529745 296 0.0017823 14101 62672813 40906748 138198.47
14101062033 14101 33 2017 Valdivia 211732.5 2017 166080 35164529745 1052 0.0063343 14101 222742566 74376664 70700.25
14101062047 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 16 0.0000963 14101 3387720 11192906 699556.60
14101072002 14101 84 2017 Valdivia 211732.5 2017 166080 35164529745 294 0.0017702 14101 62249348 154499949 525510.03
14101072033 14101 9 2017 Valdivia 211732.5 2017 166080 35164529745 49 0.0002950 14101 10374891 31032698 633320.38
14101072045 14101 60 2017 Valdivia 211732.5 2017 166080 35164529745 287 0.0017281 14101 60767221 117741438 410248.91
14101082002 14101 129 2017 Valdivia 211732.5 2017 166080 35164529745 429 0.0025831 14101 90833233 221095266 515373.58
14101082032 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 22 0.0001325 14101 4658114 19875012 903409.65
14101112005 14101 109 2017 Valdivia 211732.5 2017 166080 35164529745 380 0.0022881 14101 80458341 191780604 504685.80
14101112010 14101 48 2017 Valdivia 211732.5 2017 166080 35164529745 176 0.0010597 14101 37264916 98824709 561504.03
14101112017 14101 162 2017 Valdivia 211732.5 2017 166080 35164529745 1083 0.0065210 14101 229306272 268750022 248153.30
14101112037 14101 43 2017 Valdivia 211732.5 2017 166080 35164529745 535 0.0032213 14101 113276875 90793528 169707.53
14101112046 14101 17 2017 Valdivia 211732.5 2017 166080 35164529745 103 0.0006202 14101 21808445 46515434 451606.15
14101112058 14101 16 2017 Valdivia 211732.5 2017 166080 35164529745 59 0.0003553 14101 12492216 44665964 757050.24
14101112901 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 17 0.0001024 14101 3599452 19875012 1169118.37
14101122007 14101 86 2017 Valdivia 211732.5 2017 166080 35164529745 297 0.0017883 14101 62884546 157514473 530351.76
14101122009 14101 28 2017 Valdivia 211732.5 2017 166080 35164529745 266 0.0016016 14101 56320839 65936579 247881.87
14101122042 14101 48 2017 Valdivia 211732.5 2017 166080 35164529745 233 0.0014029 14101 49333667 98824709 424140.38
14101122058 14101 125 2017 Valdivia 211732.5 2017 166080 35164529745 509 0.0030648 14101 107771831 215262271 422912.12
14101132003 14101 27 2017 Valdivia 211732.5 2017 166080 35164529745 290 0.0017461 14101 61402418 64225019 221465.58
14101132050 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 66 0.0003974 14101 13974343 26796950 406014.40
14101132901 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 250 0.0015053 14101 52933119 24583988 98335.95
14101142014 14101 37 2017 Valdivia 211732.5 2017 166080 35164529745 325 0.0019569 14101 68813055 81008249 249256.15
14101142039 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 58 0.0003492 14101 12280484 11192906 192981.13
14101142043 14101 3 2017 Valdivia 211732.5 2017 166080 35164529745 44 0.0002649 14101 9316229 17305853 393314.85
14101142047 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 77 0.0004636 14101 16303401 11192906 145362.41
14101142059 14101 15 2017 Valdivia 211732.5 2017 166080 35164529745 96 0.0005780 14101 20326318 42797062 445802.73
14101152059 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 82 0.0004937 14101 17362063 14488814 176692.85
14101162018 14101 25 2017 Valdivia 211732.5 2017 166080 35164529745 97 0.0005841 14101 20538050 60774809 626544.43
14101162019 14101 27 2017 Valdivia 211732.5 2017 166080 35164529745 64 0.0003854 14101 13550879 64225019 1003515.92
14101162034 14101 4 2017 Valdivia 211732.5 2017 166080 35164529745 42 0.0002529 14101 8892764 19875012 473214.58
14101162053 14101 32 2017 Valdivia 211732.5 2017 166080 35164529745 217 0.0013066 14101 45945947 72703074 335037.21
14101162061 14101 28 2017 Valdivia 211732.5 2017 166080 35164529745 94 0.0005660 14101 19902853 65936579 701452.97
14101162901 14101 3 2017 Valdivia 211732.5 2017 166080 35164529745 23 0.0001385 14101 4869847 17305853 752428.41
14101172001 14101 214 2017 Valdivia 211732.5 2017 166080 35164529745 1348 0.0081166 14101 285415379 342559748 254124.44
14101172016 14101 54 2017 Valdivia 211732.5 2017 166080 35164529745 148 0.0008911 14101 31336407 108339639 732024.59
14101172027 14101 5 2017 Valdivia 211732.5 2017 166080 35164529745 103 0.0006202 14101 21808445 22285762 216366.62
14101172036 14101 8 2017 Valdivia 211732.5 2017 166080 35164529745 110 0.0006623 14101 23290572 28942408 263112.80
14101172055 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 88 0.0005299 14101 18632458 24583988 279363.50
14101172901 14101 9 2017 Valdivia 211732.5 2017 166080 35164529745 39 0.0002348 14101 8257567 31032698 795710.22
14101182004 14101 7 2017 Valdivia 211732.5 2017 166080 35164529745 188 0.0011320 14101 39805706 26796950 142536.97
14101182006 14101 6 2017 Valdivia 211732.5 2017 166080 35164529745 67 0.0004034 14101 14186076 24583988 366925.20
14101182015 14101 49 2017 Valdivia 211732.5 2017 166080 35164529745 455 0.0027396 14101 96338277 100419238 220701.62
14101182031 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 38 0.0002288 14101 8045834 11192906 294550.15
14101182040 14101 16 2017 Valdivia 211732.5 2017 166080 35164529745 323 0.0019448 14101 68389590 44665964 138284.72
14101182049 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 32 0.0001927 14101 6775439 14488814 452775.43
14101192031 14101 1 2017 Valdivia 211732.5 2017 166080 35164529745 22 0.0001325 14101 4658114 11192906 508768.43
14101192901 14101 2 2017 Valdivia 211732.5 2017 166080 35164529745 28 0.0001686 14101 5928509 14488814 517457.63
14102012011 14102 2 2017 Corral 157428.1 2017 5302 834683963 22 0.0041494 14102 3463419 14488814 658582.44
14102012017 14102 7 2017 Corral 157428.1 2017 5302 834683963 61 0.0115051 14102 9603116 26796950 439294.27
14102012018 14102 4 2017 Corral 157428.1 2017 5302 834683963 80 0.0150886 14102 12594251 19875012 248437.65
14102022008 14102 22 2017 Corral 157428.1 2017 5302 834683963 507 0.0956243 14102 79816064 55523197 109513.21
14102022010 14102 3 2017 Corral 157428.1 2017 5302 834683963 41 0.0077329 14102 6454553 17305853 422093.98
14102032001 14102 2 2017 Corral 157428.1 2017 5302 834683963 68 0.0128253 14102 10705113 14488814 213070.79
14102032005 14102 2 2017 Corral 157428.1 2017 5302 834683963 64 0.0120709 14102 10075401 14488814 226387.71
14102032019 14102 1 2017 Corral 157428.1 2017 5302 834683963 62 0.0116937 14102 9760544 11192906 180530.73
14102032901 14102 1 2017 Corral 157428.1 2017 5302 834683963 31 0.0058469 14102 4880272 11192906 361061.47
14102042002 14102 19 2017 Corral 157428.1 2017 5302 834683963 325 0.0612976 14102 51164143 50162608 154346.49
14102042006 14102 5 2017 Corral 157428.1 2017 5302 834683963 257 0.0484723 14102 40459030 22285762 86715.03
14102042007 14102 1 2017 Corral 157428.1 2017 5302 834683963 115 0.0216899 14102 18104235 11192906 97329.61
14102042011 14102 1 2017 Corral 157428.1 2017 5302 834683963 34 0.0064127 14102 5352557 11192906 329203.10
14102042014 14102 1 2017 Corral 157428.1 2017 5302 834683963 48 0.0090532 14102 7556550 11192906 233185.53
14103012004 14103 25 2017 Lanco 184730.2 2017 16752 3094599901 197 0.0117598 14103 36391845 60774809 308501.57
14103012010 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477 17305853 443739.83
14103012020 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477 14488814 371508.04
14103012022 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 93 0.0055516 14103 17179906 31032698 333684.93
14103012027 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 105 0.0062679 14103 19396668 17305853 164817.65
14103012029 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 16 0.0009551 14103 2955683 11192906 699556.60
14103012040 14103 4 2017 Lanco 184730.2 2017 16752 3094599901 106 0.0063276 14103 19581399 19875012 187500.12
14103022023 14103 13 2017 Lanco 184730.2 2017 16752 3094599901 224 0.0133715 14103 41379559 38992683 174074.48
14103022025 14103 6 2017 Lanco 184730.2 2017 16752 3094599901 69 0.0041189 14103 12746382 24583988 356289.69
14103022030 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 199 0.0118792 14103 36761305 31032698 155943.21
14103022039 14103 9 2017 Lanco 184730.2 2017 16752 3094599901 379 0.0226242 14103 70012737 31032698 81880.47
14103022042 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 39 0.0023281 14103 7204477 22285762 571429.79
14103022043 14103 3 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334 17305853 824088.25
14103022044 14103 7 2017 Lanco 184730.2 2017 16752 3094599901 96 0.0057307 14103 17734097 26796950 279134.90
14103022901 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334 11192906 532995.50
14103032001 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 100 0.0059694 14103 18473018 11192906 111929.06
14103032002 14103 4 2017 Lanco 184730.2 2017 16752 3094599901 273 0.0162966 14103 50431338 19875012 72802.24
14103032008 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 119 0.0071036 14103 21982891 14488814 121754.74
14103032009 14103 6 2017 Lanco 184730.2 2017 16752 3094599901 93 0.0055516 14103 17179906 24583988 264343.96
14103032015 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 96 0.0057307 14103 17734097 14488814 150925.14
14103032019 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 55 0.0032832 14103 10160160 14488814 263432.98
14103032034 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 59 0.0035220 14103 10899080 11192906 189710.26
14103032036 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 21 0.0012536 14103 3879334 11192906 532995.50
14103032041 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 159 0.0094914 14103 29372098 14488814 91124.61
14103032042 14103 20 2017 Lanco 184730.2 2017 16752 3094599901 304 0.0181471 14103 56157973 51963043 170931.06
14103032901 14103 12 2017 Lanco 184730.2 2017 16752 3094599901 179 0.0106853 14103 33066701 37052067 206994.79
14103042012 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 75 0.0044771 14103 13854763 22285762 297143.49
14103042038 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 45 0.0026862 14103 8312858 14488814 321973.64
14103052003 14103 10 2017 Lanco 184730.2 2017 16752 3094599901 250 0.0149236 14103 46182544 33076803 132307.21
14103052035 14103 1 2017 Lanco 184730.2 2017 16752 3094599901 173 0.0103271 14103 31958320 11192906 64698.88
14103052040 14103 12 2017 Lanco 184730.2 2017 16752 3094599901 268 0.0159981 14103 49507687 37052067 138253.98
14103062013 14103 2 2017 Lanco 184730.2 2017 16752 3094599901 65 0.0038801 14103 12007461 14488814 222904.83
14103062016 14103 5 2017 Lanco 184730.2 2017 16752 3094599901 155 0.0092526 14103 28633177 22285762 143779.11
14103062021 14103 27 2017 Lanco 184730.2 2017 16752 3094599901 226 0.0134909 14103 41749020 64225019 284181.50


Guardamos:

saveRDS(h_y_m_comuna_corr_01, "P15/region_14_P15_r.rds")